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Multiple meanings of ergodicity in real life problems

Nicolae Suciu∗, Călin Vamoş† , and Harry Vereecken ‡

Ergodic properties such as convergence of time averages, for dynamical systems and

stochastic processes, convergence of space averages, for random fields, and self-averaging

are often assumed in stochastic modeling of transport in heterogeneous media. However,

no general theory has been provided so far which ensures the reliability of the stochastic

model from ergodic assumptions. We propose instead an operational concept, “ergodicity

in the large sense”, which assesses the validity of the model by mean square deviations of

actual observables from theoretical predictions. This approach is mainly useful for elaborated

models such as the macrodispersion (up-scaled) process or the memory-free dispersion, which

do not consist of predefined random functions. After a short review on ergodicity issue,

we investigate numerically the ergodicity in the large sense with respect to a memory-free

dispersion derived from an approximate solution of the Itô equation. We find that the

ergodicity strongly depends on initial conditions and the transport shows significant memory-

effects for large anisotropic supports of the initial concentration.

1. Introduction

The concept of “ergodicity” originates in statistical physics and is chiefly
used in the mathematical theory of dynamical systems to denote the convergence of
the time average of an observable to its space average with respect to an invariant
measure associated to the dynamical system [Cornfeld et al., 1982]. A dynamical
system approach can be used to describe transport in heterogeneous media when
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diffusive mechanisms are neglected and if the velocity field has suitable smoothness
and boundedness properties [Sposito, 1997]. A theoretical result, for a large class
of laminar flows, is that nonergodicity of the flow implies a t2 time behavior of the
dispersion (defined by the mean square displacement of the solute particles) [Mezić
and Wiggins, 1994]. It follows that for such laminar flows there is no normal diffusive
behavior (i.e. linear dispersion). When a local diffusion-like process is considered, the
situation changes and diffusive large time behavior of the dispersion can take place.
For advection dominated transport, the nonergodicity of the advective flow implies
a Pe2 dependence of the effective dispersion on Péclet number [Mezić and Wiggins,
1994]. For instance, steady groundwater flows governed by Darcy law were shown
to be in general nonergodic, a property which renders questionable the “ergodicity
conditions” under which Lagrangian approaches to purely advective transport are de-
veloped [Sposito, 1997, 2001]. The ergodicity is forbidden in this case by the existence
of invariant sub-sets smaller than the flow domain, on which the trajectories of the
solute particles are confined (a property which is common to flows proportional to the
gradient of a scalar function, structurally equivalent to Hamiltonian flows). However,
ergodicity can be expected for unsteady Darcy flows [Sposito, 2006].

Another often mentioned meaning of “ergodicity” is the convergence of the space
average of an observable, defined for a realization of a random space function, to its
ensemble average. The existence of a finite integral (or correlation) range implies the
ergodicity of the spatial mean velocity (and in the case of Gaussian fields also that
of the spatial velocity correlations) [Chilès and Delfiner, 1999]. A practical criterion
for ergodic estimations through space averages is to ensure that the problem spatial
dimensions are much larger than the integral range. It is reasonable to assume that
the ergodicity of the velocity implies an “ergodic behavior of the transport process”.
In this larger sense, ergodicity means that observables of interest in single realizations
behave closely to their ensemble average and converge for large times to predictions
provided by theoretical models (e.g. an up-scaled Gaussian diffusion called “macrodis-
persion” process [Dagan, 1984]). Even though assuming the ergodicity of the random
velocity field could be a starting point for theoretical investigations, the large-sense
ergodicity of the transport is not straightforward and it seems that no general proofs
of this issue have been provided so far [Sposito et al., 1986; Kabala and Sposito,
1994]. Some advances have been achieved by numerical simulations which indicate
that transport in velocity fields with finite correlation range is asymptotically ergodic
in the large sense [Suciu et al., 2006a]. However, for real life problems the ergodicity
timescale is often too large to permit contamination risk assessments based only on
the asymptotic ergodicity of the transport.

