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A comprehensive mathematical model describing

drug release from collagen matrices

M. Bause∗, W. Friess∗∗, P. Knabner∗ and F. A. Radu‡

Biodegradable collagen matrices have become a promising alternative to synthetic poly-

mers as drug delivery systems for sustained release. For the accurate design and optimization

of such collagen systems there is a strong need in mathematical models. Here, an overall

mathematical model is presented that describes drug release from collagenous drug carrier

systems. The relevant processes are penetration of water into the matrix, matrix swelling,

matrix degradation by enzymatic cleavage and simultaneous drug release. Our mathemati-

cal model is based on experimental investigations and measurements; cf. [5, 6]. Thereby the

relevant processes were identified and characterized. In former publications (cf. [8, 9]) the

capability of the model components to describe reliably drug release by matrix swelling and

enzymatic matrix degradation was demonstrated by a careful comparison of measurements

and numerical simulations. Here, we focus on establishing an overall mathematical model

by combining the components that were developed in [8] on the one hand and in [6, 9] on

the other hand.

1. Introduction

Collagen is the major constituent of connective tissue; cf. [3]. Due to its wide dis-
tribution in the mammalian body, it has become a promising material for biodegrad-
able drug delivery systems. Dense collagen matrices for sustained release of higher
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weight drugs such as proteins or polysaccharides offer an alternative to implants based
on synthetic polymers; cf. [3]. Especially drug release from insoluble collagen devices
is of interest since drug liberation can be controlled by swelling and enzymatic degra-
dation. Initially the matrix swells and drug is released by diffusion. This phenomenon
was described previously in a mathematical model; cf. [8]. Subsequently, degradation
by collagenolytic enzymes occurs and the release rate becomes additionally depen-
dent on the enzymatic binding and cleavage rate. This phenomenon was described
in a mathematical model and investigated carefully recently; cf. [6, 9]. Moreover, in
[8, 9] the model components were analyzed accurately from the mathematical point of
view. In particular, the existence and uniqueness of solutions of the model equations
could be ensured. Further, reliable and accurate numerical approximation schemes
were suggested and studied in numereous experiments. For validation, the numer-
ically calculated data were compared with experimental measurements and a good
agreement between the either data was observed; cf. [8, 6, 9]. Eventhough the ei-
ther mechanisms of drug release – release by matrix swelling and release by matrix
degradation – occur simultaneously, we have separated them in their investigation,
mathematical modelling and numerical simulation. This seems reasonable since the
processes proceed on strongly different time scales, as our experimental studies have
borne out; cf. [5]. Whereas drug release due to swelling is restricted to an initial
period of some minutes (up to 30 minutes approximately), drug release by matrix
degradation takes place over several days (up to 14 days possibly). The approach to
separate the either mechanisms of drug delivery enables us to apply more adapted
mathematical and numerical methods to the separated subprocesses.

However, a comprehensive mathematical model combining water penetration,
matrix swelling and drug release by diffusion on the one hand and matrix degradation
by enzymatic cleavage and simultaneous drug relase is still missing. Such a model
will be proposed in the sequel and will allow the design and optimization of collagen
drug carrier systems. Other models that were published in the literature (cf., e.g.,
[7, 11, 12] and the references therein) to describe drug release from biopolymers are
less complete or consider only one of the either drug delivery mechanisms.

2. Mathematical Model

In the sequel we consider a cylindrical collagenous drug delivery system. The
matrix is of thickness 2X0 and radius R and is placed in a well-stirred medium (cf.
Figure 1) that contains an enzyme (collagenase), at a concentration which is supposed
to be constant all over the process. In the ambient fluid, the polymer takes up large
quantities of liquid and swells. The free active agent (i.e. drug) then diffuses out of
the swollen matrix system. Concomitantly, the enzyme penetrates into the matrix
and binds at the collagen fibers to form an enzyme-substrate complex. This complex
then breaks down into hydrolized collagen (the product of the reaction) and enzyme.
The part of the active agent which is initially immobilized due to physical entrapment
by the collagen fibers, becomes more and more free and can diffuse out of the matrix.
To summarize, the relevant processes to be described mathematicaly are
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• the swelling of the collagen matrix,

• the diffusion and transport of the enzyme in the matrix,

• the adsorption of the enzyme from the fluid to the collagen fibers,

• the enzymatic degradation of the polymer,

• the release of the drug.

Fig. 1. Schematic of the model.

