PROGRAMUL IDEI-ID-880

PROIECT

MODELAREA INTARZIERII DESPRINDERII AERODINAMICE DATORITA ROTATIEI

Etapa a IV a

EFECTUL ROTATIEI ASUPRA COMPORTARII STRATULUI LIMITA SI ASUPRA STRUCTURII CAMPULUI MISCARII, UTILIZAND METODA DE INTERACTIUNE VASCOS-NEVASCOS.

Director proiect

Prof. Horia DUMITRESCU

Institutul de Statistica Matematica si Matematica Aplicata BUCURESTI

15 septembrie 2009

1. Introducere

Regimurile de curgere desprinsa care se formeaza pe pale determina caracteristicile regimului critic(stall)si fortele aerodinamice pe pale. Natura si extinderea acestor regimuri sunt dependente in principal, in afará de forma profilului, incidenta si numarul Reynolds, de doi parametri specifici, care au legatura directs cu aparitia efectelor tridimensionale pe pala. Acestia sunt raportul dintre raza si lungimea corzii r/c si parametrul de rotatie $V_w/\Omega r$ care reprezinta raportul dintre viteza vantului si viteza tangentiala pe pala.Parametrul de rotatie este o masura a interactiunii dintre viteza axiala (vant) si curgerea rotationala indusa de palele rotorului. Mecanismul fizic care antreneaza toate efectele tridimensionale este legat de interactiunea dintre viteza vantului care depaseste viteza de proiectare si curgerea rotationala a aerului ambiant indusa de turatia constanta a rotorului. Daca parametrul de rotatie este subunitar pe intreaga anvergura $V_w/\Omega r < 1$ si palele sunt rasucite corespunzator, curgerea in general este atasata si neafectatata de acest parametru. Dar palele turbinelor de vant functioneaza adesea in conditii de stall profund cu $V_w/\Omega r > 1$ la partea interioara a anvergurii, provocand desprinderea stratului limita pe pala. Valori mai mari ale parametrului de rotatie conduc la intensificarea rotatiei in curgerea centrala de la butuc care are drept consecinta reducerea valorilor negative mari ale presiunii (reducerea sectiunii) la bordul de atac si producerea de bule de desprindere la bordul de atac in locul desprinderii (stall) la bordul de atac. In plus, fortele Coriolis induc gradiente favorabile in directia corzii, contribuind la intarzierea desprinderii (stall-delay). Producerea acestui fenomen denumit " stall - delay "interior, caracterizat prin cresterea brusca a portantei si rezistentei la inaintare, poate fi atribuit suctiunii rapide a aerului din bula de desprindere de la bordul de fuga si dirijarea acestuia in directia radiala. Curgerea in vecinatatea bordului de fuga al unei sectiuni de pala in regim critic este schitata in fig. 1.

Stratul limita laminar se formeaza din punctul de stagnare al bordului de atac dupa care se desprinde imediat in aval de punctul de presiune mínima. Apoi tranzitia la curgerea turbulenta se produce in scurt timp in aval dupa desprinderea laminara. In continuare

curgerea se reataseaza pe suprafata sectiunii cu strat limita turbulent care se intinde pana la bordul de fuga.

Fig. 1 – Curgerea in vecinatatea unei bule de bord de atac.

In acest studiu se analizeaza stratul de frecare separat si reatasat sub forma unei bule la bordul de atac al palei, utilizand o formula integrala in aproximatia stratului limita, [1]-[6].

2.] Extinderea unei metode de interactiune vascos- nevascos de la profile 2-D la cazul 3-D in rotatie.

S-a elaborat un model tridimensional pentru a identifica influenta efectelor tridimensionale si de rotatie asupra caracteristicilor sectiunii palei. In acest scop ecuatiile stratului limita tridimensional se scriu in forma integrala intr-un sistem de coordonate cilindrice (θ , *r*, *z*) care se roteste odata cu pala la o viteza unghiulara constanta Ω , fig.2. Se noteaza cu Ω , *r* si *z* respectiv directiile meridionala, radiala (in anvergura palei) si axiala.

