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PERTURBED FINITE MARKOV CHAINS

UDREA PĂUN

We consider two types of perturbations of finite Markov chains which are still
Markov chains, we call perturbations of the first and of the second type, respec-
tively. In Section 1 we define the class of the [∆]-simple Markov chains (they
were considered in [10] without naming them) which is in fact a subclass of the
that of [∆]-groupable Markov chains. Then we show some [∆]- and ∆-ergodicity
results on [∆]-groupable Markov chains, [∆]-simple Markov chains, and their per-
turbations of the first type. In Section 2 we show some uniform ergodicity results
on Markov chains and their perturbations of the second type. In particular, for
perturbed finite Markov chains we obtain, with different proofs, all ergodicity and
uniform ergodicity results of Fleischer and Joffe [2]. Our tools are ergodicity coef-
ficients and norms. Our methods are the perturbation, the looping through limit
∆-ergodic theory (for short, the looping), and the blocks.
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1. [∆]- AND ∆-ERGODICITY RESULTS

In this section we define [∆]-simple Markov chains and we show some [∆]-
and ∆-ergodicity results on [∆]-groupable Markov chains, [∆]-simple Markov
chains, and their perturbations of the first type.

Consider a finite Markov chain with state space S = {1, 2, . . . , r} and
transition matrices (Pn)n≥1. We shall refer to it as the (finite) Markov chain
(Pn)n≥1. For all integers m ≥ 0, n > m, define

Pm,n = Pm+1Pm+2 · · ·Pn = ((Pm,n)ij)i,j∈S .

(The entries of a matrix Z will be denoted Zij .)
Set

Par (E) = {∆ | ∆ is a partition of E} ,

where E is a nonempty set. Here we shall agree that the partitions do not
contain the empty set (an exception, e.g., occurs in [14] (see also [4] and [5])
for the case of bases).
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Definition 1.1. Let ∆1,∆2 ∈ Par (E) . We say that ∆1 is finer than ∆2

if ∀V ∈ ∆1, ∃W ∈ ∆2 such that V ⊆ W.
Write ∆1 � ∆2 when ∆1 is finer than ∆2.
First, we give some definition from ∆-ergodic theory (see also [14]).

Definition 1.2 ([6]). Let i, j ∈ S. We say that i and j are in the same
weakly ergodic class if ∀m ≥ 0,∀k ∈ S we have

lim
n→∞ [(Pm,n)ik − (Pm,n)jk] = 0.

Write i ∼ j when i and j are in the same weakly ergodic class. Then ∼
is an equivalence relation and determines a partition ∆ = (C1, C2, . . . , Cs) of
S. The sets C1, C2, . . . , Cs are called weakly ergodic classes.

Definition 1.3 ([10]). Let ∆ = (C1, C2, . . . , Cs) be the partition of weakly
ergodic classes of a Markov chain. We say that the chain is weakly ∆-ergodic.
In particular, a weakly (S)-ergodic chain is called weakly ergodic for short.

Definition 1.4 ([11]). Let (C1, C2, . . . , Cs) be the partition of weakly
ergodic classes of a Markov chain with state space S and ∆ ∈ Par (S) . We say
that the chain is weakly [∆]-ergodic if ∆ � (C1, C2, . . . , Cs) .

Definition 1.5 ([7]). Let C be a weakly ergodic class. We say that C is
a strongly ergodic class if ∀m ≥ 0,∀i ∈ C,∀j ∈ S the limit

lim
n→∞ (Pm,n)ij := πm,j = πm,j (C)

exists and does not depend on i.

Definition 1.6 ([14]). Consider a weakly ∆-ergodic Markov chain. We
say that the chain is strongly ∆-ergodic if any C ∈ ∆ is a strongly ergodic
class. In particular, a strongly (S)-ergodic chain is called strongly ergodic for
short.

Definition 1.7 ([14]). Consider a weakly [∆]-ergodic Markov chain. We
say that the chain is strongly [∆]-ergodic if any C ∈ ∆ is included in a strongly
ergodic class.

Further, we give some definitions from limit ∆-ergodic theory (see also
[14]). For this, we shall agree that when writing

lim
u→∞ lim

v→∞ au,v,

where au,v ∈ R,∀u, v ∈ N with u ≥ u1, v ≥ v1 (u) , we assume that ∃u0 ≥ u1

such that

∃ lim
v→∞ au,v,∀u ≥ u0.
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Definition 1.8 ([14]). Let i, j ∈ S. We say that i and j are in the same
limit weakly ergodic class if ∀k ∈ S we have

lim
m→∞ lim

n→∞

[
(Pm,n)ik − (Pm,n)jk

]
= 0.

Write i
l∼ j when i and j are in the same limit weakly ergodic class. Then

l∼ is an equivalence relation and determines a partition ∆= (L1, L2, . . . , Lu)
of S. The sets L1, L2, . . . , Lu are called limit weakly ergodic classes.

Definition 1.9 ([14]). Let ∆= (L1, L2, . . . , Lu) be the partition of limit
weakly ergodic classes. We say that the chain is limit weakly ∆-ergodic. In par-
ticular, a limit weakly (S)-ergodic chain is called limit weakly ergodic for short.

Definition 1.10 ([14]). Let (L1, L2, . . . , Lu) be the partition of limit
weakly ergodic classes of a Markov chain with state space S and ∆∈ Par(S).
We say that the chain is limit weakly [∆]-ergodic if ∆� (L1, L2, . . . , Lu) .

Definition 1.11 ([14]). Let L be a limit weakly ergodic class. We say that
L is a limit strongly ergodic class if ∀i ∈ L, ∀j ∈ S the limit

lim
m→∞ lim

n→∞ (Pm,n)ij := πj = πj (L)

exists and does not depend on i.

Definition 1.12 ([14]). Consider a limit weakly ∆-ergodic Markov chain.
We say that the chain is limit strongly ∆-ergodic if any L ∈∆ is a limit strongly
ergodic class.

Definition 1.13 ([14]). Consider a limit weakly [∆]-ergodic Markov chain.
We say that the chain is limit strongly [∆]-ergodic if any L ∈∆ is included in
a limit strongly ergodic class.

Let T = (Tij) be a real m × n matrix. Let ∅ 	= U ⊆ {1, 2, . . . ,m} and
∅ 	= V ⊆ {1, 2, . . . , n} . Define

TU = (Tij)i∈U, j∈{1,2,...,n} , T V = (Tij)i∈{1,2,...,m}, j∈V ,

T V
U = (Tij)i∈U, j∈V , α (T ) = min

1≤i,j≤m

n∑
k=1

min (Tik, Tjk)

(if T is a stochastic matrix, then α (T ) is called the ergodicity coefficient of
Dobrushin of the matrix T (see, e.g., [1] or [3, p. 56])),

α (T ) =
1
2

max
1≤i,j≤m

n∑
k=1

|Tik − Tjk| ,

γ∆ (T ) = min
K∈∆

α (TK) , γ∆ (T ) = max
K∈∆

α (TK) ,
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where ∆ ∈ Par ({1, 2, . . . ,m}) (see [10] for γ∆ and γ∆), and

|‖T‖|∞ = max
1≤i≤m

n∑
j=1

|Tij|

(the ∞-norm of T ).

Let
Sm,n = {P | P is a stochastic m × n matrix} ,

Sr = Sr,r,

S∆,σ =
{

P | P ∈ Sr and P
CKσ(l)

Kl
= 0,∀l ∈ {1, 2, . . . , p}

}
,

where ∆ = (K1,K2, . . . ,Kp) ∈ Par ({1, 2, . . . , r}), σ ∈ S (p) , the collection of
all permutations of {1, 2, . . . , p} , and C is the complement of a set, and

S∆ =
⋃

σ∈S(p)

S∆,σ

(see also [10]).

Definition 1.14. We say that a (finite) Markov chain (Pn)n≥1 is [∆]-
simple if Pn ∈ S∆, ∀n ≥ 1, where ∆ ∈ Par (S) .

Definition 1.15. We say that a Markov chain (Pn)n≥1 is diagonal [∆]-
simple if Pn ∈ S∆,σ, ∀n ≥ 1, where σ = id, i.e., the identity permutation, and
∆ ∈ Par (S) .

Definition 1.16. We say that a Markov chain (Pn)n≥1 is cyclic [∆]-simple
if Pn ∈ S∆,σ, ∀n ≥ 1, where σ is a cycle and ∆ ∈ Par (S) .

Also, we consider the following notions:
(a) S∆ is the set of [∆]-simple matrices; A ∈ S∆ is a [∆]-simple matrix ;
(b) S∆,σ, where σ = id, is the set of diagonal [∆]-simple matrices; A ∈

S∆,σ is a diagonal [∆]-simple matrix ;
(c)

⋃
σ

S∆,σ, where σ is a cycle, is the set of cyclic [∆]-simple matrices;

A ∈ ⋃
σ

S∆,σ is a cyclic [∆]-simple matrix. (Also, the cyclic matrices from the

homogeneous case are example of cyclic [∆]-simple matrices, where ∆ is, e.g.,
the partition of cyclic subclasses.)