First, we shall describe the matrix swelling process; cf. [8]. Our mathematical
model assumes a Fickian diffusion mechanism, i.e. the characteristic chain relaxation
time is much smaller than the characteristic penetrant diffusion time. We further
assume that the swelling and degradation of the polymeric substrate by the enzyme
is independent of the active agent (drug). The governing equation for the transport
of the penetrant solvent and of the drug in the polymer is

∂tCL −∇ · (DL(CL)∇CL) = 0 in Ω(t),

CL(0,x) = C0
L(x) in Ω(0), at t = 0,

CL(t,x) = Cext
L on ∂Ω(t),

(1)

where CL is the concentration of liquid in the polymer, C0
L the initial concentration of

water in the matrix and Ω(t) is the domain at time t ≥ 0. We note that throughout
this paper the concentrations are expressed in mol per volume. We prescribe the
concentration of water at the swelling front to be equal with Cext

L , which is the
concentration of the water in the fully swollen gel. According to the free-volume
theory, a Fujita-type [4] exponential dependence of the diffusion coefficient for the
penetrant solvent DL on the solvent concentration has been assumed with DL =
Deq

L exp(−βL(1 − CL/Cext
L )), where βL is a dimensionless constant and Deq

L are the
diffusion coefficients of water in the fully swollen collagen matrix. A crucial point of
the model is how to describe the moving of the free boundary. We assume that the
total volume expanded due to swelling is given by the volume of the extra fluid in
the matrix. Accordingly, the movement of the swelling front is given by the following
volume balance

V (t) − V (0) = vm

∫

Ω(t)

CL(t,x) dx − vm

∫

Ω(0)

CL(0,x) dx, (2)
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where V (t) is the volume of the matrix at time t and vm is the molecular volume of
water. To close our model describing the swelling process we also need an assumption
on the shape of the matrix. In the one-dimensional case (see [8]) equation (2) has the
form

X(t) − X0 = vm

∫ X(t)

0

Cc(t, x)dx − vm

∫ X0

0

Cc(0, x)dx, (3)

which further implies the relation

Ẋ(t) =
vm

1 − vmCext
L

Dc∂xCL(t, X(t)). (4)

The one dimensional case can be applied when the ratio between radius and hight of
the cylinder is bigger than 12, as it was pointed out in [7]. Analogous relations can
be derived in the two or three dimensional case.

Now we shall describe the enzymatic matrix cleavage process. The general
behaviour of an enzymatically catalyzed degradation process can be described by (cf.
[2])

E + S
k1

−→ ES (5)

ES
k2

−→ E + P (6)

In our case, collagen represents the substrate, collagenase is the enzyme whereas the
hydrolized collagen is the product. Further, k1 and k2 denote rate parameters. The
first of the either reactions represents the adsorption process and the second one
describes the cleavage of the substrate complex into a product and enzyme. The
adsorption may be considered either as an equilibrium process or a kinetic one, de-
pending on its time scale compared to the diffusion process. Here, the adsorption
process is described by a Freundlich type isotherm which is based on our experimen-
tal investigations; cf. [5, 6]. This is in agreement with [10], where different curves were
investigated and the best results were obtained also with a Freundlich-type isotherm.

We further assume that the enzyme does not only diffuse in the matrix but
in the first phase, i.e. swelling phase, is also transported by the penetrating fluid.
Consequently, an advection-diffusion equation with a reactive term is used to describe
the evolution of the enzyme. The enzyme-substrate complex (ES) is supposed to be
immobile, whereas the product is free to diffuse out of the collagen matrix. By
recalling the equations (5) and (6), the enzymatic degradation of polymer matrix is
mathematically described by

∂tCE −∇ · (DE(CK)∇CE − qCE) + kactCE = −k1(CE)αCK + k2C
γ
ES , (7)

∂tCES = k1(CE)αCK − k2C
γ
ES , (8)

∂tCK = −k1(CE)αCK , (9)

∂tCP −∇ · (DP (CK)∇CP ) = k2C
γ
ES . (10)

We consider solving (7)–(10), equipped with the initial conditions

CE(0,x) = 0 , CES(0,x) = 0 , CK(0,x) = C0
K , CP (0,x) = 0 (11)
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and the boundary conditions

CE(t,x) = Cext
E , CP (t,x) = 0 on ∂Ω(t) . (12)

Here, CE , CES and CP denote the concentrations of the free enzyme, enzyme-collagen
complex and product, respectively, and q = −DL∇CL stays for the fluid flux. The
enzyme activity decays in time which is incorporated in (7) by means of the term
kactCE , with kact being a dimensionless constant that has to be determined experi-
mentally. In (7)–(9), the quantity α denotes the parameter of the Freundlich isotherm
and k1, k2 are the rate parameters of (5), (6). In particular, α ∈ (0, 1] is satisfied.
In [6, 9] it was shown that a nonlinear dependence of the right-hand side terms in
(7)–(10) on CES is necessary to describe adequately the enzymatic matrix degrada-
tion by the set of equations (7)–(10). Thus, the parameter γ > 0 is of empirical
origin. We remark here that the parameters α and γ are material dependent. They
are mathematically fitted by using a set of data in a simplificated situation, i.e. by
considering only fully swollen matrices (see [6, 9] for details).