Fig. 2 – Sistemul de coordonate cilindrice.

Pentru a determina viteza pe suprafata profilului in absenta efectelor vascoase, viteza de referinta intr-un punct

$$U_r = \sqrt{V_w^2 + \left(\Omega r\right)^2} , \qquad (1)$$

unde $V_{\rm w}$ este viteza vantului.

Pornind de la ideea lui Fogarty si Sears [7], viteza nevascoasa la marginea stratului limita se poate calcula ca :

$$\boldsymbol{U} = \Omega_z \boldsymbol{r} \frac{\partial \phi}{\partial \theta}, \, \boldsymbol{V} = \Omega_z (\phi - 2\theta), \, \boldsymbol{W} = \Omega_z \boldsymbol{r} \frac{\partial \phi}{\partial z}, \quad (2)$$

unde $\phi = \phi(\theta, z)$ reprezinta solutia potentiala 2-D, care este constanta la toate pozitiile radicale . Referitor la ecuatia (2) este interesant ca se poate obtine componenta radicala V din potentialul vitezei bidimensionale [8].

Totusi, aceasta componenta este mica si se poate neglija in cele ce urmeaza . Astfel, componentele vitezei potentiale la marginea stratului limita se pot aproxima ca :

$$U_e = U_r U_a, V = 0, (3)$$

unde viteza adimensionala U_a poate fi obtinuta dintr-un procedeu de interactiune vascosnevascos pentru profile aerodinamice in miscare rectilinie.

Deoarece obiectivul principal al prezentului studiu este investigarea bulei de desprindere la bordul de atac pe o pala in desprindere, cu ajutorul metodei stratului limita, se considera ca viteza U_a este in apropierea bordului de atac, liniara cu gradient negativ, iar dupa desprindere curgerea aceasta se relaxeaza cu frecare la perete nula.Astfel, curgerea nevascoasa se aproximeaza prin

$$U_e = U_r \left(1 - k \frac{x}{c} \right), \quad \text{for } \frac{x}{c} \le \left(\frac{x}{c} \right)_{sep},$$
(4)

$$U_e \delta_{2x}^{1/(H+2)} = const., \text{ for } \frac{\mathbf{x}}{\mathbf{c}} \ge \left(\frac{x}{c}\right)_{sep},$$
 (5)

unde *c* este lungimea corzii, *k* este un parametru care tine de gradientul vitezei si δ_{2x} , *H* sunt respectiv grosimea de impuls si parametru de forma al stratului limita.

In fig.3 si 4 se ilustreaza distributiile dupa coarda ale vitezei exterioare si variatiile corespunzatoare ale coeficientului de frecare (C_{fx}), precum si parametrul de forma al stratului limita (*H*) calculate pentru diferite valori ale parametrului de forma al parametrului gradientului *k*, numarul reynolds $R_{ec} = 10^6$ si distanta radiala

$$r/c = \infty (2-D).$$

Pentru $C_{fx=0}$ se produce desprinderea laminara, iar pentru criteriul desprindere / reatasare in curgerea turbulenta se utilizeaza o valoare data a factorului de forma H=3,3. Punctul de

tranzitie x_t se presupune ca este identic cu punctul desprinderii laminare (valoarea mínima a frecarii la perete).

a)

Fig. 4 – Variatia coeficientului de frecare la perete (a) si parametrul de forma al stratului limita (b)

Ipoteza variatiei liniare a vitezei cu gradient negativ este o aproximatie satisfacatoare in multe cazuri de functionare reala si poate fi utilizata la simularea distributiei vitezei in vecinatatea bordului de fuga al palei unei turbine de vant supuse desprinderii chiar la bordul de fuga (stall).

Extinderea curgerii dupa desprindere cu o curgere relaxata, care mentine in jurul bordului de atac o curgere in desprindere este o aproximatie satisfacatoare pentru curgerea reala permitand utilizarea modelului stratului limita pentru analiza procesului de desprindere tridimensionala.

