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Conjugate Gradient Algorithms for Molecular

Formation under pairwise Potential Minimization

Neculai Andrei∗

The paper presents a survey of nonlinear conjugate gradient algorithms and the com-

putational performances of some conjugate gradient algorithms for solving the molecular

conformation application, i.e. the so called the Lennard-Jones clusters problem. The con-

jugate gradient algorithms classifies in four groups: conjugacy condition algorithms, hy-

brid conjugate gradient, scaled conjugate gradient and preconditioned conjugate gradient

algorithms. In this paper we present the main characteristics of these conjugate gradient

algorithms emphasizing their convergence properties. We present the performances of 25

conjugate gradient algorithms to solve the protein folding problem. We show that the conju-

gate gradient algorithms are able to solve this difficult problem, and our scaled memoryless

BFGS preconditioned conjugate gradient algorithm for unconstrained optimization is the

top performer among the conjugate gradient algorithms.

Key words. Molecular formation, potential minimization, nonlinear conjugate gradient

methods, unconstrained optimization, nonlinear programming.

1. Introduction

One of the very important problem with a crucial role in structure determination
and anlaysis of proteins, peptides and other organic molecules is energy minimization.
The interatomic interactions of biomolecules such as proteins and nucleic acids are
described by an empirical potential energy function (force field) which depends on
the structure, i.e. on the geometry of the molecule, and typically leads to an energy
surface with a tremendous number of local minima. Identifying the lowest energy
minima is the goal of protein folding problem. This problem received a great deal
of attention both from its importance in computational structural biology in analysis
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of organic aggregates and in testing the performances of unconstrained optimization
algorithms.

The algorithmic and computational studies given by Navon et al. [1992a, 1992b],
Wang, et al. [1995] and Zou et al. [1993] show that truncated Newton (TN, [Nash,
1984]) and limited BFGS (L-BFGS, [Liu and Nocedal, 1989]) are powerful opti-
mization methods that are more efficient than other techniques. Truncated Newton
method combine the quadratic convergence rate of the classic Newton method with
feasible storage and computational requirements. On the other hand, the L-BFGS
algorithm is simple to use mainly because it does not require the knowledge of the
sparsity structure of the Hessian or knowledge of the separability of the minimization
function. The conclusion is that the TN performs better than L-BFGS for func-
tions that are nearly quadratic, while for highly nonlinear complex functions L-BFGS
outperforms TN.

An excellent review on minimization methods has been considered by Schlick
[1992] where some details on TNPACK package co-authored with Fogelson, which
implements a TN algorithm, are presented [Schlick and Fogelson, 1992]. The main
characteristic of TNPACK is that the user has the possibility to supply a sparse pre-
conditioning matrix that cluster the eigenvalues of the preconditioned Hessian, thus
accelerating the convergence of the optimization process. The second implementation
of TN algorithm is that given by Nash [1984] which uses an automatic precondi-
tioning. The Nash’s implementation TN has the advantage of portability because the
preconditioner does not have to be tailored to a specific problem. Some computational
studies and comparisons between several algorithms applied to the molecule deoxy-
cytine and to cluster of water molecules are presented by Schlick. It is shown that
for molecule deoxycytine the TN with preconditioning is the most efficient requiring
about half of the CPU time corresponding to L-BFGS with preconditioning.

In this paper we present another approach to models of protein by using the
conjugate gradient algorithms for unconstrained optimization. Conjugate gradient
methods represent a class of unconstrained optimization algorithms characterized by
low memory requirements and strong local and global convergence properties. The
structure of the paper is as follows. In section 2 we present a survey of nonlinear
conjugate gradient algorithms. Section 3 is dedicated to present the Lennard-Jones
Clusters, i.e. the molecular conformation problem and its solution given by 25 non-
linear conjugate gradient algorithms. It is shown that our scaled memoryless BFGS
preconditioned conjugate gradient algorithm is the top performer among the conjugate
gradient algorithms [Andrei, 2006a]. Some conclusions are given in section 4.

