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On some constraining strategies in image

reconstruction from projections

Constantin Popa∗♮
and Rafal Zdunek∗∗

In image reconstruction from projections in computerized tomography we usually get

rank-deficient linear least squares problems. This causes a blurring effect in the reconstructed

image, due to the component (of the exact image) which belongs to the nonzero null space

of the system matrix. In order to eliminate these unpleasant aspects, some constraining

strategies have been proposed in 1990, by I. Koltracht and P. Lancaster for the classical

Kaczmarz projection method. In the present paper we extend and analyse the behaviour

of such constraints for the Extended Kaczmarz algorithm previously proposed by one of

the authors. The numerical results are presented for some experiments associated with a

“well-to-well” geometry in electromagnetic geotomography.

1. The constrained Kaczmarz algorithm

Electromagnetic geotomography (EG, for short) uses a well-to-well scanning
procedure (see e.g. [5, 8]). As shown in Fig. 1(left) the electromagnetic scanning is
between the boreholes. We assume several positions (S1, . . . , Sp on AB) of an electro-
magnetic wave source (transmitter) in one borehole and several positions (R1, . . . , Rq

on CD) of field measurement (receiver) located in the other borehole. Then, the total
number of the transmitter-receiver pairs, which is m = pq, becomes the number of
rows in the system matrix A. Its number of columns, n is given by discretization of
the scanned area as shown in Fig. 1(right). The matrix coefficient Aij will be defined
as the length of the intersection between the i-th ray of the electromagnetic wave with
the j-th pixel, whereas the i-th component of the right hand side bi is computed us-
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Fig. 1. (Left) Measurement setup in electromagnetic geotomography; (Right) Discretization
of the scanned area.

ing the measured values of electromagnetic wave strength between the source and its
receiver (see for details [5, 7, 8]). In this way we obtain the least squares formulation
of the EG problem: find x ∈ R

n such that

‖ Ax − b ‖= min!, (1)

where A is large, sparse (because both values of m and n must be enough big for a good
data acquisition) and rank-deficient (i.e. its null space, N(A) is not trivial, see [4]).
Moreover, because of the measurement errors, the problem (1) is also inconsistent.
According to the mathematical model (1), the exact images that we are looking for
are vectors, xex = (xex

1 , . . . , xex
n )T ∈ R

n with xex
i ∈ [0, 1] (w.r.t. a gray scale, see [7]).

If LSS(A; b) is the set of all solutions from (1), xLS is the minimal norm one and PSx
is the orthogonal projection onto a vector subspace S ⊂ R

q, we know that (see also
Fig. 2 and [1])

xex = PN(A)x
ex + xLS ,

thus
xLS = xex − PN(A)x

ex /∈ [0, 1]n, (2)

because of the contribution of PN(A)x
ex. An example in this idea is given in Fig. 3

with the simulation on a 30 × 30 pixels image scanned with 30 × 30 rays, and xLS

computed with the classical Kaczmarz algorithm from below.
Kaczmarz algorithm (K): let x0 ∈ R

n; for k = 0, 1, . . . do

xk+1 = K(ω; b; xk), (3)

with

K(ω; b; xk) = f1 ◦ . . . ◦ fm(ω; b; xk), fi(ω; b; xk) = x − ω
lxk, Ai−̊bi

‖ Ai ‖2
Ai, (4)
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Fig. 2. Decomposition of the exact solution.
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Fig. 3. (Left) Original image; (Right) Estimated image with the classical Kaczmarz algo-
rithm.

where Ai 6= 0 is the i-th row of A.

Theorem 1. ([2]) For any x0 ∈ R
n and ω ∈ (0, 2) the sequence (xk)k≥0 gener-

ated by the above algorithm K converges and

lim
k→∞

xk = PN(A)x
0 + xLS + δ (5)

with

δ = GPN(AT)b (6)

and G an n × m generalized inverse of A. Moreover, if (1) is consistent, i.e.

b ∈ R(A), (7)

where R(A) is the range of A, then δ = 0 and

lim
k→∞

xk ∈ S(A; b), (8)

with limk→∞ xk = xLS if x0 = 0 and S(A; b) is the set of all solutions from (1) in the

consistent case (7).
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Fig. 4. Constrained Kaczmarz algorithm.

In order to eliminate the unpleased aspect from (2), a constraining procedure
has been proposed in [2]. Following this, after each step of the Kaczmarz’s iteration
(3), the current approximation is “forced” to remain inside the interval [0, 1], i.e.

(Cxk)i =







xk
i , if xk

i ∈ [0, 1]
0, if xk

i < 0,
1, if xk

i > 1.
(9)

In this way we obtain the Constrained Kaczmarz algorithm (CK) from below.
CK algorithm: let x0 ∈ R

n; for k = 0, 1, . . . do

xk+1 = C(K(ω; b; xk)). (10)

Theorem 2. ([3]) For any x0 ∈ R
n and ω ∈ (0, 2), if (xk)k≥0 is the sequence

generated by the above algorithm CK, it exists limk→∞ xk = x∗ and it satisfies:

(i) x∗ ∈ [0, 1]n;

(ii) x∗ − δ ∈ LSS(A; b);
(iii) If (7) holds, then x∗ ∈ S(A; b).

Remark 1. The bigger is δ from (6), the bigger will be the Euclidean distance

from x ∈ [0, 1]n to LSS(A; b) (see also Figure 4).

