Δ -ERGODIC THEORY AND RELIABILITY THEORY

UDREA PĂUN

We show that the natural framework for the Markov chains considered in [5] is the Δ -ergodic theory (in a more general context, the general Δ -ergodic theory (see [8] and [11])) but not ergodic theory (for Δ -ergodic theory see, e.g., [8], [9], [10], and [11] and for ergodic theory see, e.g., [2], [3], [4], and [12]). For this, we give in Section 1 the notions, notation, and results from Δ -ergodic theory we need for the study of Markov chains from reliability theory. In Section 2 we then define and study these Markov chains.

AMS 2000 Subject Classification: 60J10, 60J20.

Key words: finite Markov chain, Δ -ergodic theory, reliability Markov chain, reliability theory.

1. Δ -ERGODIC THEORY

In this section we deal with Δ -ergodic theory which appears to be the natural framework for the study of Markov chains from [5].

Consider a finite Markov chain $(X_n)_{n\geq 0}$ with state space $S=\{1,2,\ldots,r\}$, initial distribution π_0 , and transition matrices $(P_n)_{n\geq 1}$. We frequently shall refer to it as the (finite) Markov chain $(P_n)_{n\geq 1}$. For all integers $m\geq 0,\ n>m$, define

$$P_{m,n} = P_{m+1}P_{m+2}\cdots P_n = ((P_{m,n})_{ij})_{i,j\in S}$$
.

(The entries of a matrix Z will be denoted Z_{ij} .)

Set

$$Par(E) = \{ \Delta \mid \Delta \text{ is a partition of } E \},$$

where E is a nonempty set. We shall agree that the partitions do not contain the empty set, except for some cases (if needed) where this will be specified.

Definition 1.1. Let $\Delta_1, \Delta_2 \in \text{Par}(E)$. We say that Δ_1 is finer than Δ_2 if $\forall V \in \Delta_1, \exists W \in \Delta_2$ such that $V \subseteq W$.

Write $\Delta_1 \leq \Delta_2$ when Δ_1 is finer than Δ_2 .

In Δ -ergodic theory the natural space is $S \times \mathbf{N}$, called *state-time space*. Let $\emptyset \neq A \subseteq S$ and $\emptyset \neq B \subseteq \mathbf{N}$. Let $\Sigma \in \operatorname{Par}(A)$. Frequently, when we only use a partition Σ of A we shall omit to mention this. Also we can omit Σ if $\Sigma = (\{i\})_{i \in A}$.

MATH. REPORTS 10(60), 1 (2008), 73-95

Definition 1.2 ([11]). Let $i, j \in S$. We say that i and j are in the same weakly ergodic class on $A \times B$ (or on $A \times B$ with respect to Σ , or on $(A \times B, \Sigma)$ when confusion can arise) if $\forall K \in \Sigma$, $\forall m \in B$ we have

$$\lim_{n \to \infty} \sum_{k \in K} \left[(P_{m,n})_{ik} - (P_{m,n})_{jk} \right] = 0.$$

Write $i \stackrel{A \times B}{\sim} j$ (with respect to Σ) (or $i \stackrel{(A \times B, \Sigma)}{\sim} j$) when i and j are in the same weakly ergodic class on $A \times B$. Then $\stackrel{A \times B}{\sim}$ is an equivalence relation and determines a partition $\Delta = \Delta (A \times B, \Sigma) = (C_1, C_2, \dots, C_s)$ of S. The sets C_1, C_2, \dots, C_s are called weakly ergodic classes on $A \times B$.

Definition 1.3 ([11]). Let $\Delta = (C_1, C_2, \dots, C_s)$ be the partition of weakly ergodic classes on $A \times B$ of a Markov chain. We say that the chain is weakly Δ -ergodic on $A \times B$. In particular, a weakly (S)-ergodic chain on $A \times B$ is called weakly ergodic on $A \times B$ for short.

Definition 1.4 ([11]). Let (C_1, C_2, \ldots, C_s) be the partition of weakly ergodic classes on $A \times B$ of a Markov chain with state space S and $\Delta \in Par(S)$. We say that the chain is weakly $[\Delta]$ -ergodic on $A \times B$ if $\Delta \leq (C_1, C_2, \ldots, C_s)$.