Ecuatiile integrale ale impulsului pentru stratul limita tridimensional in fluid incompresibil pe o pala in rotatie au fost utilizate de o serie de cercetatori [1],[9],[10].

Metoda prezentata in aceasta lucrare este o extindere a formularii dezvoltate de Dumitrescu si Cardos pentru o turbina de vant, in curgere laminara. [1].

Noile particularitati prezentate acum incorporeaza o ecuatie tridimensionala de antrenare si cuplarea curgerii nevascoase in jurul bordului de atac cu ecuatiile tridimensionale integrale de impuls pentru calculul stratului limita pe pala.

Sistemul de coordonate si notatiile utilizate se arata in fig.2, unde $x=r\theta$ este coordonata in directia liniei de curent nevascoase la marginea stratului limita, r este coordonata in directia radiala, normala la x si z este directia axiala, normal ala x si la suprafata palei.

Ecuatiile integrale de impuls in directiile x si r, in sistemul de coordonate ortogonale rotitoare se scriu :

$$\frac{\partial \delta_{2x}}{\partial x} + \frac{1}{U_e} \frac{\partial U_e}{\partial x} \left(2\delta_{2x} + \delta_{1x} \right) + \frac{\partial \delta_{2xr}}{\partial r} - \frac{\zeta}{U_e} \left(2\delta_{2xr} + \delta_{1r} \right) - 2\frac{\Omega_z}{U_e} \delta_{1r} = \frac{1}{2} C_{fx} , \qquad (6)$$

$$\frac{\partial(\delta_{2xr} + \delta_{1r})}{\partial x} + \frac{2}{U_e} \frac{\partial U_e}{\partial x} (\delta_{2xr} + \delta_{1r}) + \frac{\partial \delta_{2r}}{\partial r} + \frac{1}{U_e} \frac{\partial U_e}{\partial r} (\delta_{2r} + \delta_{1x} + \delta_{2x}) - \frac{\zeta}{U_e} (\delta_{2r} - \delta_{1x} - \delta_{2x}) + 2 \frac{\Omega_z}{U_e \delta_{1x}} = \frac{1}{2} C_{fr}$$

$$(7)$$

unde $U_{\rm e}$ este viteza curentului liber nevascos, $\zeta = (\nabla \times \mathbf{V}_{\rm e})_z = -\frac{1}{r} \frac{\partial}{\partial r} (rU_e)$ si $(C_{\rm fx}, C_{\rm fr})$ sunt componentele coeficientului de frecare la perete.

S-a considerat ipoteza uzuala de strat limita subtire in comparatie cu raza de curbura a suprafetei palei si lungimea *ds* in acest sistem de coordonate este data de

$$ds = dx^2 + dz^2 + dr^2, (8)$$

Diferitele grosimi ale stratului limita se definesc dupa cum urmeaza :

$$\delta_{2x} = \int_{0}^{\delta} \frac{u}{U_e} \left(1 - \frac{u}{U_e} \right) dz,$$

$$\delta_{2xr} = \int_{0}^{\delta} \frac{v}{U_e} \left(1 - \frac{u}{U_e} \right) dz,$$

$$\delta_{2r} = -\int_{0}^{\delta} \left(\frac{v}{U_e} \right)^2 dz, ,$$

$$\delta_{1x} = \int_{0}^{\delta} \left(1 - \frac{u}{U_e} \right) dz,$$

$$\delta_{1r} = -\int_{0}^{\delta} \frac{v}{U_e} dz.$$
(9)

Pentru profilul de viteze in directia curentului principal se presupune un profil de tip lege de putere

$$\frac{u}{U_e} = \left(\frac{z}{\delta}\right)^{(H-1)/2},\tag{10}$$

in care *H* este factorul de forma local.

Profilul de viteze in directia curgerii transversale se presupune de forma parabolica

$$\frac{v}{u} = \varepsilon_w \left(1 - \frac{z}{\delta}\right)^2$$

in care ε_w este parametrul liniilor de curent la perete (ton β_w).

