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Fast solvers for EVSS formulations

of viscoelastic flows

Daniel Loghin∗

Numerical simulations of viscoelastic flow problems require the solution of large, typi-

cally sparse, systems of equations which inherit the (highly) nonlinear coupling of the original

PDE model. Recent approaches, such as the elastic viscous split stress (EVSS) methods,

while allowing more flexibility and the treatment of complex rheological models come at the

cost of increased problem size. At the same time, there is an evident lack of efficient solution

techniques. In this work we introduce and analyze a class of implicit iterative solvers based on

a Schur complement approach. The technique is based on identifying a suitable decoupling

of the original system of PDE through an approximation to a Schur complement operator.

We illustrate our approach on discretizations of EVSS formulations of Oldroyd-type fluid

models.

1. Introduction

The numerical treatment of viscoelastic flow models has seen in recent years an
increase in the research effort. This is largely due to the seminal paper of Rajagopalan
et. al [16] which proposed the introduction of the rate of deformation tensor as an
unknown, leading to a rather versatile class of elastic-viscous split stress or EVSS
methods. Thereafter, a series of papers ensued which outlined analysis of the method
as well as numerical experiments [8, 7, 2, 6, 3]. We note here that the favoured nu-
merical approach is mixed finite element methods, due both to their flexibility and
amenability to analysis.
The increased versatility of the EVSS approach comes, however, at a computational
cost. The problems are larger and they depart from the classical Stokes and Navier-
Stokes setup for which a great number of optimal and quasi-optimal, linear and non-
linear system solvers have been devised over the years. While some work has been
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carried out in this respect [10], this issue remains to be investigated, especially given
the complexity of the numerical simulations: in three-dimensions, for example, we
require the solution of a nonlinear coupled system of PDE in ten variables.

Our aim in this paper is to employ previous results on preconditioning for sys-
tems of PDE [4, 12] to derive a useful iterative method for EVSS formulations. This
approach is essentially a Schur complement approach which incorporates information
derived from consideration of the symbol of the operator. The paper is organized as
follows. In section 2 we describe the EVSS method and review briefly an associated
mixed finite element discretization. Section 3 outlines a general Schur complement
approach for elliptic systems of PDE and derives for the EVSS operator the velocity-
pressure Schur complement which is our essential ingredient in the preconditioning
technique we propose. Finally, in section 4, we discuss briefly the implementation
details.

2. Problem formulation

Let Ω denote an open subset of Rn with Lipschitz boundary Γ and consider the
following generic steady-state non-Newtonian model

{
−div σ + u · ∇u = f
div u = 0

in Ω (1)

together with boundary conditions, where the stress tensor σ is given by

σ = −pIn + σe,

with σe the extra stress tensor. In the case of a Stokes model for a polymeric solute,
the extra stress tensor is the sum of viscous and elastic contributions

σe = σV + σE ,

where
σE = 2η1div ǫ(u), σV = 2η2div ǫ(u)

with ǫ(u) = (∇u+∇uT )/2 and η1, η2 the polymer and solvent viscosities, respectively.
For an Oldroyd model with a single relaxation time, the elastic contribution is defined
implicitly via the constitutive equation

σE = 2η1div ǫ(u) + λB(u, σE),

where
B(u, σ) = u · ∇σ −∇uσ − σ∇uT.

The elastic-viscous stress splitting method (or EVSS) introduces σE as an additional
variable. The resulting problem reads






σE − 2η1ǫ(u) + λB(u, σE) = 0,
−2η2div ǫ(u) + u · ∇u + ∇p −∇ · σE = f in Ω
div u = 0
u = u∗ on Γ
σ = σ∗ on Γin,

(2)
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where for simplicity we chose to work with Dirichlet boundary conditions. Here,
Γin = {x ∈ Γ : n · u∗ < 0} is the inflow boundary. Linearizing around some known
value b of u and using the incompressibility condition we arrive at the following
problem (we also drop the subscript of σE) in variables σ, u, p





σ − 2η1ǫ(u) + λB(b, σ) = 0,
−η2∆u + b · ∇u + ∇p −∇ · σ = f in Ω,
div u = 0
u = u∗ on Γ,
σ = σ∗ on Γin.

