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Constanţa, Romania, September, 2006, pp. 79–104

Approximate solutions for an advection-diffusion

problem, via a new modified Galerkin method

Anca Veronica Ion∗♮

The notion of approximate inertial manifold (AIM) has shown it’s usefulness in the

construction of approximate solutions for a class of parabolic PDEs generating dissipative

dynamical systems. Thus, by the use of AIMs, the so-called non-linear Galerkin methods

and post processed non-linear Galerkin methods were conceived, improving the well-known

Galerkin method. These new methods proved to yield much lower errors at the same di-

mension of the projection space than the classical Galerkin method. In a previous paper

we presented a new modified Galerkin method, related to the non-linear and post-processed

Galerkin methods, but different of these. Our method leads to accurate approximate solu-

tions using very low dimensional projection spaces. In the present paper we use this method

for an advection-diffusion problem.

1. Introduction

In [12] we presented a new modified Galerkin method for the construction of
approximate solutions for the two-dimensional Navier-Stokes equations. The method
is related to the nonlinear and to the post-processed Galerkin methods but makes use
of the so-called “induced trajectories” instead of the approximate inertial manifolds
as do the above cited methods. In order to place our method in the context of the
modified Galerkin methods, we remind here the main ideas on which the nonlinear
and the post-processed Galerkin methods rely.
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1.1. Approximate inertial manifolds for evolution problems

We consider a class of nonlinear evolution equations of parabolic type, that can
be written as abstract problems in a Hilbert space, as follows

du

dt
+ Au + R(u) = f, (1)

u(0) = u0, (2)

where u is a function of time with values in a Hilbert spaceH (whose definition
comprises the boundary value conditions imposed to equation (1)). We assume that
the problem is dissipative, in the sense that there is a sphere in H that contains every
trajectory from a certain moment of time on.

The operator A is a linear operator, defined on a subspaceD(A) of H, self-
adjoint, positive definite, with compact inverse, while R : D(R) ⊂ D(A) → H is a
nonlinear operator. If R contains differential operators, they must be of lower order
than A. We assume that f ∈ H and R is such that the Cauchy problem (1)–(2) has
an unique solution on [0, T ].

An approximate inertial manifold (a.i.m.) is a finite dimensional, at least Lips-
chitz manifold in the space H (the phase space of the considered problem), with the
property that all the trajectories of the dynamical system enter a narrow neighbor-
hood of the manifold at a certain moment and never leave the neighborhood after.
Even if it has not the invariance property, an a.i.m. is important because, if the prob-
lem has a global attractor, this is contained in the narrow neighborhood mentioned
in the definition.

The notion of a.i.m. appeared in the context of the theory of inertial manifolds,
as approximations of these, or as substitutes, when the existence of an inertial mani-
fold could not be proved. From among the papers devoted to a.i.m.s we cite: [4], [14],
[16], [17], [18], [22], [24], [25], [26], [27].

A.i.m.s found very interesting applications in the construction of approximate
solutions (the numerical integration) of the nonlinear evolution problems.

1.2. Methods of numerical integration for the nonlinear parabolic

equations, based on a.i.m.s

In the hypotheses assumed on the operator A, it follows that it has positive
eigenvalues:

0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn ≤ ...λn → ∞

The eigenfunctions of A form a total (orthonormal) system for H. The first m
eigenvalues, the corresponding eigenfunctions and the subspace spanned by these are
considered. We denote by P the orthogonal projection operator on this subspace and
we set Q = I − P (where I is the identity application on H). The equation (1) is
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projected on the subspaces PH and QH . By denoting p = Pu, q = Qu, we obtain

dp

dt
+ Ap + PR(p + q) = Pf,

dq

dt
+ Aq + QR(p + q) = Qf.

If in the first equation q is neglected in the presence of p, the Galekin approxi-
mation of (1),

dp

dt
+ Ap + PR(p) = Pf, (3)

is obtained. The solution of the problem (3) with the initial condition

p(0) = Pu0 (4)

is the Galerkin approximation of the solution of (1)–(2). In order to estimate the
error of this approximate solution, the number

δ = λ1/λm+1 (5)

is used. For many problems of interest it is proved that the H norm of the difference
between u(t) and it’s Galerkin approximation is of the order of δa, with a > 0 depend-
ing on the considered problem. For the two-dimensional Navier-Stokes [7] equations
a = 1 (in the hypothesis f ∈ H) . The problem (3)–(4) is equivalent to a system of or-
dinary differential equations for the coordinates of p(t) along the eigenfunctions that
span PH. The definition of δ shows that the greater will be m, (hence the dimension
of PH), the smaller will be the error.

In the construction of the Galerkin equation, the q component of the solution
(that is proved to be small for large times) is approximated with 0. The nonlinear
(and/or post-processed) Galerkin methods of approximation rely on the idea that
q(t) is better approximated by using some a.i.m.s.

Families of a.i.m.s used in the generation of the nonlinear Galerkin

methods and of the postprocessed Galerkin methods

Among the various types of a.i.m.s, those defined in [4], [26], [27] for the two-
dimensional Navier-Stokes equation, generated new numerical integration methods,
based on the Galerkin method. They form a family of manifolds from among the
first, M0, is defined in [4], the following two, M1, M2, are defined in [26], and the
following, Mn, of a superior order, are defined in [27]. They are constructed as the
graphs of some applications Φn defined on PH and having values in QH .

Similar a.i.m.s may be (and were) defined for many other problems of the form
(1)–(2). The main property of these a.i.m.s, on which their use in the construction
of the numerical methods is based, is the following: the distance (in the norm of H)
between q(t) and the images of p(t) on the a.i.m. Mn is of the order of δa(n) where
a(n) is increasing with n. That is

|q(t) − Φn(p(t))| < Cδa(n). (6)
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As an example, for the two-dimensional Navier-Stokes problem it is proved [26],
[27] that a(n) = (n + 3)/2. Since about the norm of q(t) only the fact of being of
the order of δ is known, it is clear that any of the above a.i.m.s provides a better
approximation of q(t) than the so-called plane manifold q = 0.

The nonlinear Galerkin methods

Starting from the ideas on a.i.m.s presented above, in [19], [2] the nonlinear
Galerkin method (NL Galerkin method) is defined. In this method, in the P projection
of the equation, in the argument of the nonlinear term, q is approximated by some
Φn(p(t)), n ≥ 0. Thus the equation:

dp

dt
+ Ap + PR(p + Φn(p)) = Pf, (7)

is considered, with the initial condition (4). Let pn(.) be the solution of this problem.
The approximate solution is defined as

un(t) = pn(t) + Φn(pn(t)).