Remark 1.17. (a) The weak and uniform weak ∆-ergodicity properties
of [∆]-simple Markov chains (without naming them) were studied in [10].

(b) The cyclic [∆]-simple Markov chains appear, e.g., in Theorems 2.8,
2.11, 2.13, and 2.16 from [13].
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(c) If a Markov chain is diagonal [∆]-simple, this does not mean that it
has the nonzero blocks on the main diagonal. But using a permutation matrix
we can obtain the diagonal form. Indeed, let, e.g.,

Pn =


 1 − 1

n 0 1
n

0 1 0
1
n 0 1 − 1

n


 , ∀n ≥ 1.

This chain is diagonal [({1, 3} , {2})]-simple, but it does not have the nonzero
blocks on the main diagonal. Considering the permutation matrix

P =


 1 0 0

0 0 1
0 1 0


 ,

we have

Qn := P ′PnP =


 1 − 1

n
1
n 0

1
n 1 − 1

n 0
0 0 1


 , ∀n ≥ 1,

in diagonal form, where P ′ is the transpose of P . A similar thing happens for
a cyclic [∆]-simple Markov chain.

Definition 1.18. Let E be a nonnegative m × n matrix. We say that E
is a generalized stochastic matrix if there exist a ≥ 0 and F ∈ Sm,n such that
E = aF.

Let

G∆ =
{
P | P ∈ Sr and ∀K,L ∈ ∆, PL

K is a generalized stochastic matrix
}

,

where ∆ ∈ Par (S) .

Remark 1.19. We have S∆ ⊆ G∆ and S(S) = G(S) = G({i})i∈S
= Sr.

Definition 1.20 ([11]). We say that a Markov chain (Pn)n≥1 is [∆]-
groupable if Pn ∈ G∆, ∀n ≥ 1.

Also, we consider the following notions: G∆ is the set of [∆]-groupable
matrices; A ∈ G∆ is a [∆]-groupable matrix.

Theorem 1.21 ([14]). Consider a [∆]-groupable Markov chain (Pn)n≥1.
Then the chain is weakly [∆]-ergodic if and only if it is limit weakly [∆]-
ergodic.

Proof. See [14]. �
For [∆]-simple Markov chains we can say more.

Theorem 1.22. Consider a [∆]-simple Markov chain (Pn)n≥1. Then the
following statements are equivalent.

(i) The chain is weakly [∆]-ergodic.
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(ii) The chain is weakly ∆-ergodic.
(iii) The chain is limit weakly [∆]-ergodic.
(iv) The chain is limit weakly ∆-ergodic.

Proof. (i)⇔(iii) See Remark 1.19 and Theorem 1.21.
(i)⇔(ii) Obvious.
(ii)⇒(iv) Obvious.
(iv)⇒(iii) Obvious. �
Theorem 1.23 ([14]). Consider a Markov chain (Pn)n≥1. If the chain is
(i) weakly [∆]-ergodic,

and
(ii) limit weakly ∆-ergodic,

then it is weakly ∆-ergodic.

Proof. See [14]. �
Using Theorem 1.23 we can generalize (iv)⇒(ii) from Theorem 1.22.

Theorem 1.24. Consider a [∆]-groupable Markov chain (Pn)n≥1. If the
chain is limit weakly ∆-ergodic, then it is weakly ∆-ergodic.

Proof. If the chain is limit weakly ∆-ergodic, then it is limit weakly
[∆]-ergodic. It follows from Theorem 1.21 that it is weakly [∆]-ergodic. Now,
by Theorem 1.23, it is weakly ∆-ergodic. �

Remark 1.25. The converse of Theorem 1.24 is not true. Indeed, let

Pn =


 1 0 0

0 1 0
1 − 1

n
1
n 0


 , ∀n ≥ 1.

This chain is [({1} , {2} , {3})]-groupable. We have Pm,n = Pm+1,∀n > m,
therefore the chain is weakly (even strongly) ({1} , {2} , {3})-ergodic. Since

Pn →

 1 0 0

0 1 0
1 0 0


 as n → ∞,

it follows that it is limit weakly (even strongly) ({1, 3} , {2})-ergodic.
In ∆-ergodic theory it is doubtful to find a submultiplicative ergodicity

coefficient which generalizes α better than γ∆. In this sense see Remark 1.14(3)
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from [11] and the following basic example. Let

P1 =




1
2

1
2 0 0

1
4

2
4 0 1

4

0 0 0 1

1 0 0 0




, Pn =




1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
3

2
3

0 0 1
3

2
3




, ∀n ≥ 2.

The matrix P1 destroys the ({1, 2} , {3, 4})-ergodicity of the chain (Pn)n≥2. On
account of this, we shall invoke the perturbation method (see, e.g., [2], [5], [8],
[9], [10], [11], [12], and [14]).

Definition 1.26. Let (Pn)n≥1 and (P ′
n)n≥1 be two (finite) Markov chains.

We say that (P ′
n)n≥1 is a perturbation of the first type of (Pn)n≥1 if∑

n≥1

∥∥∣∣Pn − P ′
n

∣∣∥∥
∞ < ∞.

Definition 1.27. Let (Pn)n≥1 and (P ′
n)n≥1 be two Markov chains. We say

that (P ′
n)n≥1 is a perturbation of the second type of (Pn)n≥1 if∥∥∣∣Pn − P ′

n

∣∣∥∥
∞ → 0 as n → ∞

(this is equivalent to Pn − P ′
n → 0 as n → ∞).

We note that perturbation of the first type is a good method for the
study of the weak and strong [∆]- and ∆-ergodicity while perturbation of the
second type is a good method for the study of the uniform weak and strong
[∆]- and ∆-ergodicity. Also, we note that

∃ lim
n→∞

∣∣∥∥Pm,n − P ′
m,n

∥∥∣∣
∞ , ∀m ≥ 0,

when (Pn)n≥1 is a Markov chain and (P ′
n)n≥1 is a perturbation of the first

type of it. For to prove this, let m ≥ 0. Let x and y be two limit points
of the sequence

(∣∣∥∥Pm,n − P ′
m,n

∥∥∣∣
∞
)

n>m
. Let (nk)k≥1 and (tl)l≥1 be two

subsequences of the sequence of natural numbers with n1, t1 > m such that

lim
k→∞

∣∣∥∥Pm,nk
− P ′

m,nk

∥∥∣∣
∞ = x and lim

l→∞
∣∣∥∥Pm,tl − P ′

m,tl

∥∥∣∣
∞ = y,

respectively. Suppose that x 	= y and, e.g., x < y. Using the inequality

|‖A1A2 · · ·Ap − B1B2 · · ·Bp‖|∞ ≤
p∑

v=1

|‖Av − Bv‖|∞ ,
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where p ≥ 1 and A1, A2, . . . , Ap, B1, B2, . . . , Bp ∈ Sr (see [5]) we obtain

∣∣∥∥Pm,tl − P ′
m,tl

∥∥∣∣
∞ ≤ ∣∣∥∥Pm,nk

− P ′
m,nk

∥∥∣∣
∞ +

tl∑
v=nk+1

∣∣∥∥Pv − P ′
v

∥∥∣∣
∞ ≤

≤ ∣∣∥∥Pm,nk
− P ′

m,nk

∥∥∣∣
∞ +

∑
v>nk

∣∣∥∥Pv − P ′
v

∥∥∣∣
∞ , ∀k, l ≥ 1 with tl > nk.

So,
y ≤ ∣∣∥∥Pm,nk

− P ′
m,nk

∥∥∣∣
∞ +

∑
v>nk

∣∣∥∥Pv − P ′
v

∥∥∣∣
∞ , ∀k ≥ 1.

Further, it follows that y ≤ x, so we have reached a contradiction. Therefore
x = y. Hence ∃ lim

n→∞
∣∣∥∥Pm,n − P ′

m,n

∥∥∣∣
∞ . Moreover,

(∣∣∥∥Pm,n − P ′
m,n

∥∥∣∣
∞
)

n>m

is convergent because
∣∣∥∥Pm,n − P ′

m,n

∥∥∣∣
∞ ∈ [0, 2], ∀n > m.

The next theorem is a corrected version of Theorem 3.15 from [14]. It is
a basic result for perturbations of the first type. Also, it is one of the results on
which is based our method called the looping through limit ∆-ergodic theory.
For short, we call it the looping method. The looping method consists in
passing from ∆-ergodic theory to limit ∆-ergodic theory, then coming back.

Theorem 1.28. Let (Pn)n≥1 be a strongly ∆-ergodic Markov chain and
(P ′

n)n≥1 a perturbation of the first type of it.
(i) (Pn)n≥1 is limit weakly ∆-ergodic if and only if (P ′

n)n≥1 is limit weakly

∆-ergodic.
(ii) lim

m→∞ lim
n→∞Pm,n = Q if and only if lim

m→∞ lim
n→∞P ′

m,n = Q, where
Q ∈ Sr.