Acum, ecuatiile (6) si (7) se scriu in functie paramétrica $\delta_{2x,\epsilon_w} H$ si C_{fx} :

$$\frac{\partial \delta_{2x}}{\partial x} + (2+H)\delta_{2x}\frac{1}{U_e}\frac{\partial U_e}{\partial x} + \frac{\partial}{\partial r}(L\varepsilon_w\delta_{2x}) - \frac{\zeta}{U_e}(2L+M)\varepsilon_w\delta_{2x} - 2\frac{\Omega_z}{U_e}M\varepsilon_w\delta_{2x} = \frac{1}{2}C_{fx}, \quad (11)$$

$$\frac{\partial}{\partial x} \left[(L+M) \varepsilon_w \delta_{2x} \right] + \frac{2}{U_e} \frac{\partial U_e}{\partial x} (L+M) \varepsilon_w \delta_{2x} + \frac{\partial}{\partial r} \left(N \varepsilon_w^2 \delta_{2x} \right) + \frac{1}{U_e} \frac{\partial U_e}{\partial r} \left(N \varepsilon_w^2 + H + 1 \right) \delta_{2x} - \frac{\zeta}{U_e} \left(N \varepsilon_w^2 - H - 1 \right) \delta_{2x} + 2 \frac{\Omega_z}{U_e} H \delta_{2x} = \frac{1}{2} C_{fx} \varepsilon_w$$
(12)

in care

$$L = \frac{\delta_{2xr}}{\varepsilon_w \delta_{2x}} = \frac{2(7H+15)}{(H+2)(H+3)(H+5)},$$

$$M = \frac{\delta_{1r}}{\varepsilon_w \delta_{2x}} = -\frac{16H}{(H-1)(H+3)(H+5)},$$
, (13)

$$N = \frac{\delta_{2r}}{\varepsilon_w^2 \delta_{2x}} = -\frac{24}{(H-1)(H+2)(H+3)(H+4)}.$$

Relatia empírica a coeficientului de frecare la perete care tine seama de efectele gradientului de presiune advers si de rotatie se bazeaza pe masuratori pentru un strat limita turbulent format intr-un canal rotitor [10]

$$C_{fx} = 0.172 \operatorname{Re}_{\delta_{2x}}^{-0.268} 10^{-0.678H} \left(1 + B_1 \sqrt{\varepsilon_w (x - x_t) / c} \right), \tag{14}$$

Aceasta corelatie este varianta modificata a relatiei propusa de Ludwieg si Tillmann [11], care tine seama de efectul rotatiei.

Gradientii de presiune produc variatii importante ale profilelor de viteze si prin urmare , variatiile parametrului de forma *H* nu pot fi neglijate fiind nevoie de o ecuatie suplimetara. Deoarece variatia tensiunilor de frecare difera mult de la un tip de curgere la altul, mai ales sub influenta rotatiei si curburii, se prefera utilizarea unei ecuatii de antrenare in locul ecuatiei integrale a energiei. Conceptul de antrenare presupune formarea stratului limita turbulent printr-un proces de antrenare a curgerii nevascoase exterioare stratului limita in interiorul regiunii turbulente [12]. Aceasta ecuatie se obtine prin integrarea ecuatiei de continuitate de la suprafata palei (z=0) pana la marginea stratului limita (z = δ) Ecuatia de antrenare a stratului limita utilizata se scrie :

$$\frac{\partial(\delta-\delta_{1x})}{\partial x} + (\delta-\delta_1)\frac{1}{U_e}\frac{\partial U_e}{\partial x} - \frac{\partial\delta_{1r}}{\partial r} + \frac{\zeta}{U_e}\delta_r = C_E, \qquad (15)$$

unde coeficientul de antrenare $C_E = \left(\frac{\partial \delta}{\partial x} - \frac{W_e}{U_e}\right)$ este o functie de factorul H₁= $(\delta - \delta_x)/\delta_{2x}$, C_E

reprezentand debitul volumic prin unitatea de suprafata $\delta(x,r)$, reprezentand rata de antrenare a curgerii exterioare nevascoase in stratul limita.