More precisely, in [19] the case n = 0 is considered, and in [2] the case n > 1
is considered. For all the problems considered in the context of nonlinear Galerkin
problems, it is proved that the error is of the order of δb(n), where b(n) is increasing
with n [19], [21].

E.g. for the Navier-Stokes equations it is proved in [3] that b(n) = (n + 3)/2.

The Post-processed Galerkin methods

In [7] another method for the approximation of the solution is proposed, based
also upon the Galerkin method and making use of a.i.m.s. Let p0(.) be the solution
of (3). Then, only at the right end side of the time interval [0, T ], that is in T , the
value of Φ1(p0(t)) is computed, and the approximate solution in T is defined as

u1(T ) = p0(T ) + Φ1(p0(T )).

This method is named post-processed Galerkin method (PP Galerkin method)
because the solution of the Galerkin problem is corrected (processed) after finishing
the numerical integration of the Galerkin problem, by using the first a.i.m. of the
sequence cited in 1.2.1, hence post-processed. The error of this approximate solution
(i.e. the H norm of the difference between the approximate and the exact solution) is
less than that of the Galerkin method. Thus, for the two-dimensional Navier-Stokes
equations, it is proved in [7] to be of the order of δ5/4. Another estimate is given
in [8], where the error of the PP Galerkin method is found to be less than CL2

nδ3/2,
where Ln = 1+ log λn

λ1
. The appearance of the factor L2

n, that increases with n, makes
this latter estimate to be not necessarily better than the former.

The next idea appeared in the literature [21] was to post-process the NL Galerkin
method of the preceding section. More precisely, the equation (7) is considered, it is
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integrated on all the time interval [0, T ] , then Φn+1(pn(T )), is computed, and the
approximate solution in T is defined as

un(T ) = pn(T ) + Φn+1(pn(T )).

This method is called the nonlinear post-processed Galerkin method (NL-PP
Galerkin method).

1.3. A method proposed by us

In [12] we proposed a method for the construction of approximate solutions
for the two-dimensional Navier-Stokes equations, method that has its roots both in
the NL and the PP Galerkin methods, but is different of both these methods. It is
a method structured on several levels, each level consisting of a modified Galerkin
problem for the approximation of p, followed by a computation of an approximation
of q. Trying to find a short name for this method we found the name “repeatedly -
adjusted and post-processed” (R-APP) Galerkin method as justified.

In computing the approximations of q, the method makes use, instead of the
a.i.m.s., of some functions connected to the a.i.m.s, functions that are approximations
of the “induced trajectories” defined in [26]. More precisely, in [26] the construction
of the family of a.i.m.s is based upon that of the family of induced trajectories. Hence
we use a more basic notion than that of a.i.m. and this brings some simplifications
to the calculus.

In this paper we use our method for a problem modelling the advection-diffusion
of a substance in a Newtonian fluid in the framework of the Fickean law of diffusion,
with periodic boundary conditions.

2. The problem, the functional framework

The Fick-ean diffusion of a substance in a Newtonian fluid is modelled by the
equations

∂u

∂t
− ν∆u + (u · ∇)u+∇p = f (t) , (8)

div u = 0, (9)

∂c

∂t
− D∆c + u·∇c = h(t), (10)

u(0) = u0, (11)

c(0) = c0, (12)

where u = u (t,x) is the velocity of the fluid, x ∈Ω, u (.,x) : [0,∞) → R2, c = c(t,x)
is the concentration of the diffused substance, c (.,x) : [0,∞) → R, ν > 0 is the
kinematic viscosity, D > 0 is the constant diffusion coefficient.
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We consider Ω = (0, l)× (0, l) and we impose periodic boundary conditions. We

assume that f (.) is an analytic function of time with values in
[
L2

per (Ω)
]2

, and h (.)
is an analytic function of time with values in L2

per (Ω).
Regarding the dependence on t of the functions f(.) and h(.), the most realistic

hypothesis is that of periodicity in time. Anyway, we assume that these functions are
bounded: there is a number Mf > 0 such that |f(t)| ≤ Mf , and there is a number
Mh > 0 such that |h(t)| ≤ Mh for every t > 0.

An example of concrete problem modeled by the equations above is that
of a lake or sea with a population periodically distributed that generates a certain
substance that is harmful (e.g. by the decomposition of the dead bodies). There are
some other populations (or some processes) that contribute to the consumption of this
substance. Both the generation and the consumption of the harmful substance are
modeled by the function h. We suppose that the water is subjected to some periodic
in time forces (as those generated by winds or tide). These contribute to the diffusion
of the substance. The problem is whether the concentration of the noxious substance
becomes (during this process) greater than a certain danger limit.

As is usual in the study of the Navier-Stokes equations with periodic boundary
conditions, we assume that [28], [23]

f =
1

l2

∫

Ω

f (x) dx = 0, (13)

and that the pressure is a periodic function on Ω. For simplicity we will assume also
that the average of the velocity over the periodicity cell is zero.

The velocity u is looked for in the space H1 =
{

v ∈
[
L2

per (Ω)
]2

; div v = 0,

v = 0}. The scalar product in H1 is (u,v) =
∫
Ω (u1v1 + u2v2) dx, (where u =

(u1, u2) , v = (v1, v2)). The induced norm is denoted by | |.
We consider the average of the concentration on the periodicity cell,

c (t) =
1

l2

∫

Ω

c (t,x) dx.

By taking the average of the equation for c and by using the assumption of periodicity,
we find

dc

dt
= h,

where h is the average of h over Ω. By denoting c̃ (t,x) = c (t,x)−c (t,x) , the equation

∂c̃

∂t
− D∆c̃ + u·∇c̃ = h̃

follows for c̃, where h̃ = h − h. The function c̃ is looked for in the space
H2 =

{
c ∈ L2

per (Ω) , c = 0
}

, endowed with the scalar product on L2 (Ω) , denoted
also by ( , ) .

We also need the spaces V1 =
{
u ∈

[
H1

per (Ω)
]2

, div u = 0,u = 0
}

, with the

scalar product ((u,v)) =
∑2

i,j=1

(
∂ui

∂xj
, ∂vi

∂xj

)
and V2 =

{
c ∈ H1

per (Ω) , c = 0
}

, with
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the scalar product given by (c1, c2) = (∇c1,∇c2) . The norms in both these spaces
are denoted by ‖ ‖ .

The classical variational formulation of the Navier-Stokes equations [28] leads
to the abstract equation

du

dt
− ν∆u + (u · ∇)u = f (t) in V1

′, (14)

u (0) = u0, u0 ∈ H1, (15)

while the abstract equation for c̃ is

dc̃

dt
− D∆c̃ + u·∇c̃ = h̃ (t) , (16)

c̃ (0) = c̃0, c̃0 ∈ H2. (17)

We take A = −∆, A = −∆, and observe that A is defined on D(A) =

H1∩
[
H2 (Ω)

]2
, while A is defined on D(A) = H2∩H2 (Ω) .