(iii) (Pn)n≥1 is limit strongly ∆-ergodic if and only if (P ′
n)n≥1 is limit

strongly ∆-ergodic.

Proof. See [14]. �
Remark 1.29. Theorem 1.28 cannot be extend to perturbations of the

second type. Indeed, if, e.g.,

Pn =

(
1 − 1

n
1
n

1
n 1 − 1

n

)
, P ′

n =
(

1 0
0 1

)
, ∀n ≥ 1,

then the chain (Pn)n≥1 is strongly ergodic while (P ′
n)n≥1 is strongly ({1} , {2})-

ergodic. Hence (Pn)n≥1 is limit weakly and strongly ergodic while (P ′
n)n≥1 is

limit weakly and strongly ({1} , {2})-ergodic.
Theorem 1.28(i) cannot be generalized for an arbitrary (Pn)n≥1. We need

a more general equivalence relation than that given in Definition 1.8 to obtain
a result similar to Theorem 1.28(i). For this, let i, j ∈ S. We say that i and
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j are in the same limit weakly ergodic class in a generalized sense if ∀k ∈ S
we have

lim sup
m→∞

lim sup
n→∞

∣∣∣(Pm,n)ik − (Pm,n)jk
∣∣∣ = 0.

Now, it is easy to verify that a result similar to Theorem 1.28(i) (see its proof)
holds in a generalized sense for an arbitrary (Pn)n≥1. We call it Theorem
1.28(i)′. Also, it is easy to verify that Theorems 1.21, 1.22, 1.23, and 1.24
have similar versions in a generalized sense. (Note that in such a theorem
and the corresponding one in a generalized sense, (Pn)n≥1 verifies the same
conditions, except for the limit ones.) We call they Theorems 1.21′, 1.22′,
1.23′, and 1.24′, respectively.

As concerns weak ∆-ergodicity under perturbation, the following result
is the main theorem of this section (we prove it by the looping method).

Theorem 1.30. Let (Pn)n≥1 be a Markov chain and (P ′
n)n≥1 a perturba-

tion of the first type of it. If (Pn)n≥1 is weakly ∆-ergodic and limit weakly ∆-
ergodic in a generalized sense and (P ′

n)n≥1 is weakly ∆′-ergodic, then ∆′ � ∆.

Proof. It follows from Theorem 1.28(i)′ that (P ′
n)n≥1 is limit weakly

∆-ergodic in a generalized sense. Now, it is obvious that ∆′ � ∆ (see also
Theorem 2.9 from [14]). �

If (Pn)n≥1 is [∆]-simple we can say more.

Theorem 1.31. Let (Pn)n≥1 be a [∆]-simple Markov chain and (P ′
n)n≥1

a perturbation of the first type of it. If (Pn)n≥1 is weakly ∆-ergodic and
(P ′

n)n≥1 is weakly ∆′-ergodic, then ∆′ � ∆.

Proof. See Theorems 1.22′ and 1.30. �
If (Pn)n≥1 is [∆]-simple and (P ′

n)n≥1 is [∆]-groupable we can say even
more.

Theorem 1.32. Let (Pn)n≥1 be a [∆]-simple Markov chain and (P ′
n)n≥1

a [∆]-groupable perturbation of the first type of it. Then (Pn)n≥1 is weakly
∆-ergodic if and only if (P ′

n)n≥1 is weakly ∆-ergodic.

Proof. “⇒” We use the looping method. If (Pn)n≥1 is weakly ∆-ergodic
then, by Theorem 1.22′, it is limit weakly ∆-ergodic in a generalized sense. By
Theorem 1.28(i)′, the chain (P ′

n)n≥1 is limit weakly ∆-ergodic in a generalized
sense. Now, it follows from Theorem 1.24′ that (P ′

n)n≥1 is weakly ∆-ergodic.
“⇐” If (P ′

n)n≥1 is weakly ∆-ergodic, then ∃∆′ ∈ Par (S) with ∆ � ∆′

such that it is limit weakly ∆′-ergodic in a generalized sense. By Theorem
1.28(i)′, (Pn)n≥1 is limit weakly ∆′-ergodic in a generalized sense. It follows
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that ∆′ � ∆ because (Pn)n≥1 is [∆]-simple. Therefore ∆′ = ∆. Now, by
Theorem 1.22′, (Pn)n≥1 is weakly ∆-ergodic. �

In particular, if ∆ = (S) then we obtain a result from [2].

Theorem 1.33 ([2]). Let (Pn)n≥1 be a Markov chain and (P ′
n)n≥1 a

perturbation of the first type of it. Then (Pn)n≥1 is weakly ergodic if and only
if (P ′

n)n≥1 is weakly ergodic.

Proof. See [2] or Theorem 1.32 (for ∆ = (S)). �
Remark 1.34. In general, in Theorems 1.30 and 1.31 we cannot have

more than ∆′ � ∆. For this, we give three examples.
(a): an example with a transient state. Let

P ′
n =




1 − 1
n2 0 1

n2

1 − 1
2n2 0 1

2n2

0 0 1


 , ∀n ≥ 1.

We have

(
P ′

nP ′
n+1

){1,2} =



(
1 − 1

n2

) (
1 − 1

(n+1)2

)
0(

1 − 1
2n2

) (
1 − 1

(n+1)2

)
0

0 0


 , ∀n ≥ 1,

(
P ′

nP ′
n+1P

′
n+2

){1,2}=



(
1 − 1

n2

) (
1 − 1

(n+1)2

)(
1 − 1

(n+2)2

)
0(

1 − 1
2n2

) (
1 − 1

(n+1)2

)(
1 − 1

(n+2)2

)
0

0 0


 , ∀n ≥ 1,

etc. It follows that
(
P ′

m,n

)
11

=
n∏

k=m+1

(
1 − 1

k2

)
=
(

1 − 1
(m + 1)2

) n∏
k=m+2

(
1 − 1

k2

)
→

→
(

1 − 1
(m + 1)2

)
am as n → ∞, ∀m ≥ 0,

and (
P ′

m,n

)
21

=
(

1 − 1
2 (m + 1)2

) n∏
k=m+2

(
1 − 1

k2

)
→

→
(

1 − 1
2 (m + 1)2

)
am as n → ∞, ∀m ≥ 0,
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where

am = lim
n→∞

n∏
k=m+2

(
1 − 1

k2

)
.

Therefore the chain is weakly (even strongly (see also Theorem 1.43))
({1} , {2} , {3})-ergodic because 0 < am < ∞ (in fact, am < 1). Instead, if

Pn =


 1 0 0

1 0 0
0 0 1


 , ∀n ≥ 1,

then (Pn)n≥1 is weakly (even strongly) ({1, 2} , {3})-ergodic. Obviously, (Pn)n≥1

is [({1, 2} , {3})]-simple and (P ′
n)n≥1 is a perturbation of the first type of it.

(b): an example without transient states. Let

Pn =




1
2

1
2 0

1
2

1
2 0

0 0 1


 := A, ∀n ≥ 1,

and

P ′
1 =




1
2

1
2 0

1
4

2
4

1
4

0 0 1


 , P ′

n = A, ∀n ≥ 2.

Obviously, (P ′
n)n≥1 is a perturbation of the first type of (Pn)n≥1. The chain

(Pn)n≥1 is weakly (even strongly) ({1, 2} , {3})-ergodic while (P ′
n)n≥1 is weakly

(even strongly) ({1} , {2} , {3})-ergodic. We note that P ′
n = Pn,∀n ≥ 2, there-

fore the matrix P ′
1 makes (P ′

n)n≥1 not weakly ({1, 2} , {3})-ergodic.
(c): an example where Theorem 1.28 is used. Let

Pn =




1
2

1
2 0

1
2

1
2 0

0 0 1


 , ∀n ≥ 1,

and

P ′
n =




1
2

1
2 − 1

4n2
1

4n2

1
2

1
2 0

0 0 1


 , ∀n ≥ 1.

Obviously, (Pn)n≥1 is weakly (even strongly) ({1, 2} , {3})-ergodic and limit
weakly (even strongly) ({1, 2} , {3})-ergodic. Is (P ′

n)n≥1 weakly (even strongly)
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({1, 2} , {3})-ergodic? Suppose that (P ′
n)n≥1 is weakly ({1, 2} , {3})-ergodic.

Then
lim

n→∞

((
P ′

m,n

)
11

− (P ′
m,n

)
21

)
= 0, ∀m ≥ 0.

By Theorem 1.28, (P ′
n)n≥1 is limit weakly ({1, 2} , {3})-ergodic. Therefore,

2 l
� 3. It follows that there exists u > 0 such that(

P ′
u,n

)
23

� 1 as n → ∞,

because (
P ′

m,n

)
33

= 1, ∀m,n, 0 ≤ m < n.