2. A survey of nonlinear conjugate gradient algorithms

An excellent survey of nonlinear conjugate gradient methods, with special at-
tention to global convergence properties, has been given by Hager and Zhang [2005].
In this section we focus on different versions of nonlinear conjugate gradient methods
and their convergence properties. Consider the problem to minimize a function of n
variables:
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min f(x), (1)

where f : R
n → R is a continuous differentiable function with g(x) = ∇f(x) its

gradient. Conjugate gradient algorithms solving (1) are iterative methods of the
form:

xk+1 = xk + αkdk, (2)

where αk > 0 is a step length and dk is a search direction. The search direction at
the very first iteration is the steepest descent direction: d0 = −g0 ≡ ∇f(x0). The
directions along the iterations are computed according to:

dk+1 = −gk+1 + βkdk, (3)

where βk is a scalar. The nonlinear conjugate gradient algorithm for general uncon-
strained optimization problem was firstly proposed by Fletcher and Reeves [1964]. In
this case the conjugacy condition is replaced by dT

k+1yk = 0, where yk = gk+1 − gk.
This is motivated by the following relations:

dT
k+1Adk =

1

αk
dT

k+1A(xk+1 − xk) =
1

αk
dT

k+1(gk+1 − gk) =
1

αk
dT

k+1yk,

or by the mean value theorem

dT
k+1yk = αkdT

k+1∇
2f(xk + θαkdk)dk,

for some θ ∈ (0, 1).
In order to ensure the convergence of algorithm (2), it is necessary to constrain

the choice of αk. Usually, the step length is selected to satisfy the Wolfe line search
conditions [Wolfe, 1969, 1971]:

f(xk + αkdk) − f(xk) ≤ σ1αkgT
k dk, (4)

∇f(xk + αkdk)Tdk ≥ σ2g
T
k dk, (5)

where 0 < σ1 ≤ σ2 < 1. For some conjugate gradient algorithms the stronger versions
of the Wolfe line search conditions are needed to ensure the convergence and the
stability. The strong Wolfe conditions consists of (4) and the following strengthened
version of (5)

∣

∣∇f(xk + αkdk)Tdk

∣

∣ ≤ σ2g
T
k dk. (6)
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The general conjugate gradient algorithm
Step 1. Select x0, set d0 = −g0 and k = 0.
Step 2. Compute the step length αk > 0 satisfying

the Wolfe line search (4) and (5).
Step 3. Compute xk+1 = xk + αkdk. If ‖gk+1‖ ≤ ε, then stop.
Step 4. Compute βk and generate the direction dk+1 = −gk+1 + βkdk.
Step 5. Set k = k + 1 and go to step 2. ♦

2.1. Classical Conjugate Gradient Algorithms

Different conjugate gradient algorithms correspond to different choices for the
scalar βk. The well known formulas for βk are summarized in Table 1. Conjugate
gradient algorithms (2)–(3) with exact line searches satisfy the equality

gT
k dk = −‖gk‖

2
, (7)

which implies the sufficient descent condition

gT
k dk < −c ‖gk‖

2
, (8)

where c > 0 is a constant. Often, the sufficient descent condition has been used
to analyze the global convergence of conjugate gradient algorithms with inexact line
searches.

2.2. Hybrid and parametrized conjugate gradient algorithms

The numerical experiments show that although the FR, DY and CD conjugate
gradients methods have strong convergence properties; however they may be affected
by jamming. On the other hand, the HS, PRP and LS methods although theoretically
may not converge, computationally they often are significantly better. The idea to
combine these methods in order to get efficient algorithms leads to hybrid conjugate
gradient algorithms. Table 2 contains the main hybrid conjugate gradient methods.

Conjugate gradient methods can be combined to get the so called parameter
conjugate gradient algorithms. Dai and Yuan [1998, 2003] proposed a one-parameter
family of conjugate gradient algorithms with:

βk =
‖gk+1‖

2

λk ‖gk‖
2 + (1 − λk)dT

k yk

, (9)

where λk ∈ [0, 1]is a parameter. For λk = 1we get the Fletcher-Reeves method, while
the Dai-Yuan method correspond to λk = 0. By considering convex combinations of
the numerators and denominators of βFR

k and βHS
k , Nazareth [1999] suggested a two-

parameter family of conjugate gradient methods:

βk =
µk ‖gk+1‖

2
+ (1 − µk)gT

k+1yk

λk ‖gk‖
2
+ (1 − λk)dT

k yk

, (10)
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Table 1. Choices for βk parameter in conjugate gradient

βHS
k =

gT
k+1

yk

dT
k

yk

The original linear conjugate gradient algo-
rithm by Hestenes and Stiefel [1952].

βF R
k =

gT
k+1gk+1

gT
k

gk

The first nonlinear conjugate gradient al-
gorithm, proposed by Fletcher and Reeves
[1964].

βD
k =

gT
k+1

∇
2f(xk)dk

dT
k
∇2f(xk)dk

Proposed by Daniel [1967]. This updating
formula requires evaluation of Hessian at ev-
ery iteration.

βPRP
k =

gT
k+1

yk

gT
k

gk

Proposed by Polak and Ribière [1969] and
Polyak [1969].

βPRP+
k = max



0,
gT

k+1
yk

gT
k

gk

ff

Proposed by Powell [1984], and analyzed by
Gilbert and Nocedal [1992].