We shall use the notations B(u,v) = (u · ∇)v, b (u,v,w) = (B(u,v),w) ,
B(u, c) = u∇c, b(u, c, c1) = (B(u, c), c1). The inequalities

|B (u,v)| ≤ c1 |u|
1
2 |∆u|

1
2 ‖v‖ , (∀) u ∈D(A), v ∈V , (18)

|B (u,v)| ≤ c2 ‖u‖ ‖v‖
[
1 + ln

(
|∆u|2

λ1 ‖u‖2

)] 1
2

, (∀) u ∈D(A), v ∈V , (19)

hold [10], [28], [26], as well as the following [23]

|b(u,v,w)| ≤ c3 |u|
1
2 ‖u‖

1
2 ‖v‖ |w|

1
2 ‖w‖

1
2 , (∀)u,v,w ∈V , (20)

|b(u,v,w)| ≤ c4 |u|
1
2 ‖u‖

1
2 ‖v‖

1
2 |∆v|

1
2 |w| , (∀)u ∈V , v ∈ D (A) ,w ∈H. (21)

Similar inequalities can be proved for B(u, c) and for b(u, c, c1).
We remind also the properties

b(u,v,w) = −b(u,w,v), (22)

b(u,v,v) = 0, (23)

that hold for periodic boundary conditions and are true also for the trilinear form
b(u, c, c1) (for periodic boundary conditions).

3. Existence of the solutions

The flow of the incompressible, viscous fluid in which the diffusion takes place
is not affected by the substance that is diffused. Hence, for the problem (14), (15) we
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have the classical existence and uniqueness results for the equations Navier-Stokes in
R2.

Theorem 1 [28]. a) If u0 ∈ H1, f is analytical in time and for every t ≥ 0,
f (t, ·) ∈ H1, then the problem (14), (15) has an unique solution u defined on [0, T ] for
every T > 0, that is analytical in time and such that for every t ∈ [0, T ], u (t, ·) ∈ V1.

b) If, in addition to the hypotheses in a), u0 ∈ V1, f (t, ·) ∈ V1, then u (t, ·) ∈
D(A) for every t ∈ [0, T ].

By using the Galerkin-Faedo method we can easily prove the following theorem.
Theorem 2. a) In the conditions a) of Theorem 1 and if h is analytical in

time and for every t ≥ 0, h(t, ·) ∈ H2, and c0 ∈ H2, then there is an unique solution
c̃ of the problem (16)–(17), defined on [0, T ], ∀T > 0, analytical in time and such
that c̃(t, ·) ∈ H2, ∀t ∈ [0, T ].

b) In the conditions b) of Theorem 1 and if c0 ∈ V2, h(t, ·) ∈ V2 then c̃ (t, ·) ∈
D(A), ∀t ∈ [0, T ].

4. Some bounds of the various norms of the solution

It was proved [1], [25], that the semi-dynamical system generated by the au-
tonomous Navier-Stokes equations (f independent of t) is dissipative, in the sense
that there is an absorbing ball in H1 for it. A similar result can be proved for our
problem, by using the fact that f(.) and h(.) are bounded. That is, there is a ρ0 > 0
such that for every R > 0, there is a t0(R) > 0 with the property that for every
u0 ∈ B (0, R) ⊂ H1, we have u(t, .,u0) ∈ B (0, ρ0) ⊂ H1, for t > t0(R). We can also
prove, as in [25], some similar estimates for the V1 norm and, as in [24], for the D (A)
norm of of u(t, .,u0). I.e. there is a ρ1 > 0 such that u0 ∈ B (0, R) ⊂ H1 implies
‖u(t, .,u0)‖ ≤ ρ1 for t > t1(R) (≥ t0(R)), respectively there is a ρ2 > 0 such that
u0 ∈ B (0, R) ⊂ H1 implies |Au(t, .,u0)| ≤ ρ2 for t > t2(R) ≥ t1(R).

By using the same techniques as in the proof of the dissipativity of u, the
dissipativity of the component c̃ of the solution (u, c̃) both in H2 and V2 can be proved.
By using the fact that, representing a concentration, c is such that 0 ≤ c(0,x) ≤ 1,
and thus |c0| ≤ l, it follows that the following result is true (where c̃ (t, .,u0, c0) is the
c component of the solution of :

Theorem 3. a) There is an η0 > 0 with the property for every R > 0 there is
a tc0 (R) > 0 such that for |u0| ≤ R,

|c̃ (t, .,u0, c0)| ≤ η0, t ≥ tc0 (R, Rc) .

b) There is an η1 > 0 with the property that for every R > 0 there is a tc1 (R) > 0
such that

‖c̃ (t, .,u0, c0)‖ ≤ η1

for |u0| ≤ R, t ≥ tc1 (R, Rc) ,
c) There is an η2 > 0 with the property that for every R > 0 there is a tc2 (R) > 0

such that
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|∆c̃ (t, .,u0, c0)| ≤ η2

for |u0| ≤ R, t ≥ tc2 (R, Rc) .

5. The decomposition of the spaces, the projected equa-

tions

The eigenvalues of the two operators A and A have the same form

λj1,j2 =
4π2

l2
(
j2
1 + j2

2

)
, j1, j2 ∈ N, j1 · j2 6= 0. (24)

To each eigenvalue λj1,j2 above, the following eigenfunctions of A correspond
[26]:

w1
j1,j2 =

√
2

l

(j2,−j1)

|j| sin

(
2π

j1x1 + j2x2

l

)
,w2

j1,j2 =

√
2

l

(j2, j1)

|j| sin

(
2π

j1x1 − j2x2

l

)
,

w3
j1,j2 =

√
2

l

(j2,−j1)

|j| cos

(
2π

j1x1 + j2x2

l

)
,w4

j1,j2 =

√
2

l

(j2, j1)

|j| cos

(
2π

j1x1 − j2x2

l

)
,

where j = (j1, j2) , |j| =
(
j2
1 + j2

2

) 1
2 . The set of all these eigenfunctions form a total

system for H1.
Similarly for A (the scalar Laplace operator), to each eigenvalue (24) the fol-

lowing eigenfunctions

w1
j1,j2 =

√
2

l
sin

(
2π

j1x1 + j2x2

l

)
, w2

j1,j2 =

√
2

l
sin

(
2π

j1x1 − j2x2

l

)
,

w3
j1,j2 =

√
2

l
cos

(
2π

j1x1 + j2x2

l

)
, w4

j1,j2 =

√
2

l
cos

(
2π

j1x1 − j2x2

l

)
,

correspond. The set of all these eigenfunctions form a total system for H2.
We fix a m ∈ N and we consider the set Γm of the eigenvalues λj1,j2 having

0 ≤ j1, j2 ≤ m. We set

λ : = λ1,0 = λ0,1 =
4π2

l2
,

Λ : = λm+1,0 = λ0,m+1 =
4π2

l2
(m + 1)

2
,

δ : =
λ

Λ
=

1

(m + 1)2
.