Functia de antrenare C_E propusa de Head [13] pentru curgeri bidimensionale este utilizata in analiza prezenta

$$C_E = 0.0306 (H_1 - 3.0)^{-0.653}, \tag{16}$$

De asemenea se arata ca H_1 este o fuctie numai de parametri de forma al stratului limita H. Aceasta relatie se obtine empiric pe baza celei mai bune concordante cu date experimentale [14]:

$$H_1 = 2 + 1.5 \left(\frac{1.12}{H - 1}\right)^{1.093} + 0.5 \left(\frac{H - 1}{1.12}\right)^{1.093}, \text{ pentru } H < 4.$$
(17)

Ecuatia (15) este apoi scrisa intr-o forma similara cu ecuatiile (11) si (12).

$$\frac{\partial}{\partial x} \left(\delta_{2x} H_1 \right) + \left(\delta_{2x} H_1 \right) \frac{1}{U_e} \frac{\partial U_e}{\partial x} - \frac{\partial}{\partial r} \left(M \varepsilon_w \delta_{2x} \right) + \left(M \varepsilon_w \delta_{2x} \right) \frac{\zeta}{U_e} = C_E \left(H_1 \right), \tag{18}$$

Ecuatiile (11), (12) si (18) trebuiesc rezolvate in functie de δ_{2x} , ε_w si $H(H_1)$ cu conditiile la limita prescrise ; δ_{2x} si ε_w sunt presupuse zero la bordul de atac si pentru H este presupusa valoarea initiala de 2,55 (curgere laminara).

2.2 Identificarea structurilor de vartej responsabile de intensificarea fortelor aerodinamice pe pale si corectii pentru efectul rotatiei asupra caracteristicilor aerodinamice ale profilelor.

Rezultatele obtinute pentru bula de desprindere la bordul de atac sugereaza o explicatie plauzibila asupra cresterii rotationale a fortelor aerodinamice. Un element important al acestei analize este determinarea ariei regiunii desprinse pe pala la bordul de atac. Pe de alta parte , acest proces de desprindere este un fenomen complex si inerent nestationar din care cauza masurarea lui directa este dificila si confuza. In aceste conditii, studiul procesului desprinderii tridimensionale poate fi tratat avantajos cu ajutorul ecuatiilor stratului limita si a unei rezolvari inverse a lor.

Pe baza metodei descrise s-au analizat patru cazuri de curgeri cu gradienti de presiune nefavorabili. Rezultatele obtinute pentru coeficientul de frecare la perete in directia corzii, pentru parametrul de forma al stratului limita si unghiul liniilor de curent limita, la diferite valori mici ale parametrului zonelor de desprindere si reatasare ale stratului limita

tridimensional. In cazurile considerate, spectrul liniilor de desprindere si de atasare sugereaza prezenta unei bule conice cu vorticitate pronuntata pe jumatatea interioara a palei. Dupa ce bula se rupe, la bordul de atac se formeaza un strat de frecare liber, iar curgerea pe extradosul palei este in principal in directia radiala spre extremitatea palei. In figura 5 se prezinta diverse contururi ale bulei de desprindere la bordul de atac. Probabil concentratiile mari de vorticitate apartin regiunii de recirculare care inchide stratul de frecare (bula).

Fig. 5 – Contururi desprindere /reatasare calculate la bordul de atac pentru diferite valori ale gradientului de viteza, *k*.

Variatia brusca a volumului bulei de desprindere, observata in toate cazurile considerate la aproximativ r/c=4 (corespunzand mijlocului anvergurii)si in apropierea bordului de fuga,contribuie la ruperea bulei pe extradosul palei. Miscarea elicoidala a fluidului din bula de desprindere poate fi considerata ca asemanatoare cu miscarea unui vartej stationar la interiorul palei, in directia anvergurii care se disipa cand directia se schimba. Confirmarea indirecta a comportarii ca vartej , urmata de ruperea posibila a acestuia se poate observa in variatia circulatiei si a valorilor locale ale coeficientilor de performanta si rezistenta determinati de masuratori [15].