(3)

We note here that the number of variables in Rn is n(n+1)
2 + n + 1.

2.1. Mixed finite element discretizations

Let Hm(Ω) denote the Sobolev spaces of index 2 with H0(Ω) = L2(Ω) and let

S = [H1(Ω)]n×n
sym = {σij ∈ H1(Ω) : σij = σji, i, j ≤ n},

V = [H1
0 (Ω)]n = {vi ∈ H1(Ω) : vi |Γ= 0, i = 1, . . . , n},

Q = L2
0(Ω) = {q ∈ L2(Ω) :

∫

Ω

p(x)dx = 0}

A mixed variational formulation for this problem reads




Find (σ, u, p) ∈ X := S × V × Q such that for all (τ, v, q) ∈ X
d(σ, τ) + c(u, τ) = 0
c(v, σ) + a(u, v) + b(v, p) = f(v)
b(u, q) = 0,

(4)

where

d(σ, τ) = −
1

2η1

∫

Ω

(σ + λB(b, σ)) : τdx, c(u, τ) =

∫

Ω

ǫ(u) : τdx,

a(u, v) =

∫

Ω

(2η2ǫ(u) : ǫ(v) + b · ∇u v)dx, b(v, p) =

∫

Ω

v · ∇pdx, f(v) =

∫

Ω

f vdx.

Given a subdivision Ωh = ∪N
k=1Tk of Ω into simplices Tk, let

Sh = {σ ∈ S : σ ∈ [P1(T )]n×n, T ∈ Ωh},

Vh = {v ∈ V : v ∈ [P2(T )]n, T ∈ Ωh},

Qh = {q ∈ Q : q ∈ P1(T ), T ∈ Ωh}.

Writing Xh = Sh × Vh × Qh, the corresponding finite element formulation reads




Find (σh, uh, ph) ∈ Xh such that for all (τh, vh, qh) ∈ Xh

d(σh, τh) + c(uh, τh) = 0,
c(vh, σh) + a(uh, vh) + b(vh, ph) = f(vh),
b(uh, qh) = 0,

(5)

for which error estimates were derived in [7], [13]. We refer the reader to [3] for
stabilized formulations of the mixed variational problem (4).
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2.2. Block preconditioners

The linear system arising from (5) has the block form

Kx =




D CT 0
C A BT

0 B 0






σ

u

p


 =

(
D C̃T

C̃ F

)(
σ

q

)
=




0
f

0


 = g (6)

and can be decoupled in various ways. A cheap alternative is offered by fixed-point
solution methods such as Uzawa’s method, see also [15] for another choice of fixed-
point algorithm. Another possibility is pseudo-time-stepping or the Arrow-Hurwicz
algorithm. Invariably, these methods trade convergence for iteration cost. For this
reason we are interested in a Schur complement algorithm, which allows the decoupling
of (6), but requires a good approximation of the Schur complement. Our aim is to
derive an approximation for the Schur complement corresponding to the velocity
and pressure variables. More precisely, we are interested in solving a preconditioned
version of our problem

(KP−1)x̂ = g, x̂ = Px,

where

P =

(
D C̃T

0 PS

)

with PS an approximation to the Schur complement

S = F − C̃D−1C̃T.

If PS = S, the resulting preconditioned system KP−1 has only unit eigenvalues, so
that convergence of an iterative solver in at most three steps [14]. In order to construct
this approximation we make recourse to some of the existing theory regarding operator
preconditioning for the case of elliptic systems of partial differential equations.

3. Schur complements for the EVSS problem

An incipient theory regarding preconditioning for elliptic systems is outlined
in [4] as a generalization for the scalar case which was thoroughly analyzed in [5].
Further results regarding Schur complements were derived in [12]. We include below
a brief outline which will be useful in describing the derivation of our preconditioner.