We denote by P the projection operator on L
({

wi
j1,j2 , 0 ≤ j1, j2 ≤ m

})
⊂ H1,

and by Q the projection operator on the orthogonal complement of this subspace
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in H1 (here L(a, b, c, ...) represents the subspace spanned by the vectors a, b, c, ...).
Analogously, we denote by P the projection operator on
L
({

wi
j1,j2 , 0 ≤ j1, j2 ≤ m

})
⊂ H2, and by Q the projection operator on the orthog-

onal complement of this space in H2.
For the solution u of the Navier-Stokes equations, we write

p = Pu, q = Qu,

and, for the concentration c of the diffused substance, we define

cp = P c̃, cq = Qc̃.

With these notations, the projections of the equations (14), (16) by the projec-
tion operators defined above can be written as

dp

dt
− ν∆p + PB(p + q) = Pf , (25)

dq

dt
− ν∆q + QB(p + q) = Qf , (26)

dcp

dt
− D∆cp + PB (p + q, cp + cq) = Ph, (27)

dcq

dt
− D∆cq + QB (p + q, cp + cq) = Qh. (28)

6. Estimates for the “small components” of the unknown

functions

We assume in the following that |u0| ≤ R.
In [12] we improved the estimates given in [4] for the norm of q. More precisely,

we proved that there is a certain moment t3 (R), such that

|q (t)| ≤ K0δ, ‖q (t)‖ ≤ K1δ
1
2 ,

|q′ (t)| ≤ K2δ, |∆q (t)| ≤ K3, for t ≥ t3 (R) ,

where Ki depend only on the data ν, D, f , h, l (and not on m as in [4], where each
coefficient contained a factor L1/2, with L = ln(1 + 2m2)).

A similar result is true for cq :
Theorem 4. There is a moment tc3 ≥ tc2, depending on R, such that for every

t ≥ tc3 the following inequalities hold:

|cq (t)| ≤ J0δ, ‖cq (t)‖ ≤ J1δ
1/2, (29)∣∣c′q (t)

∣∣ ≤ J2δ, |∆cq (t)| ≤ J3, (30)

where J0, J1, J2, J3 are independent on m.
Proof. We shall frequently use below the inequalities:



Non-linear Galerkin method 89

‖cq‖ ≥ Λ
1
2 |cq| , (31)

|∆cq| ≥ Λ |cq| ,

easy to prove by considering the Fourier series of cq.
We take the scalar product of eq. (16) with −∆cq

(
dcq

dt
,−∆cq

)
+ D (∆cq, ∆cq) − (u∇c̃, ∆cq) = −

(
Qh̃, ∆cq

)
.

From here, by using the inequality for b(.,., .) analogous to (21), we find

1

2

d

dt
‖cq‖2

+ D |∆cq|2 ≤ |b (p, c̃, ∆cq)| + |b (q, c̃, ∆cq)| +
∣∣∣
(
Qh̃, ∆cq

)∣∣∣

≤ c3 |p|
1
2 ‖p‖

1
2 ‖c̃‖

1
2 |∆c̃|

1
2 |∆cq| +

+c3 |q|
1
2 ‖q‖

1
2 ‖c̃‖

1
2 |∆c̃|

1
2 |∆cq| +

∣∣∣Qh̃
∣∣∣ |∆cq|

≤ c3ρ
1/2
0 ρ

1/2
1 η

1/2
1 η

1/2
2 |∆cq| + Cδ3/4η

1/2
1 η

1/2
2 |∆cq| +

+
∣∣∣Qh̃

∣∣∣ |∆cq|

≤ c2
3ρ0ρ1η1η2

1

D
+

D

4
|∆cq|2 + C2δ3/2η1η2

1

D
+

+
D

4
|∆cq|2 +

1

D
|Qh|2 +

D

4
|∆cq|2 .

From here,

1

2

d

dt
‖cq‖2

+
DΛ

4
‖cq‖2 ≤ c2

3ρ0ρ1η1η2
1

D
+ C2δ3/2η1η2

1

D
+

1

D
|Qh|2 ,

and, with C1 = 2
D (c2

3ρ0ρ1η1η2 + C2δ3/2η1η2 + |Qh|2),

d

dt
‖cq‖2

+
DΛ

2
‖cq‖2 ≤ C1.

By applying the usual Gronwall Lemma, we obtain

‖cq‖2
(t) ≤ 2C1

DΛ
+ ‖cq (tc2)‖2

e−DΛ(t−tc2)/2 ≤ 2C1

DΛ
+ η2

1e−DΛ(t−tc2)/2,

thus, for tc3 ≥ tc2 such that t ≥ tc3 implies η2
1e−DΛ(t−tc2)/2 ≤ 2C1

DΛ , the assertion

(29)2 follows, with J1 = 2
√

C1

Dλ .

Then, by using (31), (29)1 is also obtained.
In the hypothesis that h(.) is analytic as function of time, the analiticity of c and,

as consequences the analicity of cp and cq follow. More than that, these functions are
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the restrictions to the time real axis of some analytic functions of complex variable
defined on a neighborhood of the real axis. Then, by using the Cauchy integral
formula, the estimate (30)1 can be obtained (as a similar estimate for |q′| is obtained
in [26]).

Finally, by writing

D∆cq =
dcq

dt
+ QB ((p + q)∇ (cp + cq)) − Qf,

and by using the inequalities already proved, the inequality (30)2 is proved. �

7. The construction of the approximate solutions by the

R-APP Galerkin method

In [12] we gave an algorithm for the construction of a sequence of approximate
solutions for the two-dimensional Navier-Stokes equations with periodic boundary
conditions. There the volum force f was taken constant in time. As long as f is
analytic in time the conclusions of the cited paper are still valid. In the problem (14),
(16), once the velocity of the fluid is known, the equation in c can be regarded as a
linear equation. We however treat the problem as a coupled, nonlinear problem, and
a treatment similar to that used for the Navier-Stokes equations will be applied to it.
A sequence of approximations for u, c will be obtained.

As the construction of approximate solutions for the Navier-Stokes is [12], that
of approximations for c is structured on several levels.