We have
(
P ′

u−1,n

)
11

− (P ′
u−1,n

)
21

=
3∑

k=1

(
P ′

u

)
1k

(
P ′

u,n

)
k1

−
3∑

k=1

(
P ′

u

)
2k

(
P ′

u,n

)
k1

=

=
1
2
(
P ′

u,n

)
11

+
(

1
2
− 1

4u2

)(
P ′

u,n

)
21

− 1
2
(
P ′

u,n

)
11

− 1
2
(
P ′

u,n

)
21

=

= − 1
4u2

(
P ′

u,n

)
21

→ 0 as n → ∞,

because of the hypothesis. Therefore,(
P ′

u,n

)
21

→ 0 as n → ∞.

Since
(
P ′

u,n

)
21

=
3∑

k=1

(
P ′

u,n−1

)
2k

(
P ′

n

)
k1

=
1
2
(
P ′

u,n−1

)
21

+
1
2
(
P ′

u,n−1

)
22

,

it follows that (
P ′

u,n−1

)
22

→ 0 as n → ∞.

Hence (
P ′

u,n

)
23

→ 1 as n → ∞.

Contradiction.
Further, we consider strong ∆-ergodicity.

Theorem 1.35 ([14]). Consider a Markov chain (Pn)n≥1. Then the chain
is strongly ergodic with limit Π if and only if it is limit strongly ergodic with
limit Π.

Proof. See [14], Theorem 2.27 (it follows from its proof that Π is a
common limit). �

Theorem 1.36. Consider a diagonal [∆]-simple Markov chain (Pn)n≥1.
Then the following statements are equivalent.

(i) The chain is strongly ∆-ergodic with limit Π.
(ii) The chain is limit strongly ∆-ergodic with limit Π.
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(iii) The chain
(
(Pn)KK

)
n≥1

is strongly ergodic with limit ΠK
K , ∀K ∈ ∆.

(iv) The chain
(
(Pn)KK

)
n≥1

is limit strongly ergodic with limit ΠK
K ,

∀K ∈ ∆.

Proof. (i)⇔(ii) It follows from Theorem 1.35 applied to the chains(
(Pn)KK

)
n≥1

,K ∈ ∆.

(i)⇔(iii) Obvious.
(iii)⇔(iv) See Theorem 1.35. �
Theorem 1.37. Consider a [∆]-simple Markov chain (Pn)n≥1. Then it

is strongly ∆-ergodic if and only if ∃n0 ≥ 1 such that (Pn)n≥n0 is a diagonal
[∆]-simple Markov chain and

(
(Pn)KK

)
n≥n0

is strongly ergodic, ∀K ∈ ∆.

Proof. “⇒” Let ∆ = (K1,K2, . . . ,Kp) . Obviously, ∀n ≥ 0, ∃σn ∈ S (p)
such that Pn ∈ S∆,σn . We can find a permutation matrix P such that Qn :=
P ′PnP , n ≥ 1, is a [∆]-simple Markov chain with the property that the states
from K1 correspond to rows 1, 2, . . . , |K1| , those from K2 to rows |K1| + 1,
|K1| + 2, . . . , |K1| + |K2| etc. Let

(Rn)uv =

{
1, if (Qn)Kv

Ku
	= 0

0, if (Qn)Kv
Ku

= 0

∀u, v ∈ {1, 2, . . . , p}, ∀n ≥ 1. Then Rn is a permutation matrix corresponding
to Qn, ∀n ≥ 1. Clearly, ∃ lim

n→∞Rm,n, ∀m ≥ 0, if and only if ∃n0 ≥ 1 such
that Rn = Ip, ∀n ≥ n0, where Rm,n := Rm+1Rm+2 · · ·Rn, ∀m,n, 0 ≤ m < n.
It follows that ∃n0 ≥ 1 such that (Pn)n≥n0 is a diagonal [∆]-simple Markov
chain. Since the chain (Pn)n≥1 is strongly ∆-ergodic, (Pn)n≥n0 is strongly
∆-ergodic. Now, it follows from Theorem 1.36 that

(
(Pn)KK

)
n≥n0

is strongly
ergodic, ∀K ∈ ∆.

“⇐” Obvious. �
Theorem 1.37 allows us to reduce to the study of diagonal [∆]-simple

Markov chains when we study the strong ∆-ergodicity of [∆]-simple Markov
chains. An example is the following result.

Theorem 1.38. Consider a [∆]-simple Markov chain (Pn)n≥1. Then the
chain is strongly ∆-ergodic if and only if it is limit strongly ∆-ergodic.

Proof. It follows from Theorems 1.36, 1.37, and 1.41. �
Remark 1.39. Obviously, in Theorem 1.38 strong ∆-ergodicity and limit

strong ∆-ergodicity in general are with different limits (a excepted case is in
Theorem 1.36).

Theorem 1.40 ([14]). Consider a Markov chain (Pn)n≥1. If the chain is
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(i) weakly [∆]-ergodic,
and

(ii) limit strongly ∆-ergodic,
then it is strongly ∆-ergodic.

Proof. See [14]. �
Using Theorem 1.40 we can generalize an implication from Theorem 1.38

(thus we obtain for strong ∆-ergodicity the similar result to that for weak ∆-
ergodicity from Theorem 1.24).

Theorem 1.41. Consider a [∆]-groupable Markov chain (Pn)n≥1. If the
chain is limit strongly ∆-ergodic, then it is strongly ∆-ergodic.

Proof. If the chain is limit strongly ∆-ergodic, then it is limit weakly [∆]-
ergodic. By Theorem 1.21, it is weakly [∆]-ergodic. Now, by Theorem 1.40,
it is strongly ∆-ergodic. �

Remark 1.42. The converse of Theorem 1.41 is not true. For this, see
the example from Remark 1.25.

Further, we study strong ∆-ergodicity under perturbation. Some results
will be similar those for weak ∆-ergodicity. We begin with a basic result
from [5].

Theorem 1.43 ([5]). Let (Pn)n≥1 be a Markov chain and (P ′
n)n≥1 a

perturbation of the first type of it. Then ∃∆ ∈ Par(S) such that (Pn)n≥1 is
strongly ∆-ergodic if and only if ∃∆′ ∈ Par(S) such that (P ′

n)n≥1 is strongly
∆′-ergodic.

Proof. We give a full proof of this result here since in [5] it was stated
without proof and in [14] (see Theorem 3.12) there was given an incorrect
proof. By symmetry, it is sufficient to suppose that (Pn)n≥1 is a strongly
∆-ergodic chain and prove that ∃∆′ ∈ Par(S) such that (P ′

n)n≥1 is strongly
∆′-ergodic.

First, we show that
(
P ′

m,n

)
n>m

is a Cauchy sequence, ∀m ≥ 0. Let m ≥ 0.
We have ∣∣∥∥P ′

m,n − P ′
m,n+p

∥∥∣∣
∞ =

∣∣∥∥P ′
m,tP

′
t,n − P ′

m,tP
′
t,n+p

∥∥∣∣
∞ ≤

≤ ∣∣∥∥P ′
m,t

∥∥∣∣
∞
∣∣∥∥P ′

t,n − P ′
t,n+p

∥∥∣∣
∞ =

∣∣∥∥P ′
t,n − P ′

t,n+p

∥∥∣∣
∞ ≤

≤ ∣∣∥∥P ′
t,n − Pt,n

∥∥∣∣
∞ + |‖Pt,n − Pt,n+p‖|∞ +

∣∣∥∥Pt,n+p − P ′
t,n+p

∥∥∣∣
∞ ≤

≤ 2
∑

k≥t+1

∣∣∥∥Pk − P ′
k

∥∥∣∣
∞ + |‖Pt,n − Pt,n+p‖|∞ , ∀n, t, m < t < n, ∀p ≥ 0
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(for the last inequality see before Theorem 1.28). Let ε > 0. Then ∃tε > m
such that

2
∑

k≥t+1

∣∣∥∥Pk − P ′
k

∥∥∣∣
∞ <

ε

2
, ∀t ≥ tε.

Because (Pu,v)v>u is convergent, ∀u ≥ 0, it is a Cauchy sequence, ∀u ≥ 0.
Hence ∃nε > tε such that

|‖Ptε,n − Ptε,n+p‖|∞ <
ε

2
, ∀n ≥ nε, ∀p ≥ 0.

Further, it follows that ∃nε > m such that∣∣∥∥P ′
m,n − P ′

m,n+p

∥∥∣∣
∞ <

ε

2
+

ε

2
= ε, ∀n ≥ nε, ∀p ≥ 0

(this is equivalent to lim
n→∞

(
P ′

m,n − P ′
m,n+p

)
= 0 uniformly with respect to

p ≥ 0), i.e.,
(
P ′

m,n

)
n>m

is a Cauchy sequence, therefore is convergent.
Now, since ∃∆′ ∈ Par (S) such that the chain (P ′

n)n≥1 is weakly ∆′-
ergodic and

(
P ′

m,n

)
n>m

is convergent, ∀m ≥ 0, the chain (P ′
n)n≥1 is strongly

∆′-ergodic. �
Another main result is as follows.