3.1. Preconditioners for elliptic systems of PDE

Consider the following system of PDE

L(x, D)u(x) = f(x) x ∈ Ω, (7a)

B(x, D)u(x) = g(x) x ∈ Γ, (7b)

where L,B are matrix differential operators of sizes N ×N , m×N respectively, with
smooth coefficients. Definition of ellipticity is given below in the sense of Douglis and
Nirenberg [1].
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Definition 1. DN ellipticity. A matrix operator L(x, D) with real coefficients
is said to be elliptic if the following conditions hold:
(i) there exist integers si ≤ 0 with maxi si = 0 and tj > 0 such that

deg(Lij(x, ξ)) ≤ si + tj , i, j = 1, . . . , N ;

(ii) the principal part of L, denoted by L0 and defined as the sum of terms of L(x, ξ)
homogeneous in ξ of degree si + tj, satisfies

χ(x, ξ) = det(L0(x, ξ)) 6= 0 ∀ x ∈ Ω, ξ ∈ R
n \ {0};

If n = 2 we also require
(iii) the polynomial χ(x, ξ + zξ′) in z ∈ C has exactly m roots with positive imaginary
part for all linearly independent ξ, ξ′ ∈ R2.
We say the operator L has order

m =
1

2
deg(χ(x, ξ)) =

1

2

∑

i

si + ti > 0

and DN numbers (s, t), where s = (s1, ..., sN ), t = (t1, ..., tN ).

A regular elliptic system (L,B) requires L to be uniformly elliptic and B to
satisfy a complementing boundary condition which guarantees the well-posedness of
(7). This condition is defined below.

Definition 2. Complementing boundary condition. Let L be an elliptic
operator with DN numbers (s, t). A matrix differential operator B is said to fulfil the
complementing boundary condition for L if
(i) there exist integers rk such that

deg(Bkj(x, ξ)) ≤ rk + tj , k = 1, . . . , m,

and such that Bkj = 0 for rk + tj < 0.
(ii) Let x0 ∈ Γ and let (ξ1, . . . , ξn−1, t) denote a new coordinate system where t is the
coordinate in the direction of the inward normal to Γ at x0. Let Dt = (ξ1, . . . , ξn−1, d/dt).
The initial value problem with constant coefficients

L0(x0, Dt)w(t) = 0 t > 0, (8a)

B0(x0, Dt)w(t) = 0 t = 0, (8b)

has a unique solution satisfying limt→∞ w(t) = 0, which is the trivial solution. We
say B has DN numbers (t, r) where t is as above and r = (r1, . . . , rm).

Definition 3. The system (L,B) is a regular elliptic system of order m with
DN numbers (s, t, r) if
(i) L is a uniformly elliptic operator of order m with DN numbers (s, t).
(ii) B satisfies the complementing boundary condition for L and has DN numbers
(t, r).
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It is known (see [9], [17]) that a regular elliptic operator K = (L,B) : V → W is
a Fredholm operator for which there holds
(i) dimker(K) < ∞ ;
(ii) dim coker(K) = dim(W/im(K)) < ∞,
where ker(K), coker(K) and im(K) are the kernel, cokernel and the image of K, re-
spectively. The index of a Fredholm operator is

index(K) = dimker(K) − dim coker(K).

The following general result regarding preconditioning for elliptic systems can be
found in [4].

Theorem 1. Let K : V/ker(K) → im(K) be a regular elliptic operator with
DN numbers (s, t, r). If the regular elliptic operator P is invertible as a map from
V/ker(K) to im(K) and has the same DN numbers and index as K then for some
γ < ∞

‖P−1K‖V/ker(K) < γ, ‖K−1P‖V/ker(K) < γ,

‖KP−1‖W < γ, ‖PK−1‖W < γ.

Remark 1. Uniformly convergent discretizations of operators K,P preserve the
above equivalence. Thus, the above result is useful for designing preconditioners which
are optimal with respect to the meshsize (performance of iterative solver is independent
of the size of the problem).