βCD
k =

gT
k+1

gk+1

−dT
k

gk

Proposed by Fletcher [1987] as a Conjugate
descent method

βLS
k =

gT
k+1

yk

−dT
k

gk

Proposed by Liu and Storey [1991].

βDY
k =

gT
k+1gk+1

dT
k

yk

Proposed by Dai and Yuan [1999].

βDL
k =

gT
k+1

(yk−tsk)

dT
k

yk

, t > 0 Proposed by Dai and Liao [2001].

βDL+
k = max



0,
gT

k+1yk

dT
k

yk

ff

− t
gT

k+1sk

dT
k

yk

Proposed by Dai and Liao [2001]

βY T
k =

gT
k+1(zk−tsk)

dT
k

zk

Proposed by Yabe and Takano [2004], where
zk = yk + ρϑk

sT
k

uk

uk, ρ ≥ 0,

ϑk = 6(fk − fk+1) + 3(gk + gk+1)
Tsk

βY T+
k = max



0,
gT

k+1
zk

dT
k

zk

ff

− t
gT

k+1
sk

dT
k

zk

Proposed by Yabe and Takano [2004].

where λk, µk ∈ [0, 1]. Observe that this two-parameter family includes FR, DY, PRP
and HS methods. Dai and Yuan [2001] considered a three-parameter family of hybrid
conjugate gradient method; they chose:

βk =
µk ‖gk+1‖

2
+ (1 − µk)gT

k+1yk

(1 − λk − ωk) ‖gk‖
2

+ λkdT
k yk − ωkdT

k gk

, (11)

where λk, µk ∈ [0, 1] and ωk ∈ [0, 1−λk]. This three-parameter family includes the six
standard conjugate gradient methods, the previous one-parameter and two-parameter
families, as well as many hybrid methods as special cases.

2.3. Scaled Conjugate Gradient Algorithms

Another class of conjugate gradient algorithms is given by the so called the
scaled conjugate gradient algorithms. For these algorithms the direction is computed
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Table 2. Hybrid choices for the βk parameter in conjugate gradient algorithms

βTAS
k =



βPRP
k , 0 ≤ βPRP

k ≤ βF R
k ,

βF R
k , otherwise.

Proposed by Touat-Ahmed and Storey
[1990].

βHuSt
k = max

˘

0, min
˘

βPRP
k , βF R

k

¯¯

Proposed by Hu and Storey [1991].

βGN
k =

max
˘

−βF R
k , min

˘

βPRP
k , βF R

k

¯¯ Proposed by Gilbert and Nocedal
[1992].

βHS−DY
k = max

˘

0, min
˘

βHS
k , βDY

k

¯¯

Proposed by Dai and Yuan [2001] and
Dai and Ni [2003].

βhDY
k = max

n

−

“

1−σ
1+σ

”

βDY
k , Proposed by Dai and Yuan [2001]. σ is

the parameter used in the second Wolfe
line search condition.

min
˘

βHS
k , βDY

k

¯

ff

βhDY z
k = max

˘

0, min
˘

βHS
k , βDY

k

¯¯

Proposed by Dai and Yuan [2001]. σ is
the parameter used in the second Wolfe
line search condition.

βLS−CD
k = max

˘

0, min
˘

βLS
k , βCD

k

¯¯

as:

dk+1 = −θk+1gk+1 + βkdk, (12)

where θk+1 is a positive parameter (the scaling parameter).
Observe that if θk+1 = 1, then we get the classical conjugate gradient algorithms

according to the value of the scalar parameter βk. On the other hand, if βk = 0, then
we get another class of algorithms according to the selection of the parameter θk+1.
There are two possibilities for θk+1 : a positive scalar or a positive definite matrix.
If θk+1 = 1, we have the steepest descent algorithm. If θk+1 = ∇2f(xk+1)

−1, or
an approximation of it, then we get the Newton or the quasi-Newton algorithms,
respectively. Therefore, we see that in the general case, when θk+1 6= 0 is selected in
a quasi-Newton manner andβk 6= 0, then (12) represents a combination between the
quasi-Newton and conjugate gradient methods.