2. The constrained Kaczmarz Extended algorithm

In [6] one of the authors proposed the following extended version of the algorithm
(K).
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Algorithm KERP: let x0 ∈ R
n; y0 = b; for k = 0, 1, . . . do

yk+1 = (ϕ1 ◦ . . . ◦ ϕn)(α; yk),

bk+1 = b − yk+1, (11)

xk+1 = (f1 ◦ . . . ◦ fm)(ω; bk+1; xk),

with

ϕj(α; y) = y − α ·

〈
y, Aj

〉

‖Aj‖
2 Aj , (12)

where Aj 6= 0 is the j-th column of A.

Theorem 3. ([6]) For x0 = 0 and any α, ω ∈ (0, 2), the sequence (xk)k≥0

generated by the above algorithm KERP converges and limk→∞ xk = xLS.

In a similar way as in Section 1 we consider the following constrained version of
the above algorithm KERP.
Algorithm CKERP: let x0 ∈ R

n; y0 = b; for k = 0, 1, . . . do

yk+1 = (ϕ1 ◦ . . . ◦ ϕn)(α; yk),

bk+1 = b − yk+1, (13)

xk+1 = C
[
(f1 ◦ . . . ◦ fm)(ω; bk+1; xk)

]
.

We conjecture the following result confirmed by the numerical experiments and the
heuristic arguments from below.

Theorem 4 (conjecture). For any x0 ∈ R
n, any α, ω ∈ (0, 2) the sequence

(xk)k≥0 generated with the algorithm CKERP converges and

lim
k→∞

xk = x∗ ∈ [0, 1]n ∩ LSS(A; b). (14)

Remark 2. Some heuristic arguments sustaining the above proposed conver-

gence result are given below:

• if we fix an arbitrary k ≥ 0, then according to (3)–(6) we can consider in

CKERP

δk = G · PN(AT)b
k+1 = G · PN(AT)(b − yk); (15)

• we know that

∃ lim
k→∞

yk = PN(AT )b; (16)

• from (15) and (16) we then get

∃ lim
k→∞

δk = G · PN(AT )(b − PN(AT )(b)
︸ ︷︷ ︸

PR(A)(b)

) = 0; (17)

• Theorem 2 says that for CK algorithm x∗ − δ ∈ LSS(A; b); for CKERP algo-

rithm will then have

{
z ∈ [0, 1]n, z − δk ∈ LSS(A; b)

}
k→∞

δk→0
−→ {z ∈ [0, 1]n, z ∈ LSS(A; b)} (18)

i.e. CKERP would give us always a least squares solution in [0, 1]n !
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3. Numerical experiments

The numerical experiments have been performed with the original image shown
in Fig. 3(left) which imitates an EG profile of size 30 by 30 meters. We assume the
scanned area was divided into sub-regions (pixels) of size 1 by 1 meter. For scanning
we used 30 positions of the transmitter, equally spaced along one borehole, and the
same number of measuring points distributed along the other borehole. Thus our
system matrix is A ∈ R

900×900. The images reconstructed from noise-free (consistent)
data with the classical Kaczmarz and KERP algorithms for 60 iterations and x0 = 0
are presented in 5(a) and 5(b). The effect of the vertical smearing results from the fact
that the null space components are not recovered. Using the constraining strategy
described as above, we are able to get rid of the smearing effect, which is visible in
Figs. 5(c) and (d). Despite the images reconstructed form noise-free data with two
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Fig. 5. Images reconstructed from noise-free (consistent) data with the algorithms (from
left): (a) classical Kaczmarz (K), (b) KERP, (c) constrained Kaczmarz (CK), (d) CKERP.

different constrained algorithms (CK and CKERP) are nearly the same, the results
are not the same in case of real data (noisy data). The noisy data are generated as
follows: Let g ∈ R

m be a vector of a Gaussian noise with µ = 0 and σ2 = 1, then using

the projection v = PN(AT)(g), we have δ(ǫ) = ǫ · ‖b‖
100 · v

‖v‖ ; b
def
= A · xex, bpert(ǫ) =

b + δ(ǫ), where the strength of the noisy perturbations can be changed with the
parameter ǫ. Using the noisy data, we obtained the results shown in Fig. 6 with the
CK algorithm (top row) and the CKERP (bottom row). The CKERP algorithm is not
sensitive to the noise in N(AT), thus we obtained the perfect reconstruction even for
the hight values of the parameter ǫ. This motivates the usage of the CKERP instead
of the CK algorithm. The convergence of the CKERP algorithm is quite satisfactory,
which is illustrated in Fig. 7.

Conclusions. Our considerations show that the constraining strategy intro-
duced by Koltracht and Lancaster in [3] to the classical Kaczmarz algorithm also
works very well with the KERP algorithm. The advantage of using the constrained
KERP (CKERP) algorithm over the CK algorithm is certainly this that the KERP
is completely insensitive to the noisy perturbations that belong to the orthogonal
complement of the range of the system matrix.
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Fig. 6. Images reconstructed from noisy (inconsistent) data with the algorithms: CK (top
row), CKERP (bottom row), for different values of parameter ǫ: 10 (left column), 30 (middle

column), 50 (right column).
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Fig. 7. Normalized Euclidean distances between the exact images (xexact) and the image
reconstructed with the algorithms: CK (top), CKERP (bottom).
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