In continuarea discutiei este util sa se interpreteze rezultatele acestui studiu teoretic asupra curgerii tridimensionale pe pala in functie de liniile de curent limita (la perete) care pot proveni dintr-un punct singular dublu focar - şa. Combinația $C_{fx}=C_{fr}=0$ si vorticitate intensa.

In vecinatatea centrului de rotatie si la bordul de atac, desprinderea locala genereaza o suprafata de vorticitate intensa (teoretic un punct singular de tip focar) care se misca dupa traiectorii spirale in curgere. In fig. 6 se prezinta o structura posibila a curgerii de vartej tridimensional pe portiunea interioara a unei pale in rotatie in conditiile critice (stall).

Fig. 6 – Interpretarea liniilor de curent la perete in apropierea butucului.

Structura de desprindere care uneste un punct sa cu un focar contine pe suprafata o linie de convergenta puternica in apropierea liniilor de curent limita, denumita linie de desprindere (SL) si o linie denumita linie de reatasare (RL). In apropierea careia se produce divergenta liniilor de curent la perete. Ansamblul liniilor de curent care provin din punctul sa sub actiunea fortelor Corriolis formeaza o suprafata de curent singulara , care inchide un vartej , denumita bula cu vartej inchis (VB). La jumatatea palei, intensitatea forțelor Corriolis scazând, bula cu vârtej se rupe si curgerea se departeaza de perete , formând un strat de frecare liber si la bordul de fuga se instaleaza regimul critic (stall).

Dupa ruperea bulei curgerea este orientata in principal in directia radiala spre extremitatea palei, sub actiunea fortelor centrifugale.

Descrierea teoretica exacta a curgerii in jurul incastrarii palei implica fara indoiala puncte singulare in campul curgerii, problema fiind inca neclara.

2.3 Aplicarea formulelor de corectie pentru calculul caracteristicii de putere .

In cercetarea actuala, stiinta miscarii se bazeaza pe trei elemente care asigura echilibrul ei: modelarea matematica, simularea numerica si experienta. Totusi, unele probleme foarte dificile necesita completarea rigorii stricte cu un rationament euristic. Modelul propus, urmeaza aceasta cale pentru a explica in principal efectele tridimensionale si rotationale. Curgerea in vecinatatea bordului de fuga al unei pale in regim critic este schitata in fig. 7.

Fig. 7 – Modelul fizic al curgerii critice in jurul palelelor in regim critic (stall).

Curgerea centrala in jurul incastrarii palei (r/c=1) converteste viteza axiala a vantului intr-o curgere rotationala intensificata (viteza unghiulara a fluidului depaseste viteza unghiulara a palei). Acesta este mecanismul care poate fi atribuit declansarii efectelor tridimensionale si rotationale. In centru, curgerea actioneeaza ca un disc rotitor in curgere axiala, care aspira fluid pe pale, astfel ca depresiunile mari care se produc la bordul de atac al sectiunii palei la incidente mari pot fi considerabil reduse.

Reducerea gradientilor de presiune nefavorabili are drept consecinta intarzierea /eliminarea Desprinderii stratului pe extradosul sectiunilor palei . In acest caz curgerea in vecinatatea butucului depinde de r/c si in special de parametrul de rotatie $V_w/\Omega r$, numarul Reynolds, Re, afectand in principal portiunea exterioara palei.