For the pre-asymptotic regime of transport it is even more intricate to assess
the reliability of the stochastic modeling. Since the ensemble average predictor of
the dispersive flux is non-local in space-time and non-Fickian, the macrodispersion
concept makes no sense for small and intermediate times. Even if localized forms
can be derived under some restrictive conditions, the localized dispersion coefficients
still depend on space and time [Morales-Casique et al., 2006]. Moreover, since the
velocity field is highly variable and actually known only in a mean (statistical) sense,
the transport equations cannot be in general solved to provide a complete description
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of the transport for given velocity realizations. Some information about the behavior
of the transport is supplied by the second spatial central moments of the plume
(or by their rate of increase with time, which defines dispersion coefficients). Such
dispersion quantities can be derived by different approximation techniques, without
solving the transport equations and regardless the Fickian or non-Fickian behavior of
the process [Suciu et al., 2006b]. Our objective is to show that the ergodicity issue for
pre-asymptotic regime can be formulated with respect to “memory-free” quantities
provided by stochastic models and to apply this approach for contaminant transport
in groundwater.

The paper is organized as follows. In the next section several notions which are
generically referred to as ergodic properties are discussed from the point of view of
their relation with the reliability of the stochastic modeling. Section 3 introduces a
memory-free dispersion which can be used to assess the ergodicity of the transport in
the pre-asymptotic regime. The case of transport in saturated aquifers is investigated
numerically in Section 4. Some conclusions are drawn in Section 5.

2. Ergodicity concepts

A dynamical system St : M 7−→ M in a measure space (M,A, µ), where M
is a state space endowed with a σ-algebra A and a measure µ, is measure preserving
if µ(S−1

t (A)) = µ(A) for all A ∈ A. Ergodic theorems state the convergence of

the time average of an observable f :

lim
T−→∞

1

T

∫ T

0

f(St(x))dt =
1

µ(M)

∫

f(x)µ(dx) = f∗ = const.

For ergodic systems the only invariant sets, i.e. St(A) = A, are sets of null measure,
µ(A) = 0, or sets with the measure equal to that of the state space, µ(A) = µ(M).
An equivalent formulation uses the evolution operator U in Lp(M, µ), p ≥ 1, defined
by (Utf)(x) = f(St(x)). Birkhoff’s theorem states the convergence in L1 and von
Neumann’s theorem the convergence in L2. When ergodicity holds, the fix points f of
the evolution operator, Utf = f , are constant functions [Sinai, 1976]. The physically
relevant meaning of ergodicity is that the orbit of the ergodic dynamical system passes
through almost all possible states. In particular, written for the indicator function of
the set A, f(x) = χA(x),

lim
T−→∞

1

T

∫ T

0

χA(St(x))dt =
1

µ(M)

∫

χA(x)µ(dx) =
µ(A)

µ(M)
,

the ergodicity allows us to define probability densities p(x),
∫

A
p(x)dx = P (A) =

µ(A)/µ(M), and to arrive at a statistical description of the physical system. Intu-
itively, that means to associate a “stochastic model” (ensemble average) to a mea-
surement modeled by a time average [Cornfeld et. al., 1982].

The extension to stochastic processes says that time and ensemble averages

are interchangeable [Kloeden and Platen, 1995]. A strong ergodicity condition is
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given by the mean-square convergence of the time average to the average with respect
to the probability measure p(x)dx of the process Xt [Gardiner, 1985],

m.s. lim
T−→∞

1

T

∫ T

0

f(Xt(x))dt =

∫

f(x)p(x)dx = 〈f(x)〉 .

Ergodic theorems for dynamical systems are retrieved from the above property for
“degenerate Markov processes” [Suciu, 2001].

As a property of random space functions F (x) (random fields), ergodicity states
that space and ensemble averages are interchangeable,

lim
V(Ω)−→∞

1

V(Ω)

∫

Ω

F (x)dx = 〈F (x)〉 ,

where V(Ω) is the volume of the domain Ω ⊂ R
3. The L2-convergence is ensured

by Slutsky’s condition of finite integral of the correlation function 〈F (x)F (x + y)〉,
which, in turn, is ensured by the existence of a finite correlation range

∫

〈F (x)F (x +
y)〉dy/〈F (x)2〉 of the random function [Chilès and Delfiner, 1999]. In this case, by
virtue of ergodicity one associates an ensemble average to a measurement described
by a space average.

A strong property of transport in random environments, formulated for stochas-
tic processes (or sequences), is the “self-averaging”. That means the convergence of
the un-averaged function of the trajectory of the process f(Xt(x)) to its ensemble av-
erage with respect to the probability measure of the process [Bouchaud and Georges,
1990],

lim
t−→∞

f(Xt(x)) =

∫

f(x)p(x)dx = 〈f(x)〉 .