To determine βk Andrei [2004a, 2004b, 2005, 2006a, 2006b] considers the fol-
lowing procedure. As we know the Newton direction for solving (1) is given by
dk+1 = −∇2f(xk+1)

−1gk+1. Therefore, from the equality

−∇2f(xk+1)
−1gk+1 = −θk+1gk+1 + βkdk,

we get:

βk =
sT

k ∇
2f(xk+1)θk+1gk+1 − sT

k gk+1

sT
k ∇

2f(xk+1)sk.
(13)

Using the Taylor development, after some algebra we obtain:
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βk =
(θk+1yk − sk)

T
gk+1

yT
k sk

, (14)

where sk = xk+1 − xk and yk = gk+1 − gk.
If θk+1 = 1, then (14) is the parameter corresponding to the direction consid-

ered by Perry [1977], i.e. we get the scaled Perry algorithm. This value of parameter
βk is used by Birgin and Martinez [2001] in their SCG (spectral conjugate gradient)
package for unconstrained optimization, where θk+1 is selected in a spectral manner,
as suggested by Raydan [1997]. The following particularizations can be remarked. If
sT

j gj+1 = 0, j = 0, 1, . . . , k, then we get a generalization of the Polak and Ribière for-

mula [1969], i.e. the scaled Polak and Ribière formula. If sT
j gj+1 = 0, j = 0, 1, . . . , k,

and additionally the successive gradients are orthogonal, then we obtain a general-
ization of the Fletcher and Reeves formula [1964] i.e. the scaled Fletcher and Reeves
formula. Table 3 summarizes the scaled choices for the parameter βk.

Table 3. Scaled choices for the βk parameter in conjugate gradient algorithms

βsP
k =

gT
k+1

(θkyk−sk)

yT
k

sk

Scaled Perry. Suggested by Birgin and
Mart́ınez [2001] and Andrei [2004a, 2004b,
2005, 2006a, 2006b].

βsP+
k = max



0,
θkgT

k+1yk

yT
k

sk

ff

−
gT

k+1sk

yT
k

sk

Scaled Perry +. Suggested by Birgin and
Mart́ınez [2001].

βsPRP
k =

θkgT
k+1

yk

αkθk−1gT
k

gk

Scaled Polak-Ribière-Polyak. Suggested by
Birgin and Mart́ınez [2001] and Andrei
[2004a, 2004b, 2005, 2006a, 2006b].

βsF R
k =

θkgT
k+1

gk+1

αkθk−1gT
k

gk

Scaled Fletcher-Reeves. Suggested by Bir-
gin and Mart́ınez [2001] and Andrei [2004a,
2004b, 2005, 2006a, 2006b].

The parameter θk+1 is selected in a spectral manner, θs, as the inverse of the
Rayleigh quotient or in an anticipative manner, θa, as given in Andrei [2004a, 2004b,
2005, 2006a, 2006b].

2.4. BFGS preconditioned conjugate gradient algorithm
(SCALCG Algorithm)

There is a result of Shanno [1978] that says that the conjugate gradient method
is the BFGS quasi-Newton method for which, at every iteration, the initial approx-
imation to the inverse of the Hessian is taken as the identity matrix. Shanno [1978]
shows how the traditional Fletcher-Reeves and Polak-Ribière conjugate gradient al-
gorithms may be modified in a form established by Perry to a sequence which can be
considered as a memoryless BFGS preconditioned. The algorithm is embedded into a
restarting procedure based on Powell’s restart criterion. The idea of the algorithm is
to modify the direction in such a manner to overcome the lack of positive definiteness
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of the matrix defining the search direction. The CONMIN algorithm based on this
technique proved to be one of the most powerful for solving large-scale unconstrained
optimization problems. The extension of the preconditioning technique to the scaled
conjugate gradient is very simple. Using the same methodology Andrei [2004a, 2004b,
2005, 2006a, 2006b] obtained the following direction dk+1 :

dk+1 = −θk+1gk+1 + θk+1

(

gT
k+1

sk

yT
k sk

)

yk−

−

[

(

1 + θk+1

yT
k yk

yT
k sk

)

gT
k+1

sk

yT
k sk

− θk+1

gT
k+1

yk

yT
k sk

]

sk,

(15)

Thus, we get another class of scaled memoryless BFGS preconditioned conju-
gate gradient algorithms. The implementation of the direction (15), in the context of
Powell restarts, is given by Andrei [2006a, 2006b] in SCALCG package. In SCALCG
algorithm θk+1 is defined as a scalar approximation of the inverse Hessian. The fol-
lowing procedures can be used: θk+1 spectral or θk+1 anticipative [Andrei 2004a].

Algorithm SCALCG
Step 1. Select x0 ∈ R

n, and the parameters 0 < σ1 ≤ σ2 < 1. Compute
f(x0) and g0 = ∇f(x0). Set d0 = −g0 and α0 = 1/ ‖g0‖ . Set
k = 0.

Step 2. Line search. Compute αk satisfying the Wolfe conditions (4)
and (5). Update the variables xk+1 = xk + αkdk. Compute
f(xk+1), gk+1 and sk = xk+1 − xk, yk = gk+1 − gk.

