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The cardiac electrical activity is macroscopically manifested as action potentials that
travel through atria and ventricles in a synchronized fashion. Cardiac arrhythmias are dis-
orders of the normal electrical rhythm. At high heart rate, the action potential duration
follows a long-short-long pattern. This oscillatory electrical rhythm is called alternans and
it is believed to be a precursor to the development of severe ventricular arrhythmias. In
this computational study we analyze the initiation of alternans in a paced one-dimensional
strand of cardiac cells governed by the Beeler-Reuter model. We present results from numer-
ical experiments and a qualitative description of the observed patterns of cardiac activation.
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1. Introduction

The bioelectric activity of cardiac cells results from the transport processes of
ionic species across the membrane through voltage-gated ion channels. The ion chan-
nels act as gates that regulate the permeabilities of sodium, potassium and calcium
ions. At rest, the cell maintains a constant, negative transmembrane voltage, called
the resting potential. However, if a strong enough depolarizing current is passed
through the membrane, the cell departs from equilibrium and responds with a sharp
change in the transmembrane voltage followed by a return to the resting state. This
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rapid course of the transmembrane voltage is called action potential (AP). Conduc-
tion of AP in the heart occurs by electrotonic mechanisms, in which the local release
of stored energy is spent to trigger similar cellular events in adjacent regions [1].
Action potential waves are self-sustaining signals in the sense that they retain their
amplitude and shape at the expense of energy provided by the cell metabolism.

During normal sinus rhythm, AP waves are periodically initiated by the pace-
maker cells of the sinoatrial node and propagate through atria and ventricles. Cardiac
arrhythmias are disorders of either wave initiation or wave propagation. A common
cardiac arrhythmia is alternans, which is characterized by a long-short alternation of
action potential duration (APD) during rapid pacing [2]. It has been suggested that
alternans may be a precursor of more severe cardiac disorders, such as ventricular
fibrillation [3]. Alternans can be concordant or discordant. During concordant alter-
nans, APD oscillations are in phase everywhere in the tissue. Discordant alternans
are characterized by APD oscillations of opposite phases in distinct spatial regions of
the cardiac tissue [4]. The development of alternans is closely related to the restitu-
tion property of the cardiac tissue. Restitution is the relationship between the action
potential duration (APD) and the diastolic interval (DI), which is the time interval
between the end of the preceding AP and the start of the next one [4]. More precisely,
by decreasing the DI the APD of a cell shortens. Below a critical value of DI, the
cell does not respond with an action potential. Cardiac alternans is produced dur-
ing high-frequency pacing when the slope of the restitution curve is greater than one
[5]. Clinically, the suppression of cardiac alternans is achieved with calcium channel
blockers or bretylium, which have been shown to flatten the restitution curve [12].
Alternans is also called a {2 : 2} rhythm, meaning that two stimuli elicit two action
potentials of different duration and shape. Increasing the stimulation frequency leads
to conduction block and {2 : 1} synchronization, in which the cardiac tissue responds
to every other stimulus.

In this computational study we analyze different cardiac electrical rhythms and
the initiation of alternans in a paced one-dimensional strand of cardiac cells governed
by the Beeler-Reuter model [6]. We present results from numerical experiments and
a qualitative description of the observed patterns of cardiac activation.

2. Physical Model

Action potential propagation in a one-dimensional strand of ventricular muscle
was modeled using the cable equation as in [7]. We assumed that cardiac cells are
cylinders that connect to one another, forming a continuous long cylindrical fiber (fig.
1). According to the cable theory [7], any change of current in axial direction must
equal the transmembrane current, which is composed of a capacitive current and a
ionic current

Cm =
∂Vm

∂t
+ Iion =

r

2ρ

∂2Vm

∂x2
, (1)
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Fig. 1. A cell element in the cable model, with radius r = 5 µm and length l = 100 µm.

where Vm (mV) is the transmembrane voltage, Cm = 1 µF/cm2 is the membrane
capacitance, r = 5 µm is the cardiac cell radius, ρ = 0.25 kΩ · cm is the intracellular
axial resistivity, L = 7 cm is the length of the cable and Iion ( µA

cm2 ) is the ionic
current through the cell membrane, described by the Beeler-Reuter (BR) model of
the ventricular cell. Equation (1) was solved to simulate action potential propagation
when the cardiac fiber was paced at one end by injecting an axial current Istim, while
the other end was electrically sealed
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The initial condition was Vm(0) = −85 mV, which corresponds to the resting potential
of the cardiac cell.