A sufficient condition for self-averaging is a vanishing variance 〈[f − 〈f〉]2〉 of the
observable f in the large time limit.

The ergodic properties described above have in common the following practi-
cal meaning. They express the reliability of the probability measures inferred from
experiments [Gardiner, 1985; Chilès and Delfiner, 1999] for measurements and obser-
vations. The latter are modeled by random variables (dynamical systems included as
particular cases) or by time/space averages of random variables. Therefore ergodic-
ity concepts prove their utility in stochastic modeling of transport processes. Let us
consider the purely advective transport described by the advection equation for the
concentration field c(x, t),

∂tc + V(x)∇c = 0. (1)

This equation is also the Liouville equation for the dynamical system St(x) = X(t;x, 0),
where dX(t)/dt = V(X(t)). Mezić and Wiggins [1994] have shown that if the velocity
is periodic or quasiperiodic in the l-direction, l = 1, 2,or 3, then the dispersion in that
direction, 〈[Xl(t) − 〈Xl(t)〉]

2〉, may increase linearly in time (Fickian behavior) only
if the dynamical system St is ergodic. It was also proved that the nonergodicity of St

is a necessary and sufficient condition for a t2 behavior of the dispersion. A situation
where the ergodicity is vitiated is the existence of invariant sets of the dynamical
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system that are subsets of the state space. This is the case when the velocity is the
gradient of a scalar function (Darcy law, Hamiltonian systems) and the trajectories
X(t) are confined on “Lamb surfaces” [Sposito, 1997, 2001]. Then the dynamical
system does not explore the entire phase space and ergodicity fails, i.e.

lim
T−→∞

1

T

∫ T

0

St(x)dt 6= 〈x〉 .

Nevertheless, a stochastic approach to advective transport leads to large time Fickian
behavior under the requirements that the velocity V(x) is an homogeneous random
field with non-vanishing mean 〈V(x)〉 = U which has small fluctuations with suitable
strong-mixing properties [Kesten and Papanicoulaou, 1979]. In these conditions there
exists an up-scaling, 〈c〉 → c∗, of the mean concentration to a Gaussian process
described by an advection-diffusion equation with constant coefficients U and D,

∂tc
∗ + U∇c∗ = D∇2c∗. (2)

The question arises, and it is a central one in stochastic modeling, how much is the
model (2) relevant for the actual realization of the transport described by (1). Is the
transport “ergodic” in the sense that c or some “coarse-grained ” concentration tends
to c∗? The versions of the ergodicity discussed above (convergence of time or space
averages and self-averaging) do not cover this eventuality because they only refer to
convergence to the ensemble average of a predefined random function. Here we have
to deal with relations between actual observables, c, ensemble averages, 〈c〉, and up-
scaled quantities, c∗ (and the same for other observables as dispersion or dispersion
coefficients). This situation requires the definition of a new ergodic property, which
we call hereafter “ergodicity in the large sense”.

Let A(t) be an observable, A∗(t) the theoretical prediction and ∆A = 〈[A −
A∗]2〉1/2 the root mean square deviation from theory.

DEFINITION 1: The observable A is ergodic within the range η, η > 0,
if ∆A ≤ η.

When A∗ is an asymptotic limit and A is known at finite times it is convenient
to use the relation ∆2

A = σ2
A + ∆2

〈A〉, where σA = 〈[A − 〈A〉]2〉1/2 is the standard

deviation of A and ∆ 〈A〉 = |〈A〉 − A∗| the deviation of the mean. With this, one
obtains the following equivalent definition.

DEFINITION 2: The observable A is ergodic within the range η =
(η2

1 + η2
2)

1/2 if

(e1) ∆ 〈A〉 ≤ η1, (e2) σA ≤ η2. (3)

This definition was proposed by Suciu et al. [2006a] and was used in investigations on
advective-dispersive transport in saturated aquifers. It was shown in the cited paper
that previously used notions of “ergodicity” can be obtained as particular cases of
(3):

• The strong requirement for the reliability of the up-scaled model (2) formulated
by Sposito et al. [1986] corresponds to the case where A is the concentration
and (e1, e2) hold for t −→ ∞ and arbitrary small and positive η1 and η2.
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• When the observable A is a space averaged concentration and (e1, e2) hold at
finite times for large averaging domains, then A converges in the mean square
limit to c∗ and the space and ensemble averages are interchangeable. Dagan
[1984] used (e2) under the assumption that the ensemble averaged concentration
〈c〉 is already close to the Gaussian concentration c∗ at finite times.