Step 3. Test for continuation of iterations. If this test is satisfied the
iterations are stopped, else set k = k + 1.

Step 4. Compute θk using a spectral θk+1 = sT
k sk/yT

k sk or an
anticipative θk+1 = 1/γk+1 approach, where γk+1 =

2

dT
k

dk

1

α2
k

[

f(xk+1) − f(xk) − αkgT
k dk

]

.

Step 5. Compute the (restart) direction dk as in (15).
Step 6. Line search. Compute the initial guess of the step length

as αk = αk−1 ‖dk−1‖2
/ ‖dk‖2

. Using this initialization com-
pute αk satisfying the Wolfe conditions (4) and (5). Update
the variables xk+1 = xk + αkdk. Compute f(xk+1), gk+1 and
sk = xk+1 − xk, yk = gk+1 − gk.

Step 7. Store θ = θk, s = sk and y = yk.
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Step 8. Test for continuation of iterations. If this test is satisfied the
iterations are stopped, else set k = k + 1.

Step 9. If the Powell restart criterion
∣

∣gT
r+1gr

∣

∣ ≥ 0.2 ‖gr+1‖
2 , or the an-

gle restart criterion dT
r gr+1 > −10−3 ‖dr‖2

‖gr+1‖2
, is satisfied,

then go to step 4 (a restart step); otherwise continue with step
10 (a standard step).

Step 10. Compute

v = θgk − θ
(

gT
k

s
yT s

)

y +
[(

1 + θ yTy
yTs

)

gT
k

s
yTs

− θ
gT

k
y

yTs

]

s,

w = θyk − θ
(

yT
k−1s

yT s

)

y +
[(

1 + θ yTy
yTs

)

yT
k−1s

yTs − θ
yT

k−1y

yTs

]

s,

and

dk = −v +
(gT

k sk−1)w + (gT
k w)sk−1

yT
k−1

sk−1

−

(

1 +
yT

k−1
w

yT
k−1

sk−1

)

gT
k sk−1

yT
k−1

sk−1

sk−1. (16)

Step 11. Line search. Compute the initial guess of the step length as
αk = αk−1 ‖dk−1‖2

/ ‖dk‖2
. Using this initialization compute αk

satisfying the Wolfe conditions (4) and (5). Update the variables
xk+1 = xk + αkdk. Compute f(xk+1), gk+1 and sk = xk+1 −
xk, yk = gk+1 − gk.

Step 12. Test for continuation of iterations. If this test is satisfied the
iterations are stopped, else set k = k + 1 and go to step 9.

It is well known that if f is bounded below along the direction dk, then there
exists a step length αk satisfying the Wolfe conditions. The initial selection of the
step length crucially affects the practical behavior of the algorithm. At every it-
eration k ≥ 1 the starting guess for the step αk in the line search is computed as
αk−1 ‖dk−1‖2

/ ‖dk‖2
. This selection, was considered for the first time by Shanno

and Phua in CONMIN [1976].

2.5. Conjugate Gradient Algorithms with Sufficient Descent
Condition

For solving the unconstrained optimization problem (1) where f : R
n → R

is continuously differentiable, recently Andrei [2006c] consider a nonlinear conjugate
gradient algorithm:

xk+1 = xk + αkdk, (17)

where the stepsize αk is positive and the directions dk are computed by the rule:

dk+1 = −θk+1gk+1 + βa
ksk, d0 = −g0, (18)

θk+1 =
gT

k+1gk+1

yT
k gk+1

, (19)
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βaCGSD
k =

1

yT
k sk

(

gk+1 − δk
‖gk+1‖

2

yT
k sk

sk

)T

gk+1, (20)

δk =
yT

k gk+1

gT
k+1

gk+1

. (21)

Here gk = ∇f(xk) and yk = gk+1 − gk, sk = xk+1 − xk. Observe that if f
is a quadratic function and αk is selected to achieve the exact minimum of f in
the direction dk , then sT

k gk+1 = 0 and the formula (20) for βaCGSD
k reduces to the

Dai and Yuan computational scheme. However, in this paper we consider general
nonlinear functions and inexact line search.