Theorem 1.44. Let (Pn)n≥1 be a Markov chain and (P ′
n)n≥1 a perturba-

tion of the first type of it. If (Pn)n≥1 is strongly ∆-ergodic and limit strongly
∆-ergodic and (P ′

n)n≥1 is strongly ∆′-ergodic, then ∆′ � ∆.

Proof. It follows from Theorem 1.28(iii) that (P ′
n)n≥1 is limit strongly

∆-ergodic. Therefore ∆′ � ∆. �
If (Pn)n≥1 is [∆]-simple we can say more.

Theorem 1.45. Let (Pn)n≥1 be a [∆]-simple Markov chain and (P ′
n)n≥1

a perturbation of the first type of it. If (Pn)n≥1 is strongly ∆-ergodic and
(P ′

n)n≥1 is strongly ∆′-ergodic, then ∆′ � ∆.

Proof. See Theorems 1.38 and 1.44. �
If (Pn)n≥1 is [∆]-simple and (P ′

n)n≥1 is [∆]-groupable we can say even
more.

Theorem 1.46. Let (Pn)n≥1 be a [∆]-simple Markov chain and (P ′
n)n≥1

a [∆]-groupable perturbation of the first type of it. Then (Pn)n≥1 is strongly
∆-ergodic if and only if (P ′

n)n≥1 is strongly ∆-ergodic.

Proof. “⇒” We use the looping method. If (Pn)n≥1 is strongly ∆-ergodic,
then by Theorem 1.38 it is limit strongly ∆-ergodic. By Theorem 1.28(iii), the
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chain (P ′
n)n≥1 is limit strongly ∆-ergodic. Now, it follows from Theorem 1.41

that (P ′
n)n≥1 is strongly ∆-ergodic.

“⇐” If (P ′
n)n≥1 is strongly ∆-ergodic, then it is weakly ∆-ergodic. By

Theorem 1.32, (Pn)n≥1 is weakly ∆-ergodic. Now, it follows from Theorem 1.43
that (Pn)n≥1 is strongly ∆-ergodic. �

In particular, if ∆ = (S) , then we obtain a result of Fleischer and
Joffe [2].

Theorem 1.47 ([2]). Let (Pn)n≥1 be a Markov chain and (P ′
n)n≥1 a

perturbation of the first type of it. Then (Pn)n≥1 is strongly ergodic with limit
Π if and only if (P ′

n)n≥1 is strongly ergodic with limit Π.

Proof. See [2] or the following lines. By Theorem 1.46 for ∆ = (S) ,
(Pn)n≥1 is strongly ergodic if and only if (P ′

n)n≥1 is strongly ergodic. Now, we
show that both chains have the same limit. By symmetry, it is sufficient to
prove just an implication. We use the looping method. If (Pn)n≥1 is strongly
ergodic with limit Π, then by Theorem 1.35 it is limit strongly ergodic with
limit Π. By Theorem 1.28(ii), this implies that (P ′

n)n≥1 is limit strongly er-
godic with limit Π. By Theorem 1.35 again, (P ′

n)n≥1 is strongly ergodic with
limit Π. �

Remark 1.48. (a) In general, in Theorems 1.44 and 1.45 we cannot have
more than ∆′ � ∆. For this, see the examples from Remark 1.34.

(b) In Theorem 1.46 it is possible that the chains have different limits
(Pm,n → Πm, P ′

m,n → Π′
m as n → ∞, ∀m ≥ 0). Indeed, for

Pn =




1
4

3
4 0

3
4

1
4 0

0 0 1


 := A, ∀n ≥ 1.

and

P ′
1 =


 0 0 1

0 0 1
1 0 0


 , P ′

n = A, ∀n ≥ 2,

both chains are [({1, 2} , {3})]-simple and (P ′
n)n≥1 is a perturbation of the first

type of (Pn)n≥1. But (Pn)n≥1 is strongly ({1, 2} , {3})-ergodic with (unique)
limit

Π =




1
2

1
2 0

1
2

1
2 0

0 0 1



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while (P ′
n)n≥1 is strongly ({1, 2} , {3})-ergodic with limits

Π′
0 = P ′

1Π =


 0 0 1

0 0 1
1
2

1
2 0


 and Π′

m = Π, ∀m ≥ 1.

(c) Theorem 1.46 gives a simpler and more general criterion of strong
∆-ergodicity than that from Theorem 3.19 of [14].

(d) If (Pn)n≥1 is
[
({i})i∈S

]
-simple and weakly (respectively, strongly)

({i})i∈S-ergodic, then any perturbation of the first type of it is weakly (re-
spectively, strongly) ({i})i∈S-ergodic. An example is Pn = Ir, ∀n ≥ 1, and
other, more general, is Pn = P , ∀n ≥ 1, where P is a permutation matrix.

Now, we consider [∆]-ergodicity under perturbation of the first type. For
this, we first give the following result.

Theorem 1.49. Let (Pn)n≥1 be a Markov chain and (P ′
n)n≥1 a pertur-

bation of the first type of it.
(i) (Pn)n≥1 is limit weakly [∆]-ergodic in a generalized sense if and only

if (P ′
n)n≥1 is limit weakly [∆]-ergodic in a generalized sense.
(ii) (Pn)n≥1 is limit strongly [∆]-ergodic if and only if (P ′

n)n≥1 is limit
strongly [∆]-ergodic.

Proof. See Theorems 1.28 and 1.28(i)′ and Theorem 2.13 from [14]. �
Remark 1.50. Theorems 1.32 and 1.46 cannot be generalized (for ∆-

ergodicity) if (Pn)n≥1 and (P ′
n)n≥1 are [∆]-groupable Markov chains. In-

deed, let

Pn =


 1 0 0

0 1 0
1 0 0


 , P ′

n =


 1 0 0

0 1 0
1 − 1

n2
1
n2 0


 , ∀n ≥ 1.

Because Pm,n = Pm+1 and P ′
m,n = P ′

m+1, ∀m,n, 0 ≤ m < n, the chain
(Pn)n≥1 is weakly and strongly ({1, 3} , {2})-ergodic while (P ′

n)n≥1 is weakly
and strongly ({1} , {2} , {3})-ergodic. Obviously, (P ′

n)n≥1 is a perturbation of
the first type of (Pn)n≥1 and both chains are [({1} , {2} , {3})]-groupable.

Related to Theorems 1.32 and 1.46 and Remark 1.50 we show that weak
and strong [∆]-ergodicity is preserved for [∆]-groupable Markov chains under
perturbations of the first type.

Theorem 1.51. Let (Pn)n≥1 be a [∆]-groupable Markov chain and
(P ′

n)n≥1 a [∆]-groupable perturbation of the first type of it.
(i) (Pn)n≥1 is weakly [∆]-ergodic if and only if (P ′

n)n≥1 is weakly [∆]-
ergodic.
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(ii) (Pn)n≥1 is strongly [∆]-ergodic if and only if (P ′
n)n≥1 is strongly

[∆]-ergodic.

Proof. By symmetry, in both cases it is sufficient to prove just an impli-
cation.

(i) Suppose that (Pn)n≥1 is weakly [∆]-ergodic. Then, by Theorem 1.21′,
(Pn)n≥1 is limit weakly [∆]-ergodic in a generalized sense. By Theorem 1.49,
(P ′

n)n≥1 is limit weakly [∆]-ergodic in a generalized sense. Now, by Theo-
rem 1.21′ again, (P ′

n)n≥1 is weakly [∆]-ergodic.
(ii) Suppose that (Pn)n≥1 is strongly [∆]-ergodic. It follows that it is

weakly [∆]-ergodic. It follows from (i) that (P ′
n)n≥1 is weakly [∆]-ergodic. But,

by Theorem 1.43, ∃∆′ ∈ Par(S) such that (P ′
n)n≥1 is strongly ∆′-ergodic. Now,

the result is obvious because weak [∆]-ergodicity and strong ∆′-ergodicity
imply strong [∆]-ergodicity. �

Remark 1.52. (a) In particular, Theorem 1.51 can be applied to chains
with ‘transient states’. For this, let ∆ = (K1,K2, . . . ,Kp, {i})i∈T ∈ Par(S),

where p ≥ 1 and ∅ 	= T = S−
p⋃

u=1
Ku, and let (Pn)n≥1 be a Markov chain such

that
(
(Pn)CT

CT

)
n≥1

is [(K1,K2, . . . ,Kp)]-simple and ∃n ≥ 1 such that (Pn)CT
T 	=

0 (in this case we say that (Pn)n≥1 is with ‘transient states’). It follows that the
chain (Pn)n≥1 is [∆]-groupable. Let (P ′

n)n≥1 be a [∆]-groupable perturbation
of the first type of (Pn)n≥1. By Theorem 1.51, (Pn)n≥1 is weakly (strongly)
[∆]-ergodic if and only if (P ′

n)n≥1 is weakly (strongly) [∆]-ergodic.
(b) (a) and Theorem 1.51(ii) give a better criterion of ∆-ergodicity than

that from Theorem 3.17 of [14] (in fact,this theorem is due to Mukherjea
and Chaudhuri [5]) in the special case when the chain (Pn)n≥1 from there is
[∆]-groupable, where ∆ is as in (a). (See also Remark 2.15(a).)