• The self-averaging property of the effective coefficients considered in [Clincy
and Kinzelbach, 2001; Eberhard, 2004] is given by the condition (e2) alone, for
t −→ ∞.

• The condition (e1) applied to ensemble averaged dispersion (or dispersion co-
efficients) is often referred to as “ergodicity condition” [Fiori, 1998; Naff et al.,
1998].

• Kabala and Sposito [1994] defined an “operational ergodicity” which seeks con-
ditions that lead to acceptably small deviations of the experimentally observable
concentrations from the predictions of the stochastic model. This corresponds
to (e1, e2), for finite times and ranges η.

3. Memory-free dispersion

We consider the advection-dispersion equation for the concentration field
c(x, t),

∂tc + V(x)∇c = D∇2c. (4)

The constant D describes a “local dispersion” which is produced by molecular diffu-
sion and small scale hydrodynamic mixing. The velocity V(x) is a realization of a
statistically homogeneous random space function with constant mean 〈V(x)〉 = U.
For instance, this model corresponds to turbulent diffusion in the atmosphere or
to non-reactive transport in natural porous media with constant or slowly variable
porosity. An equivalent description of the transport problem formulated for the par-
tial derivative equation (4) is given by the solutions of the Itô equation [Gardiner,
1985]. The trajectories starting at t = 0 from X0 of the advection-dispersion process
with probability densities obeying (4) are solutions of the integral Itô equation

Xl(t) = X0l +

∫ t

0

Vl(X(t′))dt′ +

∫ t

0

dWl(t
′). (5)

The Wiener process Wl(t) =
∫ t

0
dWl(t

′) is defined by the Itô stochastic integral which
has the properties [Kloeden and Platen, 1995, pp. 85, 190]

〈Wl〉w = 0, 〈Wl〉
2
w = 2Dt,

〈
∫ t

0

∫ t

0

Vl(X(t′))dt′dWl(t
′′)

〉

w

= 0, (6)

where 〈· · · 〉w is the average with respect to the probability measure of the Wiener pro-
cess. The joint n-times probabilities are related with the trajectories of the advection-
dispersion process by the definition [van Kampen, 1981]

p(x1, t1;x2, t2; · · · ;xn, tn) =
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〈δ[(x1 − X(t1)]δ[(x2 − X(t2)] · · · δ[(xn − X(tn)]〉wX0
,

where the subscripts wX0 denote the average over trajectories and initial positions.
In particular, the normalized concentration is defined by c(x, t) = p(x, t) and is a
solution of (4).

From (7) it follows that the dispersion sll(t) = 〈[Xl(t)− 〈Xl(t)〉wX0
]2〉wX0

coin-
cides with the second moment of the concentration with respect to the center of mass
of the solute plume,

sll(t) =

∫

R3

[x − x̄(t)]2 c(x, t)dx, where x̄(t) =

∫

R3

xc(x, t)dx.

Hereafter we make no distinction between dispersion and second moment.
Assuming the necessary smoothness and boundedness conditions for the realiza-

tions of V which ensure the existence for the solutions of the Itô equation [Gardiner,
1985, section 4.3.1] and using (5) and (6) one obtains the dispersion

sll(t) =
〈

[X0l − 〈X0l〉X0
]2

〉

X0

+ 2Dt +

∫ t

0

∫ t

0

〈Vl(X(t′))Vl(X(t′′))〉wX
0

dt′dt′′

+ 2

∫ t

0

〈

[X0l − 〈X0l〉X0
]Vl(X(t′))

〉

wX
0

dt′

−

∫ t

0

∫ t

0

〈Vl(X(t′))〉wX0
〈Vl(X(t′′))〉wX

0

dt′dt′′.

The relation (8) expresses the dispersion as a sum between the initial dispersion
S(0) = 〈[X0l − 〈X0l〉X0

]2〉X0
, the local dispersion 2Dt, and contributions due to

velocity correlations, to spatial correlations between initial positions and velocity on
trajectories and to fluctuations of the mean velocity on trajectories.