We further mention that C0
K in (11) denotes the collagen concentration at the

initial time and Cext
E in (12) is the enzyme concentration in the ambient aqueous solu-

tion that has to be prescribed. Due to the degradation process occuring concurrently,
the matrix phase through which the diffusion takes place changes continuously as a
function of the extend of hydrolysis of the polymer. Therefore, the diffusion coeffi-
cient DE of the enzyme can not be considered as a constant but rather as a function
of the fluid or collagen concentration. Again we assume a Fujita-like dependence (cf.

[4]) on the concentration of the collagen CK , i.e. DE = D0
E exp

(

−
βECK

C0

K

)

, with D0
E

denoting the diffusion coefficient of the enzyme in water and βE being a dimension-
less constant. The same assumption is made for the diffusion coefficient DP of the

product in the ambient fluid. Accordingly, we have DP = D0
P exp

(

−
βP CK

C0

K

)

. The

parameters D0
E and D0

P can be determined by measurements; cf. [5, 6].
We close the model by the equations for the drug release. It was experimentally

observed that if degradation would not occur then a certain amount of drug would
remain unrealesed in the matrix, and this because the drug molecules are physsicaly
immobilized by the collagen fibers. It is then naturally to assume (as also done, for
instance, in [11]) that the initial load of active agent is composed of two pools: a
pool of mobile active agent which is free to diffuse upon hydration of the matrix by
the ambient aqueous solution, and some part which is immobilized by the polymer.
As the polymer degrades, the concentration of collagen becomes lower and more and
more drug is free to diffuse.

In terms of equations we describe the release of the active agent by a diffusion
equation with a source term that models the liberation of the immobilized active
agent by matrix degradation together with initial and boundary conditions:

∂tCA −∇ · (DA(CK)∇CA) = −∂tCAi
in Ω(t),

CA(0,x) = C0
A(x) in Ω(0), at t = 0,

CA(t,x) = 0 on ∂Ω(t),

(13)
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where CA, CAi
denote the concentrations of free and immobilized drug, respectively.

The initial concentration C0
A of the active agent that is free to diffuse can be deter-

mined experimentally by measuring the quantity of drug which would remain in the
matrix if no degradation occurs, i.e. if no enzyme is available.

As mentioned previously, the diffusion is entangled because of the physical en-
trapment. In the equations above this effect is described by the source term ∂tCAi

and
we still have to establish a relation connecting the concentrations of the immobilized
active agent and of the collagen. Following [6, 9], we consider

CAi
= σCη

K . (14)

This is based on experimental studies, which did not confirmed the assumption of
a linear dependence as used in [11]. The parameters σ and η are constants. The
first one, σ, denotes the immobilizing capacity of the polymer, equal to the number
of hindering crosslinks or entanglements per mole of (fully swollen) substrate and its
value can be easily determinated experimentally. The second parameter, i.e. η, it is
also material dependend and has to be mathematically fitted. Like in the case of the
parameters α and γ, this is done by considering fully swollen matrices (see [6, 9] for
details). Similarly to the enzyme, for the diffusion coefficient of the active agent in

the matrix a functional form DA = D0
Aexp

(

−
βACK

C0

K

)

is used, where D0
A denotes the

diffusion coefficient of the drug in the undegraded matrix and βA is a dimensionless
constant; cf. [4].

3. Conclusions

A new mathematical model for describing drug release from insolluble collagen
matrices undergoing swelling and enzymatic degradation was established. The model
consists on four partial differential equations and two ordinary differential equations
in a variable domain. A very challenging multi-dimensional free boundary problem
arises. Simplification of the model were previuos considered, implemented and tested
(see [8, 6, 9]). This was done in order to identify and correctly mathematicaly describe
the different process occuring simultaneously. The very good corellation between the
experiments and numerical simulations motivated us to consider this general model.
The implementation of the equations in a finite element code is our next step.
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