In connection with the above notions and notation we mention some special cases $(\Sigma \in Par(A))$:

- 1. $A \times B = S \times \mathbf{N}$. In this case we can write \sim instead of $\stackrel{S \times \mathbf{N}}{\sim}$ (or $\stackrel{\Sigma}{\sim}$ instead of $\stackrel{(S \times \mathbf{N}, \Sigma)}{\sim}$) and can omit 'on $S \times \mathbf{N}$ ' in Definitions 1.2, 1.3, and 1.4.
- 2. A=S. In this case we can write $\stackrel{B}{\sim}$ instead of $\stackrel{S\times B}{\sim}$ (or $\stackrel{(B,\Sigma)}{\sim}$ instead of $\stackrel{(S\times B,\Sigma)}{\sim}$) and can replace ' $S\times B$ ' by '(time set) B (with respect to Σ)' (or by ' (B,Σ) ') in Definitions 1.2, 1.3, and 1.4. A special subcase is $B=\{m\}$ ($m\geq 0$); in this situation we can write $\stackrel{m}{\sim}$ (or $\stackrel{(m,\Sigma)}{\sim}$) and can replace 'on (time set) $\{m\}$ ' by 'at time m' in Definitions 1.2, 1.3, and 1.4.
- 3. $B = \mathbf{N}$. In this case we can set $\stackrel{A}{\sim}$ instead of $\stackrel{(A \times \mathbf{N}, \Sigma)}{\sim}$ (or $\stackrel{(A, \Sigma)}{\sim}$ instead of $\stackrel{(A \times \mathbf{N}, \Sigma)}{\sim}$) and can replace ' $A \times \mathbf{N}$ ' by '(state set) A (with respect to Σ)' (or by ' (A, Σ) ') in Definitions 1.2, 1.3, and 1.4.

Definition 1.5 ([11]). Let C be a weakly ergodic class on $A \times B$. Let $\emptyset \neq A_0 \subseteq A$ for which $\exists K_1, K_2, \dots, K_p \in \Sigma$ such that $A_0 = \bigcup_{u=1}^p K_u$. Let $\emptyset \neq B_0 \subseteq B$. We say that C is a strongly ergodic class on $A_0 \times B_0$ with respect to $A \times B$ (and Σ) if $\forall i \in C$, $\forall K \in \Sigma$ with $K \subseteq A_0$, $\forall m \in B_0$ the limit

$$\lim_{n \to \infty} \sum_{j \in K} (P_{m,n})_{ij} := \sigma_{m,K} = \sigma_{m,K}(C)$$

exists and does not depend on i.

In connection with the last definition we mention some special cases:

- 1. $A \times B = A_0 \times B_0$. In this case we can say that C is a *strongly ergodic* class on $A \times B$. A special subcase is $A \times B = A_0 \times B_0 = S \times \mathbb{N}$ and C = S when we can say that the Markov chain itself is *strongly ergodic*.
- 2. $A = A_0 = S$. In this case we can say that C is a strongly ergodic class on (time set) B_0 with respect to (time set) B. If $B = B_0$, then we can say that C is a strongly ergodic class on (time set) B. A special subcase of the case $A = A_0 = S$ and $B = B_0$ is $B = B_0 = \{m\}$ when we can say that C is a strongly ergodic class at time m.
- 3. $B = B_0 = \mathbf{N}$. In this case we can say that C is a *strongly ergodic* class on (state set) A_0 with respect to (state set) A. If $A = A_0$, then we can say that C is a *strongly ergodic class on* (state set) A.

Definition 1.6 ([11]). Consider a weakly Δ -ergodic chain on $A \times B$ (with respect to Σ). We say that the chain is $strongly \ \Delta$ -ergodic on $A \times B$ if any $C \in \Delta$ is a strongly ergodic class on $A \times B$. In particular, a strongly (S)-ergodic chain on $A \times B$ is called $strongly \ ergodic \ on \ A \times B$ for short.

Definition 1.7 ([11]). Consider a weakly $[\Delta]$ -ergodic chain on $A \times B$. We say that the chain is strongly $[\Delta]$ -ergodic on $A \times B$ if any $C \in \Delta$ is included in a strongly ergodic class on $A \times B$.

Also, in these definitions we can simplify the language when referring to A and B (and Σ). These are left to the reader.