The following result found in [12] confirms in the sense of the above theorem
that the Schur complement can be employed for preconditioning purposes.

Theorem 2. Let L(D) be a N ×N elliptic matrix differential operator with DN
numbers (s, t) and assume that

L(D) =

(
A(D) BT

1 (D)
B2(D) C(D)

)

where A(D) be an elliptic operator such that

deg det[A(ξ)]kl = deg det[A0(ξ)]kl, ∀k, l, (9)

where [A(ξ)]kl denotes the (kl)-cofactor of A(ξ). Let S(D) be a pseudo-differential
operator defined by

S(D)φ(x) = (2π)−n/2

∫

Rn

(
C(ξ) − B2(ξ)A(ξ)−1Bt

1(ξ)
)
φ̂(ξ)e−iξ·xdξ. (10)

Then

P =

(
A(D) BT

1 (D)
0 S(D)

)

is an elliptic operator with DN numbers (s, t).



Viscoelastic flows 141

The above result allows us to construct an approximation of S(D) using (10) and
therefore a useful preconditioner in the sense of Thm 1, provided we can find suitable
boundary conditions. We remark here that one of the limitations of this approach is
the requirement that our matrix differential operators have constant coefficients. We
will see in the next section that numerically this is not an issue.

3.2. Preconditioners for the EVSS system

We now turn our attention to our application for the case when n = 2. To
illustrate our approach, we first consider the simpler case of the three-field Stokes
problem which corresponds to λ = 0 in (3). The symbols are

L(ξ) =




D(ξ) C(ξ)T 0
C(ξ) A(ξ) BT(ξ)

0 B(ξ) 0


 , B(ξ) =

(
1 0 0
0 1 0

)

where

D(ξ) =
1

2η1




1 0 0
0 2 0
0 0 1



 , C = −

(
ξ1 ξ2 0
0 ξ1 ξ2

)

A0(ξ, η2) =

(
−η2(2ξ2

1 + ξ2
2) −η2ξ1ξ2

−η2ξ1ξ2 −η2(ξ
2
1 + 2ξ2

2)

)
, B(ξ) =

(
ξ1 ξ2

)
.

The kernel of (L,B) has dimension one (as the pressure is defined up to a constant),
but the codimension of the range is also equal to one (since the solution exists by
imposing one constraint), so that (L,B) = 0. The corresponding DN numbers are
found to be

s = (−1,−1,−1, 0, 0,−1),

t = (1, 1, 1, 2, 2, 1),

r =

{
(−2,−2) on Γ \ Γin

(−1,−1) on Γin.

Thus, the system (L,B) represents an elliptic system of order 2. Consider now the
symbol F0(ξ, η) of the Stokes operator with viscosity parameter η

F0(ξ, η) =

(
A0(ξ, η) B(ξ)T

B(ξ) 0

)
.

The symbol L(ξ) can thus be written as

L(ξ) =

(
D(ξ) C̃(ξ)T

C̃(ξ) F0(ξ, η2)

)
.

With the above notation, the symbol of the Schur complement corresponding to the
velocity and pressure is found to be

S(ξ) = F0(ξ, η2) − C̃(ξ)D(ξ)−1C̃(ξ)T = F0(ξ, η1 + η2).
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Consider therefore a preconditioning operator with symbol

P (ξ) =

(
D(ξ) C̃(ξ)T

0 F0(ξ, η1 + η2)

)

Then (P ,B) is an elliptic system with the same DN numbers as (L,B) and can imme-
diately be seen to have index zero, so that Thm 1 applies. Note that the implemen-
tation of the preconditioner is done in two steps: we obtain the velocity and pressure
by solving a Stokes system with viscosity parameter η1 + η2 and update the values of
σ (since D(ξ) = D is not a differential operator).