Remark 1.53. From this section it is easy to see that we can obtain
information about limit [∆]- and ∆-ergodicity. Thus, if (Pn)n≥1 is a [∆]-
simple and weakly (strongly) ∆-ergodic Markov chain, then any perturbation
of the first type of it is limit weakly (strongly) ∆-ergodic in a generalized sense
(in the usual sense).

2. UNIFORM ERGODICITY

In this section we give some results on uniform weak or strong ergodi-
city. Then considering perturbations of the second type and using the blocks
method we obtain other results.
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Definition 2.1 (see, e.g., [3, p. 221]). We say that a (finite) Markov chain
(Pn)n≥1 is uniformly weakly ergodic if ∀i, j, k ∈ S we have

lim
n→∞

[
(Pm,m+n)ik − (Pm,m+n)jk

]
= 0

uniformly with respect to m ≥ 0.

Definition 2.2 (see, e.g., [3, p. 226]). We say that a Markov chain (Pn)n≥1

is uniformly strongly ergodic if ∀i, j ∈ S the limit

lim
n→∞ (Pm,m+n)ij := πj

exists uniformly with respect to m ≥ 0 and does not depend on i (it is easy
to prove that this limit (when it exists) does not also depend on m).

The following theorem is on uniform weak ergodicity, but it can be gener-
alized for uniform weak [∆]-ergodicity using [∆]-groupable Markov chains and
γ∆ instead of α (see Theorem 3.14 from [11] and Theorem 1.5 and Remark 1.6
from [12]).

Theorem 2.3. Let (Pn)n≥1 be a Markov chain and k and k′ two natural
numbers. Then the following statements are equivalent.

(i) The chain is uniformly weakly ergodic.
(ii) lim sup

l→∞
lim sup

n→∞
α (Pn−l,n) = 0.

(iii) lim sup
l→∞

lim sup
n→∞

α (Pn,n+l) = 0.

(iv) lim sup
l→∞

lim sup
n→∞

α (Pn−kl,n) = 0, if k ≥ 1.

(v) lim sup
l→∞

lim sup
n→∞

α (Pn,n+kl) = 0, if k ≥ 1.

(vi) lim sup
l→∞

lim sup
n→∞

α
(
Pn−k′l,n+kl

)
= 0, if k + k′ ≥ 1.

Proof. (i)⇔(ii)⇔(iii)⇔(iv)⇔(v) See Theorem 3.14 from [11] and Theo-
rem 1.5 and Remark 1.6 from [12].

(v)⇒(vi) The case k′ = 0 is obvious. For k′ ≥ 1, from

α
(
Pn−k′l,n+kl

) ≤α
(
Pn−k′l,n

)
α (Pn,n+kl) ≤α (Pn,n+kl) ,

using (v), we have (vi).
(vi)⇒(v) The case k′ = 0 is obvious. Now, let k′ ≥ 1. Setting u = n−k′l,

we have n + kl = u + (k + k′) l, so that

0 = lim sup
l→∞

lim sup
n→∞

α
(
Pn−k′l,n+kl

)
= lim sup

l→∞
lim sup

u→∞
α
(
Pu,u+(k+k′)l

)
.

Therefore (v) holds with k + k′ instead of k. But (v) implies (i), i.e., the chain
is uniformly weakly ergodic. Since (i) implies (v), we obtain (v). �
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Proposition 2.4. Let P,Q,Π ∈ Sr and Π be a stable matrix (i.e., it
have all rows identically). Then

(i) α (P ) ≤ ‖|P − Π|‖∞ ;
(ii) ‖|PQ − Π|‖∞ ≤ ‖|Q − Π|‖∞ ;
(iii) ‖|PQ − Π|‖∞ ≤ ‖|P − Π|‖∞ , if ΠQ = Π;
(iv) α (PQ) ≤ ‖|Q − Π|‖∞ ;
(v) α (PQ) ≤ ‖|P − Π|‖∞ , if ΠQ = Π.

Proof. (i)

α (P ) =
1
2

max
1≤i,j≤r

r∑
k=1

|Pik − Pjk| ≤

≤ 1
2

max
1≤i,j≤r

r∑
k=1

(|Pik − Πik| + |Πjk − Pjk|) ≤

≤ 1
2

max
1≤i≤r

r∑
k=1

|Pik − Πik| + 1
2

max
1≤j≤r

r∑
k=1

|Πjk − Pjk| =

=
1
2
‖|P − Π|‖∞ +

1
2
‖|P − Π|‖∞ = ‖|P − Π|‖∞ .

(ii)

‖|PQ − Π|‖∞ = ‖|PQ − PΠ|‖∞ = ‖|P (Q − Π)|‖∞ ≤
≤ ‖|P |‖∞ ‖|Q − Π|‖∞ = ‖|Q − Π|‖∞ .

(iii) Similar to (ii).
(iv) Using (i) and (ii), we have

α (PQ) ≤ ‖|PQ − Π|‖∞ ≤ ‖|Q − Π|‖∞ .

(v) Similar to (iv). �
Theorem 2.5 ([9]). Let (Pn)n≥1 be a Markov chain. Then it is uniformly

strongly ergodic if and only if it is uniformly weakly ergodic and strongly er-
godic.

Proof. See [9]. �
For uniform strong ergodicity the result similar to Theorem 2.3 is

Theorem 2.6. Let (Pn)n≥1 be a Markov chain and k and k′ two natural
numbers. Then the following statements are equivalent.

(i) The chain is uniformly strongly ergodic with limit Π.
(ii) lim sup

l→∞
lim sup

n→∞
‖|Pn−l,n − Π|‖∞ = 0.

(iii) lim sup
l→∞

lim sup
n→∞

‖|Pn,n+l − Π|‖∞ = 0.

(iv) lim sup
l→∞

lim sup
n→∞

‖|Pn−kl,n − Π|‖∞ = 0, if k ≥ 1.
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(v) lim sup
l→∞

lim sup
n→∞

‖|Pn,n+kl − Π|‖∞ = 0, if k ≥ 1.

(vi) lim sup
l→∞

lim sup
n→∞

∥∥∣∣Pn−k′l,n+kl − Π
∣∣∥∥

∞ = 0, if k + k′ ≥ 1.

Proof. We only prove (i)⇔(iii). The others are left to the reader (see the
proof of Theorem 2.3 and use Proposition 2.4).

(i)⇒(iii) By Theorem 2.5, the chain (Pn)n≥1 is strongly ergodic with
limit Π, i.e., Pm,n → Π as n → ∞, ∀m ≥ 0. For 0 ≤ m < n < n + l, we have

|‖Pn,n+l − Π‖|∞ ≤ |‖Pn,n+l − Pm,n+l‖|∞ + |‖Pm,n+l − Π‖|∞ =

= |‖Pn,n+l − Pm,nPn,n+l‖|∞ + |‖Pm,n+l − Π‖|∞ ≤
(we use a well-known inequality, namely |‖RP‖|∞ ≤ |‖R‖|∞ α (P ) , where R is
an m×n real matrix with Re′ = 0, e′ is the transpose of e = (1, 1, . . . , 1) ∈ Rn

and P ∈ Sn,p (see, e.g., [12]))

≤ |‖Ir − Pm,n‖|∞ α (Pn,n+l) + |‖Pm,n+l − Π‖|∞ ≤
≤ 2 α (Pn,n+l) + |‖Pm,n+l − Π‖|∞ ,

so that
lim sup

n→∞
|‖Pn,n+l − Π‖|∞ ≤ 2 lim sup

n→∞
α (Pn,n+l) ,∀l ≥ 1.

Further,

lim sup
l→∞

lim sup
n→∞

|‖Pn,n+l − Π‖|∞ ≤ 2 lim sup
l→∞

lim sup
n→∞

α (Pn,n+l) = 0

because the chain is uniformly weakly ergodic (see Theorems 2.3 and 2.5).
Therefore (iii) holds.

(iii)⇒(i) By hypothesis and Proposition 2.4(i) we have

lim sup
l→∞

lim sup
n→∞

α (Pn,n+l) = 0,

i.e., (Pn)n≥1 is uniformly weakly ergodic. Now, we show that (Pn)n≥1 is
strongly ergodic with limit Π. For this, if 0 ≤ m < n and l ≥ 1, by Proposi-
tion 2.4(ii) we have

|‖Pm,n+l − Π‖|∞ = |‖Pm,nPn,n+l − Π‖|∞ ≤ |‖Pn,n+l − Π‖|∞ .

