Proceedings of the Fifth Workshop on
Mathematical Modelling

of Environmental and Life Sciences Problems
Constanta, Romania, September, 2006, pp. 35-42

Meteorological Data Analysis and Prediction by
Means of Genetic Programming

Andrei Biutu*® and Elena Biutu**®

Weather systems use extremely complex combinations of mathematical tools for anal-
ysis and forecasting. Unfortunately, due to phenomena in the world climate, such as the
greenhouse effect, classical models may become inadequate mostly because they lack adap-
tation. Therefore, the weather prediction problem is suited for heuristic approaches, such as
Evolutionary Algorithms. Experimentation with heuristic methods like Genetic Program-
ming (GP) can lead to the development of new insights or promising models that can be
fine tuned with more focused techniques. This paper describes a GP approach for analysis
and prediction of data and provides experimental results of the afore mentioned method on
real-world meteorological time series.

1. Introduction

Since the beginning of mankind, people have always been interested in weather
and have tried to find various methods that would allow them to know the weather
in advance. These methods evolved considerably from the time of Admiral Robert
Fitzroy (one of the pioneers of weather forecasting). Today, state of the art weather
systems use satellite cameras that can zoom into local areas, Doppler radar that uses
sound waves, and real-time computer-based data analysis. However, most serious
climatologists nowadays agree with Robert A. Heinlein’s quote: “climate is what you
expect, weather is what you get”. This quote expresses very well the close relationship,
and also the difference, between climate and weather.

Weather is a description of natural conditions over a short period of time, a
“snapshot” of the atmosphere at a particular time. In one form or another, weather

* “Mircea cel Batran” Naval Academy, Constanta, Romania, e-mail: abautu@anmb.ro
** “Ovidius” University of Constanta, Romania, e-mail: ebautu@univ-ovidius.ro
® the paper was supported by CNMP CEEX 05-D11-25/2005 Grant.

36 ANDREI BAUTU and ELENA BAUTU

affects our activities, because it affects the main ingredients of life on Earth: water
and heat. To ensure our livelihood, planners need to anticipate variation in weather.

Climate is the statistics of weather over a long period of time, i.e. a synthesis
of the weather recorded for a specified window of time at a particular place. It offers
valuable information about the average conditions, extremes, or frequencies of events.
Although climate is not weather, it is defined by the same terms, such as temperature,
precipitation, wind, and solar radiation. Many businesses use climate and weather
data to make informed economic decisions.

Climate varies from one place to another (spatial variation), and, more im-
portant, it varies from season-to-season, year-to-year, decade-to-decade, and so on
(temporal variation), due to the natural climate variability and the human-caused
(anthropogenic) climate change. Differences in the timing, intensity and duration of
seasons can have a huge impact on the environment and people, as climate change
impact assessments concerning agriculture, forests, water resources, etc. Results from
general circulation models usually provide neither the most likely scenario nor the full
range of possible outcomes.

The main artificial intelligence methods for weather prediction currently in use
include model output statistics, fuzzy logic, and expert systems. Some research has
focused on using genetic algorithms for various aspects of weather prediction.

2. Genetic Programming

In his famous 1950 paper, Turing suggested one of three directions for artificial
intelligence research should be automatic program design by means of an evolutionary
inspired approach. He was the first to envision evolutionary techniques that evolve
computer programs for problem solving. In Turing’s approach, an initial solution is
transformed over time using mutations; each mutation is judged by a human expert
who decides which mutations are accepted based of their effects. Turing never imple-
mented his technique, but his belief was that programs could learn intelligence from
their human judges.

Among the first implementations of Turing’s ideas was Holland’s Genetic Al-
gorithm (GA) [4][2]. GA maintains a set of candidate solutions and evolves them
through time. Holland proposed that the merits of a solution be automatically eval-
uated by a fitness function, instead of the human expert. The evolution process
involves a kind of natural selection and genetically inspired operators of mutation
and crossover. The chances of each individual to survive into the next generation are
proportionate to its fitness.

In the early 1990s, Koza [5] introduced a variation of GA closer to Turing’s
idea of evolutionary computation, called Genetic Programming (GP) [6][7]. GP is
an evolutionary algorithm that uses a functional encoding of solutions—initially, the
candidate solutions were encoded by Lisp S-expressions. The individuals are computer
programs encoded as syntax trees with varying size and shape. The internal nodes of
the tree are labeled with functional symbols. The number of child branches of each
node matches the arity of the function that labels it. Nodes on the frontier of the

GENETIC PROGRAMMING 37

tree are labeled with constants or variables (they are considered to be 0-arity nodes).