Consider now the linearized problem (3). Assuming constant coefficients, the
resulting symbol has a similar form as in the Stokes case, except for the matrices D, A
which now have the form

Dλ(ξ) =
1 + λb · ξ

η1




1 0 0
0 2 0
0 0 1


 ,

Ab(ξ, η2) =

(
−η2(2ξ2

1 + ξ2
2) + b · ξ −η2ξ1ξ2

−η2ξ1ξ2 −η2(ξ
2
1 + 2ξ2

2) + b · ξ

)

Assuming an explicit treatment of B(b, σ) in (3), the resulting symbol is

L(ξ) =




D0(ξ) C(ξ)T 0
C(ξ) Ab(ξ) BT(ξ)

0 B(ξ) 0



 =

(
D0(ξ) C̃(ξ)T

C̃(ξ) Fb(ξ, η2)

)
,

where Fb(ξ, η2) is the symbol of an Oseen operator

Fb(ξ, η2) =

(
Ab(ξ, η2) B(ξ)T

B(ξ) 0

)
.

As in the three-field Stokes case, the Schur complement for the velocity and pressure
variables is found this time to be the symbol of an Oseen operator

S(ξ) = Fb(ξ, η1 + η2).

As before, the preconditioner

P (ξ) =

(
D0(ξ) C̃(ξ)T

0 Fb(ξ, η1 + η2)

)

together with B is seen to form an elliptic system with the same DN numbers as
(L,B).
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4. Implementation

Any preconditioned iterative routine requires the action of the inverse of the pre-
conditioner at every step. In our case, this is expressed by the following factorization
of the block upper triangular candidate we propose

P−1 =

(
D−1

0

I

)(
I C̃T

I

)(
I

F−1
b

)
.

Thus, we need to invert an Oseen operator at every step, together with the constant
operator D0. The former operation can be achieved in several ways. Indeed, there
is a certain amount of literature dedicated to this task. We highlight here a Schur
complement approach that falls in the framework described in this work (see also
[12]).

The operator Fb together with Dirichlet boundary conditions forms an elliptic
system. The symbols are

Fb(ξ, η) =

(
Ab(ξ, η) B(ξ)T

B(ξ) 0

)
, BF = (I2 0)

with DN numbers

s = (0, 0,−1), t = (2, 2, 1), r = (−2,−2).

Following the examples above, one may consider the Schur complement corresponding
to the pressure variables. The general form of the preconditioner is as before

PF =

(
Fb BT

0 PS

)
.

For the Oseen operator in the previous section the pressure Schur complement is
found to have symbol

S(ξ) =
−(η1 + η2)ξ

2 + b · ξ

−ξ2
.

This is a pseudo-differential operator of order zero, so that we expect not to have to
implement any boundary conditions. Indeed, the requirement

degBP (ξ) ≤ rk + tj =

(
0 0 −1
0 0 −1

)

indicates that the boundary operator corresponding to the pressure variable is zero
(by definition of the complementing boundary condition). It follows that the choice
BP = BF yields an elliptic system (PF ,BF ) with the same DN numbers as (Fb,BF ).
The implementation of PF requires the inversion of Fb, which is an n-dimensional
convection-diffusion operator, together with a discrete approximation of S(ξ). A
useful choice suggested in the literature is given by

P−1
S = M−1

p FpA
−1
p
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where Mp, Fp, Ap are mass, convection-diffusion and laplacian operators acting on the
pressure space. Finite element assembly of these operators cannot implement the no-
boundary-condition requirement; instead, Neumann boundary conditions were found
to be sufficiently performant in the sense that the number of iterations is independent
of the mesh-size.

5. Summary

It is evident that the approach presented here can be generalized to other sys-
tems of PDE. In the case of EVSS discretizations of viscoelastic flow models, our
Schur complement technique allows essentially the decoupling of the problem into
sub-problems corresponding to elastic stress variables and velocity-pressure variables.
The latter is in general a challenging task – we discussed briefly a method that can
be employed and is known to be optimal with respect to the mesh-size. Numeri-
cal experiments which are presented elsewhere [11] confirm that the resulting EVSS
preconditioners exhibit the expected mesh independence predicted by the theory.
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