This computational scheme has been obtained by modifying the Dai and Yuan
scheme βDY

k = gT
k+1gk+1/yT

k sk , in order to satisfy both the sufficient descent and
conjugacy conditions in the frame of conjugate gradient methods. To determine the
parameters θk+1 and δk , from (18) and (20), after some algebra we get:

dk+1 = −Qk+1gk+1, (22)

where

Qk+1 = θk+1I −
skgT

k+1

yT
k sk

+ δk
‖gk+1‖

2

(yT
k sk)2

(sksT
k ). (23)

Now, by symmetrization of Qk+1 as:

Q̄k+1 = θk+1I −
skgT

k+1 + gk+1s
T
k

yT
k sk

+ δk
‖gk+1‖

2

(yT
k sk)2

(sksT
k ) , (24)

we can consider dk+1 = −Q̄k+1gk+1. Therefore, from the conjugacy condition,
yT

k dk+1 = 0, i.e.

yT
k Q̄k+1 = 0, (25)

it follows that:

θk+1 =
gT

k+1gk+1

yT
k gk+1

and δk =
yT

k gk+1

gT
k+1

gk+1

=
1

θk+1

. (26)

To conclude the sufficient descent condition from (22), the quantity θk+1 − 1/(4δk)
is required to be nonnegative. Supposing thatθk+1 − 1/(4δk) > 0, then the direction
given by (18) and (20) is a descent direction. Dai and Yuan [1999, 2003] present
conjugate gradient schemes with the property that gT

k dk < 0 when yT
k sk > 0. In our

algorithm observe that, if for all k , θk+1 ≥ 1/4δk, and the line search satisfies the
Wolfe conditions, then for all k the search direction (18) and (20) satisfy the sufficient
descent condition.

In Andrei [2006d] another algebraic interpretation of the conjugacy condition
yT

k dk+1 = 0 (where dk+1 is given as in (22)) is suggested as:
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yT
k Q̄k+1gk+1 = 0, (27)

where Q̄k+1 is given in (24). After some algebra the following algorithm is obtained:

dk+1 = −gk+1 + βACGSD
k sk, d0 = −g0, (28)

where

βACGSD
k =

1

yT
k sk

(

yk −
gT

k+1
yk

yT
k sk

sk

)T

gk+1. (29)

With these the following variant of conjugate gradient with sufficient descent
and conjugacy conditions can be presented:

ACGSD Algorithm
Step 1. Initialization. Select x0 ∈ R

n and the parameters 0 < σ1 < σ2 <
1. Compute f(x0) and g0. Consider d0 = −g0and α0 = 1/ ‖g0‖ .
Set k = 0.

Step 2. Test for continuation of iterations. If ‖gk‖∞ ≤ 10−6, then stop,
else set k = k + 1.

Step 3. Line search. Compute αk satisfying the Wolfe line search
conditions (4)–(5) and update the variables xk+1 = xk +
αkdk. Compute f(xk+1), gk+1 and sk = xk+1 − xk , yk =
gk+1 − gk.

Step 4. Direction computation. Compute d = −gk+1 + βACGSD
k sk ,

where βACGSD
k is computed as in (29). If gT

k+1d ≤
−10−3 ‖d‖

2
‖gk+1‖2

, then define dk+1 = d, otherwise set dk+1 =
−gk+1. Compute the initial guess αk = αk−1 ‖dk−1‖ / ‖dk‖ , set
k = k + 1 and continue with step 2.

Another variant of this conjugate gradient algorithm with sufficient descent and
conjugacy conditions is given by:

βACGSDz
k = max

{

0,
gT

k+1yk

yT
k sk

}(

1 −
gT

k+1sk

yT
k sk

)

. (30)

Finally, using the same arguments as above, but this time on the Polak-Ribière-
Polyak parameterβPRP

k we get another conjugate gradient algorithm where

β
CGSD/PRP
k =

1

yT
k sk

(

yk −
‖yk‖

2

‖gk‖
2
sk

)T

gk+1. (31)

For all these algorithms some convergence results can be proved (see [Andrei
2006c, d].
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2.6. A Conjugate Gradient Algorithm with guaranteed de-
scent and an efficient line search

Recently, for solving (1), Hager and Zhang [2004a, 2004b] presented a conjugate
gradient algorithm with guaranteed descent and the performance of the Fortran 77
package CG DESCENT which implements it. The directions dk are computed by the
following rule:

dk+1 = −gk+1 + βk dk, (32)

βk =
1

dT
k yk

(

yk − 2
yT

k yk

dT
k yk

dk

)T

gk+1, (33)

d0 = −g0. In their algorithm Hager and Zhang restrict βk to be nonnegative. This
is motivated by the work of Gilbert and Nocedal [1992] who modified the Polak and
Ribière updating formula as β+

k = max {βk, 0} and proved the global convergence of
this computational scheme for general nonlinear functions. Similar to the approaches
considered by Gilbert and Nocedal [1992], Han, Liu, Sun and Yin [1994], and Wang,
Han and Wang [2000] in their studies on the Polak-Ribière version of the conjugate
gradient method, Hager and Zhang prove the convergence for general nonlinear func-
tions by restricting the lower bound of βk in the following manner:

dk+1 = −gk+1 + β̄k dk, (34)

β̄k = max {βk, ηk} , (35)

ηk =
−1

‖dk‖min {η, ‖gk‖}
, (36)

where βk is given by (33), and the parameter η > 0 is a user specified constant.
(Suggested value: η = 0.01, considered in all numerical experiments).