Let

$$R_{m,n} = \{P \mid P \text{ is a real } m \times n \text{ matrix}\},$$

 $N_{m,n} = \{P \mid P \text{ is a nonnegative } m \times n \text{ matrix}\},$

$$S_{m,n} = \{P \mid P \text{ is a stochastic } m \times n \text{ matrix}\},$$

and, for m = n := r,

$$R_r = R_{r,r}, \quad N_r = N_{r,r}, \quad \text{and} \quad S_r = S_{r,r}.$$

Let $T = (T_{ij}) \in R_{m,n}$. Let $\emptyset \neq U \subseteq \{1, 2, ..., m\}$ and $\emptyset \neq V \subseteq \{1, 2, ..., m\}$. Let $\Delta \in \text{Par}(\{1, 2, ..., m\})$. Define

$$T_U = (T_{ij})_{i \in U, j \in \{1, 2, \dots, n\}}, \quad T^V = (T_{ij})_{i \in \{1, 2, \dots, m\}, j \in V}, \quad T_U^V = (T_{ij})_{i \in U, j \in V}$$

(in particular, $T_{\{i\}}$, $T^{\{j\}}$, and $T^{\{j\}}_{\{i\}}$ are the *i*th row of T, the *j*th column of T, and the entry T_{ij} of T, respectively; if $Z \in R_{n,p}$, then $(TZ)_{ij} = (TZ)^{\{j\}}_{\{i\}} = T_{\{i\}}Z^{\{j\}})$,

$$\mu(T) = \max_{1 \le j \le n} \min_{1 \le i \le m} T_{ij}$$

(if $T \in S_{m,n}$, then $\mu(T)$ is called Markov's ergodicity coefficient of T (see, e.g., [4, p. 56])),

$$\mu_{\Delta}(T) = \min_{K \in \Delta} \mu\left(T_K\right)$$

(see [7]),

$$\alpha(T) = \min_{1 \le i, j \le m} \sum_{k=1}^{n} \min \left(T_{ik}, T_{jk} \right)$$

(if $T \in S_{m,n}$, then $\alpha(T)$ is called *Dobrushin's ergodicity coefficient of* T (see, e.g., [2] or [4, p. 56])),

$$\overline{\alpha}(T) = \frac{1}{2} \max_{1 \le i,j \le m} \sum_{k=1}^{n} |T_{ik} - T_{jk}|,$$

$$\gamma_{\Delta}(T) = \min_{K \in \Delta} \alpha(T_K), \quad \overline{\gamma}_{\Delta}(T) = \max_{K \in \Delta} \overline{\alpha}(T_K)$$

(see [7] for γ_{Δ} and $\overline{\gamma}_{\Delta}$), and

$$|||T|||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |T_{ij}|$$

(the ∞ -norm of T).

If $T \in S_{m,n}$ and $\Delta \in \text{Par}(\{1,2,\ldots,m\})$, then we have

$$\overline{\alpha}(T) = 1 - \alpha(T)$$
 and $\overline{\gamma}_{\Delta}(T) = 1 - \gamma_{\Delta}(T)$

(see [7]).

The following result shows that weak and strong ergodicity are kept back (good at a time, good in past) while weak and strong Δ -ergodicity with $\Delta \neq (S)$ are kept forward (bad at a time, bad in future).

THEOREM 1.8. Let $(P_n)_{n\geq 1}$ be a Markov chain. Let $\Sigma=(\{i\})_{i\in S}$.

- (i) If the chain is weakly ergodic at time m_0 ($m_0 \ge 0$), then it is weakly ergodic at any time $m \le m_0$ ($m \ge 0$).
- (ii) If the chain is weakly Δ -ergodic at time m_0 with $\Delta \neq (S)$, then $\forall m \geq m_0, \exists \Delta_m \in \operatorname{Par}(S)$ with $\Delta_m \neq (S)$ such that it is weakly Δ_m -ergodic at time m.
- (iii) If the chain is strongly ergodic at time m_0 , then it is strongly ergodic at any time $m \leq m_0$.
- (iv) If the chain is strongly Δ' -ergodic $(A \times B = S \times \mathbf{N})$ and strongly Δ -ergodic at time m_0 with $\Delta \neq (S)$, then $\forall m \geq m_0, \exists \Delta_m \in \operatorname{Par}(S)$ with $\Delta_m \neq (S)$ such that it is strongly Δ_m -ergodic at time m.

Proof. (i) See, e.g., [4, p. 218].

(ii) See [3, p. 242] (where different notions and notation are used) or the argument below. Suppose that $\exists m_1 > m_0$ such that the chain is weakly

ergodic ($\Delta_{m_1} = (S)$) at time m_1 . By (i), the chain is weakly ergodic at any time $m \leq m_1$, and we reached a contradiction.

(iii) Let $\Pi_{m_0} = \lim_{n \to \infty} P_{m_0,n}$ (Π_{m_0} is a stable stochastic matrix, i.e., a stochastic matrix with identical rows).

Case 1. $m_0 = 0$. Obvious.

Case 2. $m_0 > 0$. Let $0 \le m < m_0$. Then

$$P_{m,n} = P_{m,m_0} P_{m_0,n} \to P_{m,m_0} \Pi_{m_0} = \Pi_{m_0} \text{ as } n \to \infty,$$

i.e., the chain is strongly ergodic at time m (with the same limit matrix Π_{m_0}).