7.1. The first level

Let p0 (t,x) be the solution of the equation (the Galerkin approximation of the
Navier-Stokes equations):

dp

dt
− ν∆p + PB (p) = Pf , (32)

p(0) = Pu0,

and define

q0(t)= Φ0 (p0(t)) ,

where Φ0 : PH → QH is the function whose graph is the first a.i.m. M0 , defined in
[4], for the Navier-Stokes equations, that is

Φ0 (p) = (νA)−1 [Qf − QB (p)] . (33)

Let cp0 be the solution of the problem:

dcp

dt
− D∆cp + P (p0∇cp) = Ph, (34)
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and
cq0 = Ψc,0 (p0, cp0) ,

where Ψc,0 is the corresponding to c component of the a.i.m. of the coupled problem
(14)–(16) (that was studied in [13]), that is

cq0 = (DA)
−1

[Qh − Q (u0∇cp0)] . (35)

The approximate solution for the coupled problem is

u0 (t) = p0 (t) + q0 (t) ,

c̃0 (t) = cp0 (t) + cq0 (t) .

Remarks

1. This first level is different from the PP Galerkin method only in the fact
that we compute q0 and cq0 at every moment of time t. In practice, in the numerical
scheme relying on our method, q0 and cq0 must be evaluated at every node of the
time grid on the interval [0, T ].

2. In [26] a family of functions {uj,m (.)}j≥0 called ”induced trajectories” is

defined. The first induced trajectory of the family is u0,m (t) = p (t)+q0,m (t), where
p (t) is the projection of the exact solution, and

q0,m (t) = (νA)
−1

[Qf (t)−QBp (t)] . (36)

On this definition relies that of the first a.i.m., M0. At this level, our approximate
solution may be regarded as being defined via the first a.i.m. as well as via the first
induced trajectory.

7.2. The second level

We define, as in [12], p1 as the solution of the equation:

dp

dt
− ν∆p + PB (p + q0) = Pf , (37)

p(0) = Pu0.

Then we set, also following [12],

q1 (t) = (νA)−1 [Qf (t) − QB (p1 (t)) − QB (p1 (t) ,q0 (t)) −
− QB (q0 (t) ,p1 (t))] . (38)

The approximate solution for (14)–(15) at this level is

u1(t) = p1(t) + q1(t). (39)

For the approximation of c we consider the equation

dcp

dt
− D∆cp + P ((p1 + q0)∇ (cp + cq0)) = Ph, (40)
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and cp1 its solution. Then, we define

cq1 (t) = − (D∆)−1 [Qh (t) − QB (p1 (t) , cp1 (t))−
−QB (p1 (t) , cq0 (t)) − QB (q0 (t) , cp1 (t))] .

(41)

The approximation of c̃ at this level is

c̃1 (t) = cp1 (t) + cq1 (t) . (42)

Remarks

1. In the equation for the approximation of p(t), we consider the argument of
B of the form p + q0 and not of the form p + Φ0(p) as in the NL Galerkin method.
This is an essentially different approach, since q0 is known from the preceding level
of the method. Thus, by rearranging the terms, we obtain a differential equation
of the same degree of difficulty as the Galerkin approximation for the Navier-Stokes
equation.

2. We remark that u1is an approximation of the induced trajectory u1,m defined
in [26]. This is defined as u1,m (t,x) = p (t,x) + q1,m (t,x), where p (t, .) is the P

projection of the exact solution, and

q1,m (t) = (νA)
−1 [

Qf (t) − QB (p (t)) − QB
(
p (t) ,q0,m (t)

)
− (43)

− QB (q0,m (t) ,p (t))] ,

with q0,m given by (36). Since, as we proved in [12], p1(t) is an approximation
for p (t), it can be seen that q1 is an approximation of q1,m, hence u1 (.) is an
approximation of the induced trajectory u1,m (.) .

Similarly, ”the induced trajectories” for the c component of the solution can be
defined (this was done in [13]) and we can see that c1 is an approximation of the
second of these induced trajectories.

The induced trajectories are set at the basis of the definition of a.i.m.s in [26].
That is why the use of induced trajectories instead of a.i.m.s for the construction of
the approximations of q and cq leads to some simplifications in the computations in
our method, when compared to the NL Galerkin method.

7.3. The kth level

We assume that for a k ≥ 2, qk−2, qk−1 and cq,k−2, cq,k−1 were defined. We
consider the equation

dp

dt
− ν∆p + PB

(
p + qk−1

)
= Pf , (44)

p(0) = Pu0,

and we denote by pk its solution.
Then we define qk as
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qk = (νA)−1 [Qf − QB(pk) − QB(pk,qk−1)−
−QB(qk−1,pk) − QB(qk−2,qk−2) − q′

k−2

]
. (45)

Naturally, the corresponding approximate solution of (14)–(15) is defined by

uk (t) = pk (t) + qk (t) .

For the approximation of c, we consider the equation

dcp

dt
− D∆cp + P

((
pk+qk−1

)
∇ (cp + cq,k−1)

)
= Ph,

denote by cp,k its solution and define

cq,k = (DA)
−1

[Qh−QB (pk,cp,k) − QB (pk, cq,k−1)−
− QB (qk−1,cp,k) − QB(qk−2,cq,k−2) − c′q,k−2

]
.

The approximation of c̃ is defined as

c̃k (t) = cp,k (t) + cq,k (t) . (46)

8. The error of the R-APP Galerkin method

In [12] we proved the results in the following
Theorem 5. The functions pk (t) , qk (t) , k ≥ 0, defined in the previous

section, satisfy the inequalities :

|(p − pk) (t)| ≤ Cδ5/4+k/2, (47)

|(q− qk) (t)| ≤ Cδ3/2+k/2 , (48)

for t large enough.
In the proof of this results, as well as in the proof of the similar one for c, we

need the following result that is similar to Lemma 1 of [7]. Here b̂i
j,l denotes the

coordinate of b ∈ H2 with respect to the eigenfunction wi
j,l

Lemma. Let G(s) =
∑
j,l

(
4∑

i=1

Ĝi
j,l (s)wi

j,l

)
and suppose that

∣∣∣Ĝi
j,l (s)

∣∣∣ ≤ ci
j,l, for 0 ≤ j, l ≤ m, 1 ≤ i ≤ 4.