It follows from (iii) that

lim sup
l→∞

lim sup
n→∞

|‖Pm,n+l − Π‖|∞ = 0, ∀m ≥ 0.

Let m ≥ 0. Then ∀ε > 0,∃lε ≥ 1 such that

lim sup
n→∞

|‖Pm,n+l − Π‖|∞ < ε, ∀l ≥ lε.
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This implies
lim sup

n→∞
|‖Pm,n+lε − Π‖|∞ < ε.

By the definition of lim sup we have

lim
n→∞ sup

p≥n
|‖Pm,p+lε − Π‖|∞ < ε,

so that ∃nε ≥ 1 such that

sup
p≥n

|‖Pm,p+lε − Π‖|∞ < ε, ∀n ≥ nε.

Thus,
|‖Pm,p+lε − Π‖|∞ < ε, ∀p ≥ nε.

Setting u = p + lε and uε = nε + lε, we have

|‖Pm,u − Π‖|∞ < ε, ∀u ≥ uε,

i.e., Pm,u → Π as u → ∞. Finally, by Theorem 2.5 we obtain (i). �
Now, we consider perturbations of the second type to get other results.

Theorem 2.7 ([8]). Let (Pn)n≥1 be a Markov chain and (P ′
n)n≥1 be a

perturbation of the second type of it. Then the chain (Pn)n≥1 is uniformly
weakly ergodic if and only if the chain (P ′

n)n≥1 is uniformly weakly ergodic.

Proof. See [8]. �
Further, we give a similar result of Theorem 2.7 which is due to Fleischer

and Joffe [2].

Theorem 2.8 ([2]). Let (Pn)n≥1 be a Markov chain and (P ′
n)n≥1 be a

perturbation of the second type of it. Then the chain (Pn)n≥1 is uniformly
strongly ergodic with limit Π if and only if the chain (P ′

n)n≥1 is uniformly
strongly ergodic with limit Π.

Proof. See [2] or the following lines. By symmetry, it is sufficient to
prove just an implication. Suppose that (Pn)n≥1 is uniformly strongly ergodic
with limit Π . Let Qn = P ′

n − Pn, ∀n ≥ 1. Then P ′
n = Pn + Qn, ∀n ≥ 1, and

Qn → 0 as n → ∞. Let l ≥ 1 and n ≥ 0. Then∣∣∥∥P ′
n,n+l − Π

∥∥∣∣
∞ = |‖Pn,n+l + R (n, n + l) − Π‖|∞ ≤

≤ |‖Pn,n+l − Π‖|∞ + |‖R (n, n + l)‖|∞ ,

where R (n, n + l) is the sum of the terms left (there are 2l −1 such terms and
this number does not depend on n). Further,

lim sup
n→∞

∣∣∥∥P ′
n,n+l − Π

∥∥∣∣
∞ ≤ lim sup

n→∞
|‖Pn,n+l − Π‖|∞ , ∀l ≥ 1,



23 Perturbed finite Markov chains 205

because lim
n→∞ |‖R (n, n + l)‖|∞ = 0. Therefore

lim sup
l→∞

lim sup
n→∞

∣∣∥∥P ′
n,n+l − Π

∥∥∣∣
∞ = 0,

i.e., by Theorem 2.6, (P ′
n)n≥1 is uniformly strongly ergodic with limit Π. �

Remark 2.9. (a) Related to Theorem 2.8, we mention that in [9] we
obtained the following equivalence: (Pn)n≥1 is uniformly strongly ergodic if
and only if (P ′

n)n≥1 is uniformly strongly ergodic. Theorem 2.8 improves this
result since it says, moreover, that both chains have the same limit.

(b) Using Theorem 2.8, it is easy to give another proof of a theorem of
J.L. Mott (see, e.g., [3, pp. 226]). For the case lim

n→∞Pn,n+k = P, where k ≥ 2,
see Theorem 2.13.

To get a generalization of Theorem 2.8 we shall use the blocks method.
For this, consider two sequences (k1 (n))n≥1 and (k2 (n))n≥0 of nonzero natural
numbers. With (Pn)n≥1 we associate

(
Pn−k1(n),n

)
n≥1

, if n−k1 (n) ≥ 0, ∀n ≥ 1,
and

(
Pn,n+k2(n)

)
n≥0

. These will be called the sequence of left-hand blocks
and the sequence of right-hand blocks, respectively. Moreover, for sequences
(k1 (n))n≥0 and (k2 (n))n≥0 of natural numbers with k1 (n)+k2 (n) ≥ 1, ∀n ≥ 0,
with (Pn)n≥1 we associate

(
Pn−k1(n),n+k2(n)

)
n≥0

, if n−k1 (n) ≥ 0,∀n ≥ 0. This
will be called the sequence of bilateral blocks. We used bilateral blocks in, e.g.,
Theorems 2.3 and 2.6 from this section and in Theorem 2.16 from [13].

Further, we shall use only left-hand blocks. The others are left to the
reader. Consider a sequence of left-hand blocks

(
Pn−k(n),n

)
n≥1

. Either this or
the sequence (k (n))n≥1 determines a nondirected graph (N,L) , where the set
of natural numbers N is the set of vertices and L = {[n − k (n) , n] |n ≥ 1} is
the set of edges. Following [12], we call it the graph of left-hand blocks.

A chain in a nondirected graph (V,E) is a (finite or infinite) sequence of
vertices (ns)s∈I such that [ns−1, ns] ∈ E,∀s ∈ I −{0} , where I = {0, 1, . . . , t}
in the finite case and I = N in the infinite case. Set C = [n0, n1, . . . , nt] for a
finite chain and C = [n0, n1, . . .] for an infinite chain. Let

L = {C = [n0, n1, . . . , nt] |[ns, ns+1] ∈ L and ns < ns+1,∀s ∈ {0, 1, . . . , t − 1} ,

n0 = 0, and �l ∈ N such that l − k(l) = nt}
and

M = {C = [n0, n1, . . .] |[ns, ns+1] ∈ L and ns < ns+1,∀s ≥ 0, and n0 = 0} .

Definition 2.10 ([12]). Let n ∈ N∗. We say that n is a right-hand end of
the graph (N,L) if ∃C = [n0, n1, . . . , nt] ∈ L such that nt = n.



206 Udrea Păun 24

Let m ≥ 0. Consider the condition

(CRm) ∀n ≥ m,∃l > n such that n = l − k(l),

that we call the condition of continuation to the right for natural numbers
(vertices) greater than or equal to m.

Let (here we correct Nn from [12]; we also mention that it is not used in
the theorem we are going to prove)

Nn = {C = [n0, n1, . . . , nt] ∈ L |nt > n and �s ∈ {0, 1, . . . , t − 1} with ns > n

for which ∃ ∼

C∈ M such that ns ∈
∼

C
}

, ∀n ≥ 0

(in words, Nn, n ≥ 0, is the set of finite chains from L with right-hand ends
> n which are connected with infinite chains from M at vertices ≤ n).

Theorem 2.11 ([12]). Let (k (n))n≥1 be a sequence of nonzero natural
numbers such that k (n) ≤ M, ∀n ≥ 1. Then

(i) 1≤ |M| ≤ M ;
(ii) |Nn| ≤ M − |M| , ∀n ≥ 0.

Proof. See [12]. �
For left-hand blocks, Theorem 2.7 has the following generalization.

Theorem 2.12 ([12]). Let (k (n))n≥1 be a bounded sequence of nonzero
natural numbers such that (CRv) holds for some v ≥ 0. Let (Pn)n≥1 and
(P ′

n)n≥1 be two Markov chains such that Pn−k(n),n = P ′
n−k(n),n + Qn,∀n ≥ 1,

where lim
n→∞Qn = 0. Then the chain (Pn)n≥1 is uniformly weakly ergodic if and

only if the chain (P ′
n)n≥1 is uniformly weakly ergodic.

Proof. See [12]. �
With left-hand blocks, too, we can generalize Theorem 2.8.

Theorem 2.13. Let (k (n))n≥1 be a bounded sequence of nonzero natural
numbers such that (CRv) holds for some v ≥ 0. Let (Pn)n≥1 and (P ′

n)n≥1

be two Markov chains such that Pn−k(n),n = P ′
n−k(n),n + Qn, ∀n ≥ 1, where

lim
n→∞Qn = 0. Then the chain (Pn)n≥1 is uniformly strongly ergodic with limit

Π if and only if the chain (P ′
n)n≥1 is uniformly strongly ergodic with limit Π.

Proof. Similar to that of Theorem 2.12. We consider two cases.

Case 1. k (n) = 1, ∀n ≥ 1. See Theorem 2.8.