The ionic current Iion represents the sum of the current densities corresponding
to three ionic species: sodium, calcium and potassium

Iion = INa + IK + Ix1
+ IS , (3)

where INa is the sodium current, IK and Ix1
are potassium currents and IS is the

calcium current. For the inward sodium current we used the revised formulation of
the BR model given in [8]

INa = GNam
3h (Vm − ENa) , (4)

where GNa = 15 mS/cm
2

is the maximal conductance of the Na+ channels, ENa =
40 mV is the equilibrium Nernst potential for the Na+ ions, and m and h are dimen-
sionless gating variables, describing the opening and closing of Na+ ionic channels.
The inward calcium current is given by

IS = GSfd (Vm − Es) , (5)
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where GS = 0.09 mS/cm2 is the maximal conductance of the Ca2+ channels,Es(mV) =
−82.13− 13.0287 ln[Ca] is the equilibrium Nernst potential for the Ca2+ ions, and f
and d are dimensionless gating variables, describing the opening and closing of Ca2+

ionic channels. Intracellular Ca2+ concentration [Ca] changes according to

d [Ca]

dt
= −10−7IS + 0.07

(

10−7 − [Ca]
)

. (6)

The outward potassium current is a function of transmembrane voltage

IK = 1.4
exp [0.04 (Vm + 85)] − 1

exp [0.08 (Vm + 53)] + exp [0.04 (Vm + 53)]
, (7)

and the time-activated outward potassium current has a gating variable x1

Ix1
= 0.8x1

exp [0.04 (Vm + 77)] − 1

exp [0.04 (Vm + 35)]
. (8)

The gating variables m, h, d, f, and x1 follow the dynamics

da

dt
=

a∞ (Vm) − a

τa (Vm)
, a = {m, h, d, f, x1} . (9)

The individual expressions for a∞ and τa can be found in [6].
Thus, the mathematical model consists of seven differential equations, described

by (1), (6) and (9), subject to boundary conditions (2) and to the following initial
conditions: Vm(0) = −85 mV, [Ca]i(0) = 3 · 10−7 M, m(0) = 0.01126, h(0) = 0.9871,
d(0) = 0.003, f(0) = 1, x1(0) = 0.0241. Equation (1) was discretized using the fi-
nite difference method in conjunction with the Crank-Nicolson time stepping scheme.
The resulting tridiagonal system of linear equations was solved using the Thomas
algorithm [9]. The ordinary differential equations (6) and (9) were solved numeri-
cally using the forward Euler method [9]. A cable of 7 cm in length was used in all
simulations. The grid space was h = 0.01 cm and the time step was k = 0.025 ms.
The diffusion coefficient is D = r

2ρCm

= 10−3 cm2/ms, so that the stability criterion
h2

k
> 2D is satisfied. In all simulations, the amplitude of the current stimulus was

twice the diastolic threshold as measured in our numerical model, Istim = 70 µA/cm
2
,

and had a duration of 2 ms (typical value used in experiments).

3. Results

Figure 2a shows a typical action potential obtained with the BR model. The
numerical method used resulted in an APD of 300 ms and an upstroke velocity of
120 V/s. The conduction velocity along the cable was 65 cm/s. Figures 2b, 2c show
the time evolution of the ionic currents. The sharp depolarization of the cell (phase
0) is mainly due to the fast inward Na+ current (fig. 2b). The brief repolarization,
represented by a notch at the end of the upstroke (phase 1), owes to the activation of
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Fig. 2. a) Simulated action potential Vm in the Beeler-Reuter model; b) time variation of
the fast inward Na+ current during an action potential; c) time variation of the K+ and

Ca2+ currents during an action potential.

outward currents carried by K+ ions, while the plateau of the action potential (phase
2) is determined by a balance between the outward K+ currents and the inward Ca2+

current (fig. 2c). Repolarization (phase 3) is achieved when the efflux of K+ exceeds
the influx of Ca2+, and finally, the cell returns to the resting state (phase 4). During
phases 0, 1, 2 and most part of phase 3 (up to the point where repolarization has
reached about −50 mV) the cell is refractory to new current stimuli, i.e. it does not
respond with another action potential. From this point forward, until it has become
fully excitable, the cell is in the relative refractory period during which a new action
potential can be evoked with stronger stimuli.

Figure 3 shows the APD restitution measured with an S1−S2 stimulus protocol
(fig. 3a). The APD decreases as the DI shortens (fig. 3b). At very short DI the
restitution curve is steep, with a slope > 1. If the diastolic interval is less than
a critical value, the S2 stimulus falls within the refractory period of the S1 action
potential and a new AP cannot be elicited.