Indata ce se produce o bula de desprindere mica la bordul de atac, forta Corriolis aspira masa de aer din bula si o redirectioneaza radial in anvergura. Bula de desprindere progreseaza si cand volumul ei creste brusc la mijlocul corzii bula se sparge si se departeaza formand o desprindere la bordul de atac de tip stat de frecare. Mecanismul specific al ruperii bulei, care in general se produce la mijlocul palei (r/c=4), in prezent este necunoscut. S-a postulat totusi ca exista o limitare fizica in valoarea presiunii de recuperare in stratul limita turbulent si a fortei Corriolis , astfel ca bula se rupe cand aceasta limita este depasita si stratul limita nu mai reuseste sa se reataseze. Circulatia suplimentara din jurul sectiunilor interioare ale palei se poate explica prin curgerea rotationala din interiorul bulei in directia anvergurii , care actioneaza ca un vartej stabil tinzand sa mareasca incarcarea palei si sa intarzie producerea curgerii critice (,, stall ,,).

2.3 Aplicarea formulelor de corectie pentru calculul caracteristicii de putere.

Modelul bulei de bord de atac pe pale in regim critic reprezinta o regiune tridimensionala de curgere, recirculata cu vorticitate avand concentratii apreciabile, inchisa de un strat de frecare (bula)la partea interioara a palei. Bula se formeaza la r/c <1 si la r/c=4 se rupe si apoi sa indeparteaza de la perete formand un strat de frecare liber. Aceasta comportare la unghiuri

mari de incidenta poate fi modelata cu ajutorul unui vartej stabil in directia anvergurii situat pe extradosul palei. Originea vartejului care se gaseste in domeniul r/c=0,5-1,0 se fixeaza la pozitia r/c=1,0. Daca butucul palei are o valoare mai mare, atunci rasucirea si forma palei sunt extrapolate la aceasta valoare. Intensitatea initiala a vartejului se defineste ca diferenta ΔC_{11} dintre valoarea potentiala $C_{1,POT}$ si valoarea bidimensionala corespunzatoare $C_{1,2D}$ in punctul de origine. Unghiul de incidenta la originea vartejului se calculeaza dupa formula

$$\alpha_1 = \tan^{-1} \left(\frac{2}{3} \frac{V_w}{\Omega c_1} \right) - \beta_1$$
(20)

unde Ω este viteza unghiulara a rotorului, V_w este viteza vantului si c₁, β_1 sunt lungimea corzii si unghiul de rasucire la originea fixata.

Astfel, conditia initiala pentru portanta de vartej este

$$\Delta C_{l1} = 2\pi \sin(\alpha_1 - \alpha_0) - C_{l,2D}(\alpha_1)$$
(21)

Apoi, presupunand o disipatie vascoasa a portantei de vartej in directia anvergurii se propune urmatoarea lege de corectie :

$$C_{l,3D} = C_{l,2D} + \Delta C_{l1} \left[1 - \exp\left(-\frac{\gamma}{r/c - 1}\right) \right].$$
 (22)

In final, pentru a verifica formula de corectie (22) s-a efectuat un calcul conform teoremei element de pala-impuls (BEM) pentru un caz test [15]. Rezultatele pentru variatia coeficientului de portanta in functie de incidenta $C_1(\alpha)$ si a coeficientului de putere in functie de viteza specifica $C_p(\lambda)$ sunt prezentate in figurile 8 si 9.

Fig. 8 – Coeficientii de portanta calculati si masurati in functie de unghiul de incidenta

Fig. 9 – Caracteristici putere-viteza specifica.

3 Concluzii

In lucrarea prezenta, metoda integrala a impulsului pentru stratul limita pe o pala de turbina de vant a fost extinsa, prin includerea separarii si reatasarii stratului de frecare din bula de desprindere. Pe baza metodei de strat limita descrisa, au fost explicate procesele fizice care influenteaza fenomenul de intarziere a regimului critic, inclusiv aparitia efectelor tridimensionale si cresterea coeficientilor de portanta. Concluziile principale constau in urmatoarele :

1.Structura curgerii desprinse pe pala in rotatie in conditii critice depinde in principal de trei parametrii importanti:r/c; $V_w/\Omega r$; R_e ; r/c si $V_w/\Omega r$ au un efect puternic asupra producerii bulei de desprindere tridimensionale la bordul de atac al palei interioare, in timp ce curgerea desprinsa la bordul de atac pe partea exterioara a anvergurii depinde in special de R_e .