Then

∣∣∣∣
∫ t

0

e−(t−s)DAPG(s)ds

∣∣∣∣ ≤
1

D



∑

j,k≤m

4∑

i=1

(
ci
j,l

)2

λ2
j,l




1
2

. (49)
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Now we can state and prove
Theorem 6. The functions cp,k and cq,k, k ≥ 0, defined in the previous section,

satisfy the inequalities

|(cp − cp,k) (t)| ≤ Cδ5/4+k/2, (50)

|(cq − cq,k) (t)| ≤ Cδ3/2+k/2 (51)

for every k ≥ 0 and for t large enough.
Proof. The proof is inductive. In the following, C represents a generic coefficient

(depending on the data of the problem and not on m).
k=0. The function cp0 satisfies the relation

dcp0

dt
− D∆cp0 + P (p0∇ (cp0)) = Ph,

relation that we subtract from equation (27), to obtain

d(cp − cp0)

dt
− D∆(cp − cp0) + P (u∇ (cp + cq)) − P (p0∇ (cp0)) = 0.

We use here the method of [7] to estimate the norm of cp − cp0.
By using the semigroup of linear operators of infinitesimal generator DA, we

obtain

d

dt
etDA (cp − cp0) (t) = −etDA {P (p∇cp) − P (p0∇cp0)+

+P (q∇cp + u∇cq)} ,

or, by using the notations settled in Section 2, and by arranging the terms,

d

dt
etDA (cp − cp0) (t) = −etDA {PB (p − p0, cp) + PB (p0, cp − cp0)+

+PB (q, cp) + PB (u, cq)} .

We integrate between the initial and the current moment, t, to obtain

(cp − cp0) (t) = −
∫ t

0

e−(t−s)DA {PB (p − p0, cp) + PB (p0, cp − cp0)}ds −

−
∫ t

0

e−(t−s)DA {PB (q, cp) + PB (u, cq)} ds.

The inequalities

∣∣A−δB (u,v)
∣∣ ≤

{
C
∣∣A1−δu

∣∣ |v| ≤ C
∣∣A1/2u

∣∣ |v| ,
C |u|

∣∣A1−δv
∣∣ ≤ C |u|

∣∣A1/2v
∣∣ , δ ∈ (1/2, 1) (52)
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from [1] are valid also for the bilinear application B(., .) and, in conjunction with the
inequality ∣∣Aδe−tDA

∣∣ ≤ Ct−δe−
Dλ
2

t, (53)

from [11], they lead us to

|(cp − cp0) (t)| ≤
∫ t

0
C (t − s)

−δ
e−

Dλ
2

(t−s) |(cp − cp0) (s)| ds+

+
∣∣∣
∫ t

0
e−(t−s)DA [PB (p − p0, cp) + PB (q, cp) + PB (u, cq)] (s) ds

∣∣∣ .

A form of Gronwall inequality ([11], Lemma 7.1.1) implies
|(cp − cp0) (t)| ≤
≤ C max

0≤t≤T

∣∣∣
∫ t

0 e−(t−s)DA [PB (p− p0, cp) + PB (q, cp) + PB (u, cq)] (s) ds
∣∣∣ .

The constant C above is of the order of eT , where [0, T ] is the time interval on
which we work.

The idea is to find estimates for the coordinates of the terms in the brackets
and then to use the Lemma from the beginning of the section (as in [7]). We thus
find (by denoting λk,0 = λk):

∣∣∣∣ ̂PB (p− p0, cp)
i

j,k

∣∣∣∣ =
∣∣(PB (p− p0, cp) , wi

j,k

)∣∣ ≤

≤ |p− p0| ‖cp‖
∣∣wi

j,k

∣∣
L∞(Ω)

≤ Cη1δ
5/4,

∣∣∣∣ ̂PB (q, cp)
i

j,k

∣∣∣∣ ≤ Cδ

(
1

λ
1
2
m−j+1

+
1

λ
1
2
m−k+1

)
,

∣∣∣∣ ̂PB (p, cq)
i

j,k

∣∣∣∣ ≤ Cδ
1
2

(
1

λ
m−j+1

+
1

λ
m−k+1

)
,

∣∣∣∣ ̂PB (q, cq)
i

j,k

∣∣∣∣ ≤ C |q| ‖cq‖ ≤ Cδ3/2,

(since
∣∣∣wi

j,k

∣∣∣
L∞(Ω)

≤ 1). From these estimates by using (49), and the inequalities

∑

j,k≤m

λ−2
j,k ≤ C̃,

∑

j,k≤m

1

λ2
j,kλ2

m−j+1

≤ C

(m + 1)
3 = Cδ3/2,

proved in [7], it follows that

∣∣∣∣
∫ t

0

e−(t−s)DA [PB (p − p0, cp) + PB (q, cp) + PB (u, cq)] (s) ds

∣∣∣∣ ≤ Cδ5/4.
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Thus we obtained
|cp − cp0| ≤ Cδ5/4. (54)

Let us remark that the preceding inequality implies

|cp0| ≤ η0 + Cδ5/4 := η′
0, (55)

‖cp0‖ ≤ η1 + Cδ3/4 := η′
1,

|∆cp0| ≤ η2 + Cδ1/4 := η′
2.

The component cq of the solution satisfies

D∆cq = QB (u, cp + cq) − Qh +
dcq

dt
(56)

By subtracting from this the relation

D∆cq0 = QB (u0, cp0) − Qh,

that is equivalent with the definition relation of cq0, we obtain

|D∆(cq − cq0)| ≤ |QB (u, cp + cq) − QB (u0, cp0)| +
∣∣∣∣
dcq

dt

∣∣∣∣

≤ |QB (u, cp) − QB (u0, cp0)| + |QB (u, cq)| +
∣∣∣∣
dcq

dt

∣∣∣∣
≤ |QB (u, cp − cp0)| + |QB (u − u0, cp0)| +

+ |QB (u, cq)| +
∣∣∣∣
dcq

dt

∣∣∣∣ .

From here, by using the analogous of (18) for B(., .) and that of (21) for b(., ., .),
we find

|D∆(cq − cq0)| ≤ c1 |u|
1
2 |∆u|

1
2 ‖cp − cp0‖ + c1 |u|

1
2 |∆u|

1
2 ‖cq‖ +

∣∣∣∣
dcq

dt

∣∣∣∣

+c4 |u − u0|
1
2 ‖u− u0‖

1
2 ‖cp0‖

1
2 |∆cp0|

1
2

≤ C̺
1/2
0 ρ

1/2
2 δ3/4 + C̺

1/2
0 ρ

1/2
2 δ1/2 + Cδ + Cδη′

1
1/2

δη′
2
1/2

.