Case 2. ∃n ≥ 1 such that k (n) > 1. Suppose that k (n) ≤ M , ∀n ≥ 1.
Since condition (CRv) holds for some v ≥ 0, then for any n ≥ v, n 	= 0,
∃C = C (n) = [n0, n1, . . .] ∈ M for which ∃t ≥ 1 such that n = nt.
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Step 1. We construct two Markov chains. The chain C determines two
Markov chains

(
Pns−1,ns

)
s≥1

and
(
P ′

ns−1,ns

)
s≥1

(clearly, these chains depend
on n and we write

(
Pns−1,ns(n)

)
s≥1

and
(
P ′

ns−1,ns
(n)
)
s≥1

, respectively, when
confusion can arise). Putting Rn = Pn−k(n),n and R′

n = P ′
n−k(n),n, ∀n ≥ 1, we

have
(
Pns−1,ns

)
s≥1

= (Rns)s≥1 and (P ′
ns−1,ns

)s≥1 = (R′
ns

)s≥1. Clearly, Rns =
R′

ns
+ Qns , ∀s ≥ 1, where Qns → 0 as s → ∞.

Step 2. We show that (Rns)s≥1 is uniformly strongly ergodic with limit
Π if and only if

(
R′

ns

)
s≥1

is uniformly strongly ergodic with limit Π. This is
obvious from Theorem 2.8 (or Case 1).

Step 3. We show that (Pn)n≥1 is uniformly strongly ergodic with limit Π
if and only if (P ′

n)n≥1 is uniformly strongly ergodic with limit Π. By symmetry,
it is sufficient to prove that (Pn)n≥1 is uniformly strongly ergodic with limit
Π when (P ′

n)n≥1 is uniformly strongly ergodic with limit Π. Let n ≥ l ≥ M.

Clearly, ∃s = s(l), 1 ≤ s ≤ t, such that n− l ≤ nt−s and suppose that it is the
greatest number with this property. Setting

A (l, n) =

{
Ir, if n − l = nt−s,

Pn−l,nt−s, if n − l < nt−s,

by Proposition 2.4(ii) we have

‖|Pn−l,n − Π|‖∞ =
∥∥∣∣A (l, n)Pnt−s,n − Π

∣∣∥∥
∞ ≤

≤ ∥∥∣∣Pnt−s,n − Π
∣∣∥∥

∞ =
∥∥∣∣Rnt−s,nt − Π

∣∣∥∥
∞ ,

where Rnv,nw := Rnv+1Rnv+2 . . . Rnw , ∀v,w, 0 ≤ v < w. Since (P ′
n)n≥1 is

uniformly strongly ergodic with limit Π,
(
R′

ns

)
s≥1

is uniformly strongly er-
godic with limit Π for any chain

(
R′

ns

)
s≥1

. Further, by Step 2 and Theo-
rem 2.6((i)⇒(ii)) we obtain

lim sup
s→∞

lim sup
w→∞

∥∥∣∣Rnw−s,nw − Π
∣∣∥∥

∞ = 0

for any chain (Rns)s≥1 . By Theorem 2.11(i) and the inequality above we have

lim sup
l→∞

lim sup
n→∞

‖|Pn−l,n − Π|‖∞ ≤ lim sup
s→∞

lim sup
t→∞

∥∥∣∣Rnt−s,nt (n) − Π
∣∣∥∥

∞ = 0

(n = nt and we write Rnt−s,nt (n) because confusion can arise). Hence the
chain (Pn)n≥1 is uniformly strongly ergodic with limit Π. To complete the
proof we shall show that

lim sup
s→∞

lim sup
t→∞

∥∥∣∣Rnt−s,nt (n) − Π
∣∣∥∥

∞ = 0.
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By Theorem 2.11(i) we can suppose that M = {C1, C2, . . . , CN} , where
N ≥ 1. By the definition of lim sup we have

lim sup
t→∞

∥∥∣∣Rnt−s,nt (n) − Π
∣∣∥∥

∞ = lim
t→∞ sup

k≥t

∥∥∣∣Rnk−s,nk
(n) − Π

∣∣∥∥
∞ =

(n = nk ∈ Ci = Ci(n), where i ∈ {1, 2, . . . , N})

= lim
t→∞ sup

N⋃
i=1

{∥∥∣∣Rnk−s,nk
(n) − Π

∣∣∥∥
∞ |nk ∈ Ci, k ≥ t

}
=

= lim
t→∞max

(
sup
k≥t,

nk∈C1

∥∥∣∣Rnk−s,nk
− Π

∣∣∥∥
∞ , . . . , sup

k≥t,
nk∈CN

∥∥∣∣Rnk−s,nk
− Π

∣∣∥∥
∞
)

=

(by continuity of max)

= max
(

lim
t→∞ sup

k≥t,
nk∈C1

∥∥∣∣Rnk−s,nk
− Π

∣∣∥∥
∞ , . . . , lim

t→∞ sup
k≥t,

nk∈CN

∥∥∣∣Rnk−s,nk
− Π

∣∣∥∥
∞
)

=

= max
(

lim sup
t→∞,
nt∈C1

∥∥∣∣Rnt−s,nt − Π
∣∣∥∥

∞ , . . . , lim sup
t→∞,

nt∈CN

∥∥∣∣Rnt−s,nt − Π
∣∣∥∥

∞
)
.

Further,

lim
s→∞max

(
lim sup

t→∞,
nt∈C1

∥∥∣∣Rnt−s,nt − Π
∣∣∥∥

∞ , . . . , lim sup
t→∞,

nt∈CN

∥∥∣∣Rnt−s,nt − Π
∣∣∥∥

∞
)

=

= max
(

lim
s→∞ lim sup

t→∞,
nt∈C1

∥∥∣∣Rnt−s,nt−Π
∣∣∥∥

∞ , . . . , lim
s→∞ lim sup

t→∞,
nt∈CN

∥∥∣∣Rnt−s,nt−Π
∣∣∥∥

∞
)

=

= max (0, . . . , 0) = 0.
Therefore,

lim sup
s→∞

lim sup
t→∞

∥∥∣∣Rnt−s,nt (n) − Π
∣∣∥∥

∞ = 0. �

Example 2.14. Let

P2n−1 =

(
0 1

1 0

)
, P2n =

(
1
2

1
2

1
2

1
2

)
,

P ′
2n−1 =

(
1 0

0 1

)
, P ′

2n =

(
1
2 + 1

2n
1
2 − 1

2n
1
2 + 1

3n
1
2 − 1

3n

)
, ∀n ≥ 1

(this was used in [12] for an example related to Theorem 2.12). Theorem 2.8
cannot be used because

P2n−1 = P ′
2n−1 +

(
−1 1

1 −1

)
, ∀n ≥ 1.
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On the other hand, Theorem 2.13 can be used for k (1) = 1, k (n) = 2, ∀n ≥ 2.
Indeed, we have

P2n−2,2n = P2n−1P2n = P2n, P ′
2n−2,2n = P ′

2n−1P
′
2n = P ′

2n,

P2n−1,2n+1 = P2nP2n+1 = P2n, P ′
2n−1,2n+1 = P ′

2nP ′
2n+1 = P ′

2n, ∀n ≥ 1,

so that

Pn−2,n = P ′
n−2,n +


 − 1

2[n
2 ]

1
2[n

2 ]

− 1
3[n

2 ]
1

3[n
2 ]


 , ∀n ≥ 2.

The chain (Pn)n≥1 is uniformly strongly ergodic with limit

Π =

(
1
2

1
2

1
2

1
2

)
,

because

Pm,n =

(
1
2

1
2

1
2

1
2

)
, ∀m ≥ 0, ∀n ≥ m + 2.

Now, by Theorem 2.13, the chain (P ′
n)n≥1 is uniformly strongly ergodic with

limit Π as above.

Finally, from this paper we also draw among other things the conclusions
below.

Remark 2.15. (a) Weak and strong ergodicity (see Section 1) are pre-
served under perturbations of the first type. Also, weak and strong [∆]- and
∆-ergodicity in some cases. Moreover, for strong ergodicity, the limit is pre-
served. It follows that when we decide whether a chain (Pn)n≥1 is weakly
or/and strongly ergodic (also weakly or/and strongly [∆]- and ∆-ergodic in
some cases), for simplification we can assign value 0 to each entry (i, j) for
which

∑
n≥1

(Pn)ij < ∞, adding then (Pn)ij , ∀n ≥ 1, to a entry (i, k) for which∑
n≥1

(Pn)ik = ∞.

(b) Uniform weak and strong ergodicity (see this section) are preserved
under perturbations of the second type. Moreover, for uniform strong ergod-
icity, the limit is preserved. It follows that when we decide whether a chain
(Pn)n≥1 is uniformly weakly or/and strongly ergodic, for simplification we can
assign value 0 to each entry (i, j) for which (Pn)ij → 0 as n → ∞, adding then
(Pn)ij ,∀n ≥ 1, to a entry (i, k) for which (Pn)ik � 0 as n → ∞.
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[6] U. Păun, Weakly ergodic classes of states, I. Stud. Cerc. Mat. 50 (1998), 409–415.
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