The substitution into (8) of Vl(x) = ul(x) + Ul, where Ul is the constant mean
velocity, yields a relation of the same form, with Vl replaced by the velocity fluctu-
ation ul. By collecting the second and third term of this relations one obtains the
dispersion xll(t) of the trajectories (5) with respect to the trajectory of the mean
velocity X(0)(t) = X0 + Ult,

xll(t) =
〈

[Xl(t) − X(0)(t)]2
〉

wX0

= 2Dt +

∫ t

0

∫ t

0

〈ul(X(t′))ul(X(t′′))〉wX
0

dt′dt′′. (7)

This relation will be used in the following to derive a memory-free quantity, depending
on the physical parameters of the system but not on the initial conditions.

Using (7) and the projection of the Eulerian velocity fluctuations ul(x) on the
trajectories of the advection-dispersion process, ul(X(t)) =

∫

ul(x)δ[x −X(t)]dx, the
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integrand of the double integral in (9) becomes

〈ul(X(t′; ω); ω)ul(X(t′′; ω); ω)〉wX0

=

∫ ∫

ul(x
′; ω)ul(x

′′; ω)〈δ[x′ − X(t′; ω)]δ[x′′ − X(t′′; ω)]〉wX0
dx′dx′′

=

∫ ∫

ul(x
′; ω)ul(x

′′; ω)p(x′, t′;x′′, t′′; ω)dx′dx′′

=

∫

c(x
0
)dx

0

∫ ∫

ul(x
′; ω)ul(x

′′; ω)p(x′, t′;x′′, t′′|x
0
; ω)dx′dx′′,

The argument ω is used in (10) to show the dependence on the given realization of
the velocity field. The last equality in (10) follows from the consistency condition
which gives the two-times joint probability density p(x′, t′;x′′, t′′; ω) as an integral
of the conditional probability density p(x′, t′;x′′, t′′|x

0
; ω) with respect to the initial

normalized concentration distribution c(x
0
)dx

0
[Gardiner, 1985]. Similar expressions

can be derived as well for the integrals in the last two terms of (8).
Due to the highly non-linear dependence of probability densities p on velocity

fluctuations ul(X(t; ω); ω), the ensemble average of (10) can be computed exactly
only in some particular cases, as for instance the problem of transport in perfectly
stratified flows [see e. g. Clincy and Kinzelbach, 2001]. In principle, to deal with such
a nonlinearity one iterates indefinitely the transport equation around an unperturbed
solution independent of velocity realization [Bouchaud and Georges, 1990]. However,
since iterations of order larger than one become very involved, the mostly used are
first-order approximations in velocity fluctuations equivalent to the approximation of
the solution X(t; ω) by the first iteration of the Itô equation (5) [Suciu et al., 2006b],

Xl(t; ω) ≈ X
(1)
l (t; ω) = X0l +

∫ t

0

Vl(X
(0)(t′); ω)dt′ +

∫ t

0

dWl(t
′), (8)

where the unperturbed solution X(0) is either the mean trajectory X0 + Ut (as in
relation (9) above) or the trajectory of the diffusion process of coefficient D and
constant drift U. From (11) it follows that the argument of ul in (9) has to be replaced
by X(0), which is independent of the realization ω of the velocity field. Consequently,
the conditional probability density in (10) also becomes independent of ω. Here we
consider only the unperturbed solution given by the trajectory of the ensemble mean
advective velocity. This yields consistent expansions of the Itô equation (5) for the
advection-dominated transport problem considered in the simulations presented in
the next section, where the velocity fluctuations are of the order of Pe−1/2 [Suciu et
al., 2006b]. Since in this case X(0) no longer depends of the realizations of the Wiener
process, the conditional probability p in (10) degenerates to a Dirac delta function,
p(x′, t′;x′′, t′′|x