The first step of the algorithm involves the creation of the initial population.
There are many initialization procedures described in the literature. We use the
Ramped Half-and-Half initialization procedure introduced by Koza in [5]. With this
procedure, an equal number of individuals are initialized for various depth levels. For
each depth level considered, half of the individuals are perfectly balanced trees with
all the branches of the same length, and the other half are unbalanced trees, possi-
bly with some branches much longer than others. The population of trees resulting
from this initialization method is very diverse, with balanced and unbalanced trees
of several different depths. The inner nodes of the trees are closed forms of classical
mathematical operations (addition, subtraction, multiplication, division, exponential,
logarithm, etc), whereas the terminal nodes are constants or references to independent
variables and values in the past of the dependent variables.

After the initialization process, a cyclic process begins, with individuals evolving
due to genetic operators and a selection scheme. The genetic operators maintain diver-
sity in the population of individuals by combining features of existing the individuals
and/or adding new features. The most important GP operators are tree-crossover and
tree-mutation. In tree crossover, random nodes are chosen from both parent trees,
and the respective branches are swapped creating two offspring. There is no bias
toward choosing internal or terminal nodes as the crossing sites. In tree mutation, a
random node is chosen from the parent tree and substituted by a new random tree
created with the terminals and functions available.

Each genetic operator is applied in the population with some probability. We use
an automatic adaptation procedure of these probabilities based on [1]. The algorithm
uses a FIFO-like repository to maintain information regarding each child produced,
like its parents, the operator used, its relative fitness. Each child receives a credit
value based on this information, and a percentage of this credit is attributed to its
ancestors. From time to time, the performance of each genetic operator is calculated
as the average credits of the individuals from the repository created by that operator.
The probability of operators that have been performing badly will drop, while the
probability of operators that have been performing well will raise. The probability
of operators that haven’t been able to produce any children since the last adaptation
will increase.

Although we do not impose any restriction on the shapes of the individuals, we
do restrict the size the individuals may have. In this context, size can refer to the depth
or to the number of nodes of the tree encoded by the individual. These restrictions are
meant to avoid bloat, a phenomenon consisting of an excessive code growth without
the corresponding improvement in fitness. The standard way of avoiding bloat is by
setting a maximum size on individuals being evolved. An individual that exceeds the
maximum size may be dropped or may be “shaved” to the allowed size. We use a
mixed approach of hard and soft size limits. An individual that breaks the hard limit
is dropped and one of its parents is used instead. An individual that breaks the soft
limit is accepted only if its fitness is greater than the fitness of the best individual
found so far. The soft limit is initially set to a low value, and it is updated every time
a better individual is found.

38 ANDREI BAUTU and ELENA BAUTU

After the application of genetic operators, the algorithm continues with the eval-
uation phase. The function encoded by each individual in the population is evaluated
on the fitness cases set. For each input set, the result of the function is compared with
the expected output of that fitness case and the fitness of the individual is adjusted
according to the results. In this paper, the fitness of an individual is computed as
the sum of the absolute difference between the expected output value and the value
returned by the individual, over all fitness cases:

fitness = Z lexpected. — computed.| (1)
ceC

The best individuals are the ones that return better approximations of the expected
values—the ones with a lower fitness.

After evaluation, the algorithm uses a selection mechanism to choose the in-
dividuals that will survive in the next generation. We use a selection mechanism
that implements lexicographic parsimony pressure, a technique that has shown to
effectively control bloat in different types of problems [8]. This method chooses each
parent by randomly drawing a number of individuals from the population and select-
ing only the best of them. An individual A is better than another individual B if the
fitness of A is lower than the fitness of B, or fitness of A is equal to the the fitness of
B and A has less nodes than B.

The evolution-evaluation-selection cycle is repeated until a stopping criterion
is met. We use a mixed stopping criterion: the algorithm stops when a maximum
number of generations have been reached, or when an acceptable individual was found.
The solution designated by a run of the GP algorithm is the best individual throughout
the generations.

3. Experiments

Our experiments were carried out in Matlab 6 with GPLab 2 and MeteoLab
toolboxes. GPLab is a highly customizable toolbox for genetic programming in Mat-
lab created by Sara Silva. Although it provides the basic means for a quick start with
genetic programming, it also has a plug and play architecture that allows scientists
to fine-tune every aspect of the GP algorithm. It provides us with all the tools we
need for our experiments (automatic adaption of operator probabilities, hard and soft
limits for the sizes of the individuals, lexicographic parsimony tournament selection,
etc). GPLab also offers real-time plots for the statistics on the state of the algorithm
(population diversity and complexity, fitness evolution, operators probabilities, etc).