Then we get
|∆(cq − cq0)| ≤ Cδ1/2

and the following inequalities are obtained as consequences

‖cq − cq0‖ ≤ Cδ, (57)

|cq − cq0| ≤ Cδ3/2. (58)

We assumed that f(.) and h(.) are analytic in time. Then it can be proved, by
using the method of [1], [28], that u0 and cp0 are analytical in time, and more than
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that, they are the restrictions of some analytical functions of complex variable, defined
in some neighborhoods of the real axis. Then, by using the Cauchy representation
formula, we can prove that

∣∣∣∣
dcq

dt
− dcq0

dt

∣∣∣∣ ≤ Cδ3/2.

k=1. We subtract the relation satisfied by cp1, that is

dcp1

dt
− D∆cp1 + P ((p1 + q0)∇ (cp1 + cq0)) = Ph,

from the equation (25) to obtain

d (cp − cp1)

dt
− D∆(cp − cp1) + P (u∇ (cp + cq)) − P ((p1 + q0)∇ (cp1 + cq0)) = 0.

We use again the method of [7]. We write the above relation in the equivalent
form

d

dt
etDA (cp − cp1) = etDA {PB (u, cp) − PB (p1 + q0, cp1)+

+PB (u, cq) − PB (p1 + q0, cq0)} ,

and we integrate after conveniently arranging the terms:

(cp − cp1) (t) =

∫ t

0

e−DA(t−s) {PB (u, cp − cp1) + PB (u− (p1 + q0) , cp1)} (s) ds −

−
∫ t

0

e−DA(t−s) {PB (u, cq − cq0) + PB (u− (p1 + q0) , cq0)} (s) ds.

As we did for k=0, we use the inequalities (52), (53) to find

|(cp − cp1) (t)| ≤
∫ t

0 C (t − s)
−δ

e−
Dλ
2

(t−s) |(cp − cp1) (s)| ds+

+
∣∣∣
∫ t

0
e−(t−s)DA [PB (u− (p1 + q0) , cp1) + PB (u, cq − cq0)] (s) ds +

+
∫ t

0 e−(t−s)DA [PB (u− (p1 + q0) , cq0)] (s) ds
∣∣∣ .

Then, the Gronwall type Lemma from [11], cited above, implies
|(cp − cp1) (t)| ≤

≤ C max
0≤t≤T

∣∣∣
∫ t

0
e−(t−s)DA [PB (u− (p1 + q0) , cp1) + PB (u, cq − cq0)] (s) ds +

+
∫ t

0 e−(t−s)DA [PB (u− (p1 + q0) , cq0)] (s) ds
∣∣∣ .
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We now estimate the coordinates of the terms in the brackets
∣∣∣∣ ̂PB (u− (p1 + q0) , cp1)

i

j,k

∣∣∣∣ ≤ |u− (p1 + q0)| ‖cp1‖
∣∣wi

j,k

∣∣
L∞(Ω)

≤ Cη1δ
3/2,

∣∣∣∣ ̂PB (p, cq − cq0)
i

j,k

∣∣∣∣ ≤ Cδ

(
1

λ
m−j+1

+
1

λ
m−k+1

)
,

∣∣∣∣ ̂PB (q, cq − cq0)
i

j,k

∣∣∣∣ ≤ |q| ‖cq − cq0‖ ≤ Cδ2,

∣∣∣∣ ̂PB (u− (p1 + q0) , cq)
i

j,k

∣∣∣∣ ≤ C |u− (p1 + q0)| ‖cq0‖ ≤ Cδ2.

The method used at the level k=0, (borrowed from [7]), leads us to the conclu-
sion

|cp − cp1| ≤ Cδ7/4.

The inequalities (55) are true also for cp1.
The definition relation of cq1 is equivalent with

D∆cq1 = QB (p1, cp1) + QB (p1, cq0) + QB (q0, cp1) − Qh.

We subtract this relation from (56) to find, after grouping the terms, and taking the
norm

|D∆(cq − cq1)| ≤ |QB (p − p1, cp)| + |QB (p1, cp − cp1)| + |QB (p − p1, cq)| +
+ |QB (p1, cq − cq0)| + |QB (q− q0, cp)| +

+ |QB (q0, cp − cp1)| + |QB (q, cq)| +
∣∣∣∣
dcq

dt

∣∣∣∣ .

We use the inequalities similar to (18), (21) and the inequalities already proved
above to get

|D∆(cq − cq1)| ≤ c4 |p− p1|
1
2 ‖p − p1‖

1
2 ‖cp‖

1
2 |∆cp|

1
2 +

+c4 |p1|
1
2 ‖p1‖

1
2 ‖cp − cp1‖

1
2 |∆(cp − cp1)|

1
2 +

+c4 |p − p1|
1
2 ‖p− p1‖

1
2 ‖cq‖

1
2 |∆cq|

1
2 +

+c1 |p1|
1
2 |∆p1|

1
2 ‖cq − cq0‖ +

+c4 |q − q0|
1
2 ‖q − q0‖

1
2 ‖cp‖

1
2 |∆cp|

1
2 +

+c4 |q|
1
2 ‖q‖

1
2 ‖cp − cp1‖

1
2 |∆(cp − cp1)|

1
2 +

+c4 |q|
1
2 ‖q‖

1
2 ‖cq‖

1
2 |∆cq|

1
2 +

∣∣∣∣
dcq

dt

∣∣∣∣

≤ Cη
1/2
1 η

1/2
2 δ7/8δ5/8 + Cρ

1/2
0 ρ

1/2
1 δ5/8δ3/8 + Cδ7/8δ5/8δ1/4 +

+C (ρ′0ρ
′
2)

1/2
δ + Cη

1/2
1 η

1/2
2 δ3/4δ1/4 +

+Cδ1/2δ1/4δ5/8δ3/8 + Cδ1/2δ1/4δ1/4 + Cδ,



Non-linear Galerkin method 99

from where

|∆(cq − cq1)| ≤ Cδ,

‖cq − cq1‖ ≤ Cδ3/2,

|cq − cq1| ≤ Cδ2.

With the same argument as that used at the level k=0 we can prove that
∣∣∣∣
dcq

dt
− dcq1

dt

∣∣∣∣ ≤ Cδ2.

Induction step. We suppose that for every j < k the following inequalities
hold

|cp − cp,j | ≤ Cδ5/4+j/2,

|∆(cq − cq,j)| ≤ C′δ(1+j)/2,∣∣∣∣
dcq

dt
− dcq,j

dt

∣∣∣∣ ≤ Cδ(3+j)/2.

We subtract the relation

dcp,k

dt
− D∆cp,k + P

((
pk+qk−1

)
∇ (cp,k + cq,k−1)

)
= Ph,

that is satisfied by cp,k, from the equation (25), and obtain

d (cp − cp,k)

dt
−D∆(cp − cp,k)+P (u∇ (cp + cq))−P

((
pk+qk−1

)
∇ (cp,k + cq,k−1)

)
= 0.