2. Se pot distinge trei spectre de curgere, complet diferite : regiunea interioara extrema $(r/c\leq 1)$ avand curgerea nedesprinsa asemenatoare a unui disc rotitor in curgerea axiala, regiunea interioara (r/c<4) de curgere tridimensionala avand o bula de desprindere la bordul de atac si regiunea exterioara $(r/c\geq 4)$ de curgere desprinsa la bordul de atac de tip strat de frecare, curgerea dupa linia de desprindere fiind dirijata in directia radiala.

3. Configuratia liniilor de curent limita la butuc $(r/c \le 1.0)$ este data de convergenta, care presupune un punct singular cu structura complexa: o combinatie de focar si punct sa. Din punct de vedere fizic, acest punct reprezinta inceputul bulei de desprindere la bordul de atac, care declanseaza efectele tridimensionale si rotationale.

4. Predictii precise ale performantelor aerodinamice in conditii critice trebuie sa tina seama de efectele induse de circulatia suplimentara in directia anvergurii.

BIBLIOGRAFIE

- [1] Dumitrescu H., Cardoş V., Modelling of inboard stall delay due to rotation, The Science of Making Torque from Wind, Journal of Physics: Conference Series, 75, 2007, 012022.
- [2] Dumitrescu H., Cardoş V., Prediction of the three-dimensional separation on a rotating blade, Int. J. of Applied Mechanics and Engineering, 2007, 12, 4, pp. 941-950.
- [3] Dumitrescu H., Cardoş V., Inboard stall delay for wind turbine blades, Presented at the European Wind Energy Conference & Exhibition, Parc Chanot, Marseille, France, March 16-19, 2009.
- [4] Carcangiu C.E., Sorensen J.N., Cambuli F., Mandas N., CFD-RANS analysis for the rotational effects on the boundary layer of wind turbine blades, The Science of Making Torque from Wind, Journal of Physics: Conference Series, 75, 2007, 021031.
- [5] Chaviaropoulos P.K., Hansen M.O.L., Investigating three-dimensional and rotational effects on wind turbine blades by means of quasi-3-D Navier-Stokes solver, Journal of Fluids Engineering, 122, 2000, pp. 330-336.
- [6] Du Z., Seling M.S., The effect of rotation on the boundary layer of a wind turbine blade, Renewable Energy, 20, 2000, pp. 167-181.
- [7] Fogarty L.E., Sears W.R., Potential flow around a rotating advancing cylinder blade, J. Aeronautical Sciences (readers' Forum) 17 (10) , 1950, pp. 599-601.
- [8] Drela M., XFOIL- An analysis and design system for Reynolds Number Aerodynamics, University of Notre Dame, June 1989.
- [9] Mager A., Generalization of boundary-layer momentum-integral equations to threedimensional flows including those of rotating systems, NACA Report 1067, 1951.
- [10] Lakshminarayana B., Govindan T.R., Analysis of turbulent boundary layer on cascade and rotor blades of turbomachinery, AIAA Journal, 19, 10, 1981, pp. 1333-1341.
- [11] Ludwieg H., Tillmann W., Investigations of the wall shearing stress in turbulent boundary layers, Inginieur-Archiv, Vol. 17, 1949, pp. 288-299 (NACA TM 1285).
- [12 Kline S.J., Morkovin M.V., Sovran G., Cockrell D.J., eds., Proceedings of Computation Turbulent Boundary Layers-AFSOR-IFP, Stanford Conference, Vol. I, Stanford University, 1968.
- [13] Head M.R., Entrainment in turbulent boundary layers, British ARC R&M 3152, Sept. 1958.
- [14] Lock R.C., Williams B.R., Viscous-inviscid interactions in external aerodynamics, Prgress in Aerospace Sciences, 24, 1984, pp. 51-171.
- [15] Tangler R., Insight into wind turbine stall and post-stall aerodynamics, Wind Energy, 7,(3), 2004, pp. 247-261.