An important innovation given by Hager and Zhang in their approach consists
of a new efficient and highly accurate line search procedure. This is based on the
Wolfe conditions (4) and (5) and on a very fine interpretation of the numerical issue
concerning the first Wolfe condition (4).

3. Lennard-Jones Clusters. Molecular Conformation

The molecular conformation problem consists of determination of the minimum
energy configuration of a cluster of atoms or molecules. This is a central problem in
the study of cluster static [Hoare, 1979]. Given the positions p1, p2, . . . , pn of n atoms
(points) in R

3, the energy potential function is defined as
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V (p) =

n
∑

j=2

j−1
∑

i=1

v
(

‖pj − pi‖2

)

,

where ‖.‖ denotes the Euclidian norm and v : R → R is the potential energy function
between pairs of atoms. In classical molecular dynamics simulations the interaction
between atoms in the sample are described with an interatomic potential v(r), gen-
erally assumed to depend only on the distance r between two atoms. Generally, the
pairwise potential energy function satisfies the following requirements: it is twice
continuously differentiable on R+, v(1) = −1, (r − 1)v̇(r) > 0 for r 6= 1, and

∞
∫

1

r2 |v(r)| dr < ∞.

The most common choices for the interatomic potential are the Lennard-Jones
and Morse potential. The Lennard-Jones is more suitable for closed shell systems
such as the noble gases, while the Morse interatomic potential is more appropriate
for metals [Lennard-Jones, 1931], [Morse, 1929].

The Lennard-Jones potential function we consider in this study is defined as

v(r) = r−12 − 2r−6.

The Lennard-Jones potential function v(.) is a non-convex function that is
bounded below. Indeed, v(r) → +∞ as r → 0, while v(r) converges to zero as r
approaches +∞. The global minimum of v occurs at r = 1. The potential function V
is invariant with respect to permutations, translations and rotations of the n atoms.
Invariance with respect to translations can be eliminated by translating the cluster
so that the center of gravity is at the origin.

The molecular conformation problem is to determine a configuration (position
for the n points in R

3) such that the energy function V is minimized. Therefore,
we determine the configurations that are minimal in the sense that they correspond
to a local minimizer of the molecular conformation problem with the least known
value of the energy function. Of course, we get only a local minimum. Finding the
global minimum of V is a difficult problem because the number of local minima grows
exponentially with the number of atoms n.

In the following we present the performances of 25 conjugate gradient algorithms
on Lennard-Jones clusters, i.e. molecular conformation application (see MINPACK-2
collection: [Averick, Carter and Moré, 1991], [Averick, Carter, Moré, and Xue Guo-
Liang, 1992]).

In this numerical study we consider only the performances of all these algo-
rithms. All codes are written in Fortran 77 (default compiler settings) on a worksta-
tion Intel 4, 1.8 GHz. SCALCG is authored by Andrei, SCG by Birgin and Mart́ınez
[2001] and CG DESCENT by Hager and Zhang [2004a]. The rest of algorithms are
implemented by Andrei. In all these numerical experiments we have considered the
standard initial point and the iterations were stopped according to the following cri-
teria:
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‖gk‖∞ ≤ 10−5 or αk

∣

∣gT
k dk

∣

∣ ≤ 10−20 |f(xk+1)| .

The SCALCG package uses the Powell restart criterion. SCG and scaled variants
of Polak-Ribière-Polyak or Fletcher-Reeves use the angle restart criterion (see [Andrei,
2005]). All these algorithms uses the same implementation of the Wolfe line search
procedure with the same values of parameters σ1 and σ2.

Table 4 shows the results of the conjugate gradient algorithms considered in
this study (#iter is the number of iterations, #fg is the number of function and its
gradient evaluations and cpu(s) is the central processor time in seconds).