From here, by following the same path as the levels k=0 and k=1, we succe-
sively obtain

(cp − cp,k) (t) =

∫ t

0

e−DA(t−s)
{
PB (u, cp − cp,k) + PB

(
u −

(
pk+qk−1

)
, cp,k

)}
(s) ds−

−
∫ t

0

e−DA(t−s)
{
PB (u, cq − cq,k−1) + PB

(
u−

(
pk+qk−1

)
, cq,k−1

)}
(s) ds,

then

|(cp − cp,k) (t)| ≤
∫ t

0

C (t − s)
−δ

e−
Dλ
2

(t−s) |(cp − cp,k) (s)| ds+

+

∣∣∣∣
∫ t

0

e−(t−s)DA
[
PB

(
u−

(
pk+qk−1

)
, cp,k

)
+ PB (u, cq − cq,k−1)

]
(s) ds

+

∫ t

0

e−(t−s)DA
[
PB

(
u−

(
pk+qk−1

)
, cq,k−1

)]
(s) ds

∣∣∣∣ ,
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and, finally,
|(cp − cp,k) (t)| ≤

≤ C max
0≤t≤T

∣∣∣∣
∫ t

0

e−(t−s)DA
[
PB

(
u−

(
pk+qk−1

)
, cp,k

)
+ PB (u, cq − cq,k−1)

]
(s) ds

+

∫ t

0

e−(t−s)DA
[
PB

(
u−

(
pk+qk−1

)
, cq,k−1

)]
(s) ds

∣∣∣∣ .

Then, by using the induction hypotheses, we obtain

∣∣∣∣
̂PB

(
u−
(
pk+qk−1

)
, cp,k

)i
j,k

∣∣∣∣ ≤
∣∣u−

(
pk+qk−1

)∣∣ ‖cp,k‖ ≤ Cη′
1δ

(2+k)/2,

∣∣∣∣ ̂PB (p, cq − cq,k−1)
i

j,k

∣∣∣∣ ≤ Cδ(2+k)/2

(
1

λ
m−j+1

+
1

λ
m−k+1

)
,

∣∣∣∣ ̂PB (q, cq − cq,k−1)
i

j,k

∣∣∣∣ ≤ |q| ‖cq − cq,k−1‖ ≤ Cδδ(1+k)/2,

∣∣∣∣
̂PB

(
u−
(
pk+qk−1

)
, cq,k−1

)i
j,k

∣∣∣∣ ≤
∣∣u−

(
pk+qk−1

)∣∣ ‖cq,k−1‖ ≤ Cδ(2+k)/2δ1/2.

From here, with the use of the Lemma at the beginning of the Section,

|(cp − cp,k) (t)| ≤ Cδ5/4+k/2.

We have still to find estimates for |cq − cq,k|. As above we subtract the relation

D∆cq,k = QB (pk,cp,k) + QB (pk, cq,k−1) + QB (qk−1,cp,k) +

+QB(qk−2,cq,k−2) +
dcq,k−2

dt
− Qh,

that is equivalent with the definition relation of cq,k, from (56) and get

D∆(cq − cq,k) = QB (u,c) − [QB (pk,cp,k) + QB (pk, cq,k−1)+

+QB (qk−1,cp,k) + QB(qk−2,cq,k−2)] +
dcq

dt
− dcq,k−2

dt

By taking the norm and grouping the terms in a convenient way we obtain
|D∆(cq − cq,k)| ≤ |QB (p,cp) − QB (pk,cp,k)|+ |QB (p,cq) − QB (pk,cq,k−1)|+
+ |QB (q,cp) − QB (qk−1,cp,k)| + |QB (q,cq) − QB(qk−2,cq,k−2)|+
+
∣∣∣dcq

dt
− dcq,k−2

dt

∣∣∣ .
We can treat the first three terms of the rhs as the similar terms from the step

k=1 and we find that their sum is of the order of δ(k+1)/2. For the fourth term we
have

|QB (q,cq) − QB(qk−2,cq,k−2)| ≤ |QB (q,cq − cq,k−2)| +
∣∣QB(q − qk−2,cq,k−2)

∣∣

≤ c1 |q|
1
2 |∆q|

1
2 ‖cq − cq,k−2‖ + c1

∣∣q − qk−2

∣∣ 12 ∣∣∆
(
q − qk−2

)∣∣ 12 ‖cq,k−2‖
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≤ Cδ1/2δk/2 + Cδ(k+1)/2δ(k−1)/2δ1/2 ≤ Cδ(k+1)/2,
while for the fifth, ∣∣∣∣

dcq

dt
− dcq,k−2

dt

∣∣∣∣ ≤ Cδ(k+1)/2.

We thus obtain

|∆(cq − cq,k)| ≤ Cδ(k+1)/2,

‖cq − cq,k‖ ≤ Cδ(k+2)/2,

|cq − cq,k| ≤ Cδ(k+3)/2.

The argument used at the level k=0 can be used also here to prove
∣∣∣∣
dcq

dt
− dcq,k

dt

∣∣∣∣ ≤ Cδ(k+3)/2.

We see that the induction hypothesis is confirmed and this concludes the proof.
�

9. Comments on the R-APP Galerkin method

When compared to the Galerkin classical method, the repeatedly adjusted and
post-processed (R-APP) Galerkin method proposed by us presents the advantage of
using small dimension projection spaces, since accuracy may be increased by using
several levels of the method.

When compared to the NL Galerkin method, that shares the above property, the
R-APP Galerkin method presents some advantages coming from the fact that we use
induced trajectories instead of approximate inertial manifolds as basis of our approx-
imations. As was asserted in the literature (e.g. [21]), the use of some high accuracy
a.i.m. in the NL Galerkin method leads to equations whose numerical schemes are
difficult to construct (these are equations of the type (7) and the definition of a.i.m.s
is recursive, a high order a.i.m. Mk appealing, in its definition, the definition of all
Mj , with 0 ≤ j ≤ k−1). In the R-APP method, in the equation for pk (or cp,k), qk−1

(respectively cq,k−1) are known from the previous level and this makes the equations
much easier to program (they have qualitatively the same level of difficulty, in what
concerns the programming, as the classical Galerkin equations).

We must however say that, since the R-APP method requires some successive
numerical integrations (at each level a numerical integration in time), a special atten-
tion must be payed to the accuracy of these, in order to not affect the good accuracy
predicted by the theoretical computations.

To have an idea concerning how low dimensional the projection space can be,
let us remark, as in [12] that, if we choose m = 6, after having passed through five
levels of the method we obtain an approximate solution that bears an error of the
order of 10−5 since δ13/4 = 1

713/2 ≃ 0.0000032.
For m = 10, we need only four levels of the method for an error of the order of

10−5 (δ11/4 = 1
1111/2 ≃ 0.00000187).



102 Anca Veronica Ion

References
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