MeteoLab was developed by Antonio S. Cofilo, Rafael Cano, Carmen Sordo,
Cristina Primo, and José Manuel Gutiérrez as a companion software for their book
on weather prediction[3]. It is a collection of numerical weather prediction (NWP)
algorithms, raw data of weather observations (precipitation, pressure and tempera-
ture observations) for european stations from the Global Climate Observing System
(GCOS) Surface Network (GSN), and information of reanalysis projects. MeteoLab

GENETIC PROGRAMMING 39

also includes algorithms for generation of simulation data and a routines for the rep-
resentation of climate data.

Table 1. GPLab parameters used in experiments

Parameter Value

Population size 100

Number of generations 50

Terminals set [0,1) U {history values}
Functions set {+, —, x,div,sin, cos, log, exp}
Hard size limit 7

Soft size initial limit 4

Initialization size limit 7

For our experiments we set up the GPLab parameters as presented in table 1.
The first experiment uses a data set of temperature observations collected every 10
days between January 1°¢ and December 31%%, 1999, in Rennes, France. We compared
our GP-based approach with the AR model implementation of Matlab and with results
obtained by the neural networks toolbox Netlab. For this data set, the arfit function
from the ARFit Matlab toolbox automatically selected an order of the model of 2. In
order to compare the GP results with the ARFit results, both GPLab and NetLab
were setup to use a history window of size 2.

25 -

—5— Obsened
—— ARfit

20 -

0 1 1 1 1 1 1]
0 5 10 15 20 25 30 35

Fig. 1. Results for Rennes data set.

Figure 1 contains the plots of the models found by ARfit, Netlab, and GPLab.
In this case, the mean error of the AR model is 2.9731, and the mean error of Netlab’s
solution is 3.3289, while the mean error of the GP model is 2.5873.

40 ANDREI BAUTU and ELENA BAUTU

25 -
—5— Obsened
—— ARfit
—— NN

20r —— GP

Fig. 2. Results for Ostersund Froson data set.

The next experiment presents the results for precipitation analysis in Ostersund
Froson, Sweden, during 2001, within a similar experimental setup as the previous
experiment. In this case, the observed data has many null values (corresponding to
dry days), with occasionally high peaks, making this a difficult data set.

Figure 2, which contains the plots of the models found by ARfit, Netlab, and
GPLab, clearly shows the high quality of the GP model. In this case, the mean error
of the AR model is 3.5215, and the mean error of Netlab’s solution is 3.0390, while
the mean error of the GP model is 2.2928.

4. Conclusions

This paper shows that genetic programming can outperform classical and mod-
ern methods (based on artificial intelligence) for the discovery of models in weather
data. Moreover, the self adaptability of GP allows it to work in an unsupervised
manner and to discover relations hidden inside the data set. However, GP is not an
adversary of the other approaches, as models found with GP can be further optimized
with other techniques.

GENETIC PROGRAMMING 41

[1]

References

L. Davis, Adapting operator probabilities in genetic algorithms, In Proceedings of
the Third International Conference on Genetic Algorithms, pages 61-69, 1989.

D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, 1989.

J.M. Gutiérrez, R. Cano, A.S. Cofino and C. Sordo. Redes Probabilsticas y Neu-
ronales en las Ciencias Atmosféricas, Monografas del Instituto Nacional de Me-
teorologa, Madrid, 2004.

J.H. Holland, Adaption in Natural and Artificial Systems, MIT Press, Cambridge,
MA, 1992.

J.R. Koza, Genetic programming: On The Programming of Computers by Means
of Natural Selection, Cambridge MA, MIT Press, 1992.

W.B. Langdon, Data Structures and Genetic Programming: Genetic Programming
+ Data Structures = Automatic Programming! Kluwer, Boston, 1998.

W.B. Langdon and R. Poli, Foundations of Genetic Programming, Springer-
Verlag, New York, 2002.

S. Luke and L. Panait, Lezicographic parsimony pressure, In W. B. Lang-
don, E. Canti-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F.
Miller, E. Burke and N. Jonoska, editors, GECCO 2002: Proceedings of the Ge-
netic and Fvolutionary Computation Conference, pages 829-836, New York, 9-13
July 2002. Morgan Kaufmann Publishers.