0
) = δ[x′ − (x

0
+ Ut′)]δ[x′′ − (x

0
+ Ut′′)]. With these, the ensemble

average Xll = 〈xll〉 of (9) yields

Xll(t) = 2Dt +

∫ t

0

∫ t

0

dt′dt′′
∫

ull(x0
+ Ut′,x

0
+ Ut′′)c(x

0
)dx

0
, (9)
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where

ull(x
′,x′′) =

∫ ∫

u′
lu

′′
l pu(u′,x′;u′′,x′′)du′du′′

is the Eulerian velocity correlation and pu(u′,x′;u′′,x′′) is the joint two-point prob-
ability density of the velocity fluctuations. Since the velocity field is statistically ho-
mogeneous, the density pu is invariant to translations and the correlation ull in (12)
depends only on U(t′ − t′′) and does not depend on x

0
. It follows that the first-order

approximation of the dispersion with respect to the mean trajectory is independent
of initial conditions and is identical to Xll computed for a singular initial concen-
tration distribution localized at the origin of the coordinate system, c(x

0
) = δ(x

0
).

Therefore, hereafter Xll will be referred to as “memory-free” dispersion.
The result (12) is identical with the well known expression of Dagan [1984],

which was found to be a very robust approximation. For instance, it was shown that
(12) is practically identical with the approximation derived from the iteration (11)
with respect to the solution of diffusion in the mean velocity field U [Suciu et al.,
2006b, Figure 2]. Nevertheless, it should be emphasized that Xll(t) derived by first-
order approximations is different from the dispersion with respect to the ensemble
averaged center of mass. The latter is obtained from (8) if the velocity fluctua-
tions are defined with respect to the ensemble average of the velocity on trajectories,
ul(X(t), t) = Vl(X(t)) − 〈〈Vl(X(t))〉wX0

〉, and not by the simple projection on the
trajectories of the Eulerian velocity fluctuations with respect to the constant mean
Ul. This approach has been followed in (N. Suciu et al., manuscript submitted to
Water Resources Research, 2006) to derive numerically the memory-free component
of the dispersion and to quantify the “memory effects” produced by the term of (8)
accounting for correlations between initial positions and velocity on trajectories. It
was found that the approximation (12) is close, uniformly in time, to the numerically
derived memory-free dispersion in a range of the order of the local dispersion 2Dt.
Moreover, for the order of magnitude relation between velocity fluctuations and Pe
considered here, the large time limit of Xll(t) − 2Dt corresponds to the up-scaled
dispersion predicted by Kesten and Papanicoulaou [1979], which is in excellent agree-
ment with numerical simulations [Suciu et al., 2006a]. These arguments recommend
the approximate memory-free moment (12) as an useful reference for investigations
on ergodicity of the pre-asymptotic regime transport.

4. Numerical results

We consider isotropic two-dimensional diffusion (D1 = D2 = D = 0.01 m2/day)
in a groundwater flow modeled by a random velocity field V with ensemble mean
U = (U, 0), U = 1 m/day. The velocity field is generated, with the Kraichnan rou-
tine, as a superposition of 6400 random sin modes which approximates a Gaussian
field. This Gaussian field is an approximation of a time stationary Darcy velocity field
in saturated groundwater formations, for log-hydraulic conductivity with variance of
0.1, exponentially correlated, and with finite isotropic correlation length λ = 1 m.
The transport over 2 000 days in given realizations of the velocity field, for point in-
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stantaneous injection conditions and uniform distributions in rectangles (L1λ, L2λ),
is simulated by simultaneously tracking N = 1010 computational particles with the
“global random walk” (GRW) algorithm [Vamoş et al., 2003]. Details on the imple-
mentation of the numerical method can be found in [Suciu et al., 2006a]. In that
paper ergodicity with respect to the up-scaled “macrodispersion” process of Dagan
[1984] was investigated for transverse slab sources (λ, Lλ). The main result was a
numerical evidence of asymptotic ergodicity.

We present here, within a more suggestive graphical representation, the ergod-
icity range for the cross-section space averaged concentration evaluated at the plume
center of mass 〈x1〉,

C(〈x1〉, t) =
1

B

∫ B

0

c(〈x1〉, x2, t)dx2,

where B is the transverse dimension of the grid and c(x1, x2, t) is the GRW simu-
lated concentration. We evaluate the ergodicity range, according to Definition 2, by