Table 4. Performance of Conjugate Gradient Algorithms. Lennard-Jones Clusters. Molecu-
lar Conformation pi ∈ R

3,natoms=1000,n = 3000 , Powell restart

Nr. Algorithm #iter #fg CPU f*

1. HS (Hestenes-Stiefel) 1636 1988 169.15 –6603.499965

2. FR (Fletcher-Reeves) 4001 5254 446.03 –5313.018443

3. PRP (Polak-Ribiére-Polyak) 3344 4632 392.91 –6629.091442

4. PRP+ (Polak-Ribiére-Polyak
+)

1869 2554 216.70 –6607.394780

5. CD (Conjugate Descent) 3152 3584 305.22 –6618.251234

6. LS (Liu-Storey) 2129 2909 246.84 –6588.156816

7. DY (Dai-Yuan) 4001 4015 343.08 –5245.489809

8. DL(t=1) (Dai-Liao) 3427 4157 353.67 –6645.128435

9. DL+(t=1) (Dai-Liao +) 1320 1594 135.61 –6605.076969

10. aCGSD (Andrei) 1007 1148 97.75 –6628.424341

11. hDY (hybrid Dai-Yuan) 1797 2175 185.03 –6624.332112

12. hDYz (hybrid Dai-Yuan zero) 1402 1677 142.70 –6609.111685

13. GN (Gilbert-Nocedal) 1559 2103 178.50 –6619.710430

14. HuSt (Hu-Storey) 1345 1804 153.11 –6574.545172

15. TAS (Touat-Ahmed-Storey) 2202 3007 255.14 –6613.138435

16. LS-CD (hybrid LS-CD) 2333 3082 261.68 –6614.265345

17. sP (Scaled Perry) (Birgin-
Mart́ınez)

1414 1660 141.34 –6600.920689

18. sP+ (Scaled Perry+) (Birgin-
Mart́ınez+)

675 787 67.02 –6590.794367

19. sPRP (scaled Polak-Ribiére-
Polyak)

2606 3555 301.68 –6629.087628

20. sFR (scaled Fletcher-Reeves) 4001 5256 446.38 –5312.929509

21. CGSD/PRP (Andrei) 2208 2672 227.34 –6591.417318

22. ACGSD (Andrei) 813 915 77.97 –6621.069654

23. ACGSDz (Andrei) 1066 1194 101.76 –6662.955559

For different number of atoms in R
3, the SCALCG package has the performances

presented in Table 5. Table 6 shows the optimal value of the potential function V for
different number of atoms.

Table 7 shows the performances of CG DESCENT package by Hager and Zhang
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Table 5. Performance of SCALCG. θk+1spectral. Powell restart

#atoms n #iter #fg cpu(s)

1000 3000 1252 2002 383.16

2000 6000 1019 1388 752.52

3000 9000 1931 2444 2984.55

4000 12000 3542 4452 9667.37

5000 15000 2642 3415 11590.63

Table 6. Optimal value of the potential function – SCALCG

#atoms n V ∗

1000 3000 –6602.762142

2000 6000 –13932.284675

3000 9000 –21135.347220

4000 12000 –28797.188265

5000 15000 –35902.028520

[2004a, 2004b] using the Wolfe line search and the approximate Wolfe line search,
respectively.

Table 7. Performance of CG DESCENT (tol=10−5)

Wolfe line search Approximate Wolfe line search

n #iter #fg cpu(s) #iter #fg cpu(s)

3000 1259 2586 631.65 1294 2526 619.58

6000 1721 3506 3393.11 1793 3480 3424.91

9000 1428 2924 6413.15 1494 2901 6496.64

In Table 8 we present the optimal value of the potential function V for different
number of atoms, as given by CG DESCENT.

Table 8. Optimal value of the potential function – CG DESCENT.

#atoms n V ∗

1000 3000 –6615.4140837

2000 6000 –14082.394671

3000 9000 –21562.291265

We see that the scaled conjugate gradient algorithm SCALCG is top performer
among these conjugate gradient algorithms. However, as we can see the optimal value
given by CG DESCENT is better than that obtained by SCALCG. This is due to the
accurate implementation of the Wolfe line search.
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4. Conclusion

In this study we have presented a survey and comparative numerical perfor-
mances of a number of well known conjugate gradient algorithms for solving the
molecular conformation problem. The conjugate gradient algorithms classifies in four
groups: conjugacy condition algorithms, hybrid conjugate gradient, scaled conjugate
gradient and preconditioned conjugate gradient algorithms. All conjugate gradient
algorithms are able to solve a large variety of large-scale unconstrained optimiza-
tion problems including this difficult one which refers to the Lennard-Jones clusters
problem. The above Tables give computational evidence that our SCALCG - scaled
memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained op-
timization is the top performer among the conjugate gradient algorithms. To get a
conclusion some more numerical experiments must be considered, especially by com-
paring the conjugate gradient algorithms (mainly SCALCG and CG DESCENT) with
the limited memory BFGS (LBFGS by Nocedal) and truncated Newton (TN by Nash)
algorithms.
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