Next, we periodically paced the cardiac fiber at x = 0 with a square-wave
stimulus (Istim = µA

cm2 , duration 2 ms) at four different frequencies. Figure 4 shows
action potential traces from 40 positions along the cable. At 1.6 Hz, the cable responds
with an action potential to every stimulus, resulting in a {1 : 1} synchronization
(fig. 4a), which would correspond to normal sinus rhythm. Increasing the stimulus
frequency to 3.6 Hz results again in a {1 : 1} rhythm (fig. 4b), however concordant
alternans starts to develop. At a slightly higher frequency of 3.8 Hz, the cable responds
with {2 : 1} synchronization and transition to {2 : 2} rhythm (fig. 4c). Finally, at
4.3 Hz the cable responds with an action potential at every other stimulus, resulting
in a {2 : 1} electrical rhythm.

To illustrate the onset of discordant alternans we followed the approach de-
scribed in [10]. An ectopic stimulus was delivered at the top end of the cable (black
arrow in fig. 5a) short after a sinus wave has finished traveling up the cable (shown at
the left edge in fig. 5a). Sinus rhythm stimuli were thereafter given at 240 ms intervals
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Fig. 3. Illustration of the APD restitution property of cardiac cells: a) action potentials
resulted from a S1 − S2 stimulus protocol corresponding to a diastolic interval DI = 5 ms
(S1 and S2 stimuli are shown with bars); b) restitution curve APDN+1 = f(DIN ). Action
potential duration APDN+1 elicited by the S2 stimulus decreases with the decrease of the

previous diastolic interval DIN .

at the bottom end of the cable. The periodic pacing produced discordant alternans,
with short-long-short APD at the bottom end and long-short-long APD at the top
end of the cable. The development of discordant alternans is strongly dependent on
the coupling interval of the ectopic beat and the frequency of the sinus excitations. At
lower sinus rates, only concordant alternans were seen. Figure 5b illustrates the same
scenario in the case where the magnitude of the Ca2+ current was reduced by 25%.
In this situation, the sinus excitations did not result in discordant nor in concordant
alternans, and produced a {1 : 1} periodic rhythm with a shorter APD.

4. Conclusions

In this study we used an electrophysiologic model of the cardiac cell and the cable
equation to simulate electrical rhythms in a paced one-dimensional cardiac fiber. Our
results show complex patterns of action potential propagation, determined mainly by
the APD restitution properties of the cardiac tissue. The response of the cardiac
fiber varies with the frequency of the stimulus train. High rate pacing leads to the
development of concordant alternans.

Strong oscillations of APD were noted at around 3.6 Hz. Conduction block and
{2 : 1 → 2 : 2} transition were observed at 3.8 Hz. Further increasing the frequency
resulted in a {2 : 1} electrical rhythm.

Discordant alternans were induced by delivering an ectopic stimulus during a
fast rate sinus rhythm. During discordant alternans the APD shows a long-short-long
pattern at one end of the cable and a short-long-short pattern at the other end. When
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Fig. 4. Space-time diagrams of action potential propagation in a 7 cm cable paced at the
bottom-end with a train of short current pulses at different frequencies. The stimulus train is
shown with bars. a) at 1.6 Hz the cable responds with an action potential for every stimulus
({1 : 1} rhythm); b) concordant alternans starts to develop at 3.6 Hz; c) at 3.8 Hz the cable
has first a {2 : 1} rhythm followed by a transition to {2 : 2} rhythms; d) at 4.3 Hz there is
a {2 : 1} synchronization in which the cable responds with an action potential only to every

other stimulus.

the magnitude of the calcium current IS was reduced by 25%, neither concordant
alternans nor discordant alternans occurred. The action potential was shortened,
resulting in a prolongation of the diastolic interval. Although calcium channel blockers
are used clinically to suppress alternans and other cardiac arrhythmias, they suffer
from diminishing the contractile force of the ventricle by reducing the APD.

Our approach is computational only, and it only surfaces the complex behavior
of cardiac tissue under normal and abnormal conditions. Nonetheless, the results
presented suggest that computer models based on a detailed formulation of electro-
physiologic processes may have the ability to accurately simulate complex responses
of cardiac cells and may facilitate the development of pharmacological approaches to
eliminating cardiac arrhythmias.
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Fig. 5. Space-time diagram of action potential propagation in a 7 cm cable: a) discordant
APD alternans were produced by delivering an ectopic stimulus (shown with arrow) at the
top end of the cable followed by a high-rate pacing at the bottom end of the cable (240ms
between stimuli); b) APD alternans were suppressed by reducing the Ca2+ current, IS, by

25%.
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