η =
(

η2
1 + η2

2

)1/2
, where η1 = |〈C〉 − C∗| is the deviation of the average of C over the

ensemble of 256 velocity realizations from the corresponding up-scaled value C∗ and
η2 = σc is the standard deviation of C∗ (numerical data from [Suciu et al., 2006a]).
The results for point source and three different transverse sources (λ, Lλ), presented
in Figure 1, indicate a general decreasing trend of the ergodicity range η, thus an
asymptotically ergodic behavior with respect to the up-scaled process. It is also no-
ticeable that though the increase of transverse dimension L of the source causes a
decrease of η at early time, the ergodicity range reaches a plateau value which per-
sists over large dimensionless times. Since the simulated velocity field approximates a
stationary Darcy flow, the associated dynamical system is very likely nonergodic, as
indicated by theoretical results [Sposito, 1997, 2001]. To round off the issue of ergodic-
ity in the large sense of the advective transport described by equation (1), formulated
in Section 2, we also simulated for a transverse source (λ, 100λ) the case Pe = ∞
by dropping the local dispersive step in our GRW algorithm. (The simulations were
interrupted after about 700 Ut/λ, when numerical trapping phenomena occurred.) In
spite of the existence of the macrodispersive behavior described by equation (2), the
results presented in Figure 2 clearly prove the nonergodicity in the large sense of the
cross-section space averaged concentration with respect to the up-scaled concentration
C∗.

As shown by Figure 1, the timescale of asymptotic ergodicity could be imprac-
tical for predictions at finite times. We investigated therefore the ergodicity with
respect to the memory free dispersion (12) predicted by the approximate stochastic
model. To do that, we evaluated numerically the Eulerian correlation and the disper-
sion Xll(t) (12). The correlation was computed by averages over 512 realizations of
the numerical velocity field. Further, an “ergodic” dispesion Xerg

ll (t) was defined by
a mean square fitting of Xll(t). The results, normalized by the local dispersion 2Dt,
are given in Figure 3.

Using the ergodic dispersion from Figure 3 as a reference, the ergodicity range
was computed according to Definition 1 from actual dispersions sll given by 1024
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GRW simulations, for point sources, longitudinal and transverse slabs, and square
sources, by the formula

η [sll(t) − Sll(0)] =
〈

[sll(t) − Sll(0) − Xerg
ll (t)]

2
〉1/2

.

The results presented in Figure 4 indicate an ergodic behavior at early times of the
actual dispersion in the l-direction with respect to the memory-free dispersion for
large slab sources perpendicular to l. But for large extensions of the source in the
l-direction sll shows a memory effect indicated by large ergodicity ranges η.

5. Conclusions

The “ergodicity in the large sense” is an operational concept which quan-
tifies the departure of observables in actual realizations of the physical system from
predictions provided by stochastic modeling of transport in heterogeneous media. We
illustrated it in this paper by investigations on asymptotic ergodicity (with respect
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to the up-scaled macrodispersive limit behavior) and on ergodicity with respect to
memory-free dispersion. The latter is characteristic to a given environment and de-
pends only on local dispersion coefficient and velocity correlation function. Since it
can be evaluated at finite times by analytical or numerical approaches, the memory-
free dispersion is a reference for the actual dispersion which can be used to assess the
ergodicity of the pre-asymptotic regime.

Though no rigorous mathematical results are available, large sense ergodicity
can be related to the notions of ergodicity as formulated for dynamical systems,
and random functions. For instance, the numerical results of Figure 2 indicate that
advective transport by nonergodic dynamical systems is also nonergodic in the large
sense. This happens although the associated stochastic model admits a diffusive up-
scaling and in spite of the ergodicity of the homogeneous space random function (with
finite correlation length) which describes the velocity field. The situation changes
completely if the stochastic model considers a diffusion-like mechanism. In this case
the transport behaves asymptotically ergodic with respect to the up-scaled process
(Figure 1) and, at finite times, an ergodic behavior with respect to the memory-free
dispersion can also be expected (Figure 4).

The reliability of theoretical memory-free dispersion for transport originating
from large initial plumes seems to be the mostly used sense of ergodicity in applica-
tions for contaminant hydrology. The ergodicity ranges presented in Figure 4 clearly
indicate that the memory-free dispersion provides useful predictions for the actual
dispersion in a given direction only for anisotropic sources with large dimensions on
the perpendicular direction. But the dispersion in the direction of the anisotropy
can be strongly nonergodic and affected by persistent memory effects. This relation
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between the ergodicity range and the anisotropy of the initial condition can be used
to identify the source of contamination from comparisons of measured and theoretical
dispersions.
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