(iv) If the chain is strongly Δ' -ergodic, then $\forall m \geq 0$, $\exists \Delta_m \in \operatorname{Par}(S)$ such that it is strongly Δ_m -ergodic at time m. Let us show that $\Delta_m \neq (S)$, $\forall m > m_0$. Suppose that $\exists m_1 > m_0$ such that the chain is strongly ergodic at time m_1 . By (iii), the chain is strongly ergodic at any time $m \leq m_1$, and we reached a contradiction. \square

Definition 1.9 ([9]). Let $(P_n)_{n\geq 1}$ and $(P'_n)_{n\geq 1}$ be two (finite) Markov chains. We say that $(P'_n)_{n\geq 1}$ is a perturbation of the first type of $(P_n)_{n\geq 1}$ if

$$\sum_{n>1} \left| \left| \left| P_n - P_n' \right| \right| \right|_{\infty} < \infty.$$

THEOREM 1.10. Let $(P_n)_{n\geq 1}$ be a Markov chain and $(P'_n)_{n\geq 1}$ a perturbation of the first type of it. Let $\Sigma = (\{i\})_{i\in S}$ $(\Sigma \in \operatorname{Par}(S))$.

- (i) $(P_n)_{n\geq 1}$ is weakly ergodic if and only if $(P'_n)_{n\geq 1}$ is weakly ergodic.
- (ii) $(P_n)_{n\geq 1}$ is weakly Δ -ergodic with $\Delta \neq (S)$ if and only if $(P'_n)_{n\geq 1}$ is weakly Δ' -ergodic with $\Delta' \neq (S)$.
 - (iii) $(P_n)_{n\geq 1}$ is strongly ergodic if and only if $(P'_n)_{n\geq 1}$ is strongly ergodic.
- (iv) $(P_n)_{n\geq 1}$ is strongly Δ -ergodic with $\Delta \neq (S)$ if and only if $(P'_n)_{n\geq 1}$ is strongly Δ' -ergodic with $\Delta' \neq (S)$.

Proof. (i) See Theorem 1.33 in [9].

- (ii) This follows from (i).
- (iii) See Theorem 1.47 in [9].
- (iv) This follows from (iii). It also follows from Theorem 6 in [3] (where different notions and notation are used). \Box

THEOREM 1.11. Let $P \in S_r$ with a single closed set R (see, e.g., [4, p. 81] $(\emptyset \neq R \subseteq \{1, 2, ..., r\})$). Suppose that R is aperiodic and $\exists i \in R$ such that $P_{ii} > 0$. Then

- (i) $(P^{r-1})^{\{i\}} > 0$;
- (ii) $\mu(P^{r-1}) > 0$ and $\alpha(P^{r-1}) > 0$.

Proof. (i) Let $j \in \{1, 2, ..., r\}$. By hypothesis, $\exists i_1, i_2, ..., i_p \in \{1, 2, ..., r\}$ for which $i_k \neq i_l$, $\forall k, l \in \{1, 2, ..., p\}$ with $k \neq l$ such that $j = i_1, i = i_p$, and

78 Udrea Păun 6

 $P_{i_si_{s+1}} > 0, \forall s \in \{1, 2, \dots, p-1\}$. Obviously, $1 \le p \le r$. Now,

$$(P^{r-1})_{ji} \ge P_{i_1 i_2} P_{i_2 i_3} \cdots P_{i_{p-1} i_p} P_{i_p i_p} \cdots P_{i_p i_p} > 0.$$

Therefore, $(P^{r-1})^{\{i\}} > 0$.

(ii) By (i), $\mu(P^{r-1}) > 0$. By $\mu \le \alpha$ and $\mu(P^{r-1}) > 0$, we have $\alpha(P^{r-1}) > 0$. \square

Define

$$\mathcal{R}_{m,n}^{ij} = \{ P \mid P \in S_{m,n} \text{ and } P_{ij} = 1 \},$$

where $i \in \{1, 2, ..., m\}$ and $j \in \{1, 2, ..., n\}$. In particular, if i = j := k and m = n := r, set

$$\mathcal{R}_r^k = \mathcal{R}_{r,r}^{kk} \ (\mathcal{R}_r^k = \{P \mid P \in S_r \text{ and } P_{kk} = 1\}).$$

Theorem 1.12. The following statements hold.

- (i) If $P \in \mathcal{R}_{m,n}^{ij}$ and $Q \in \mathcal{R}_{n,p}^{jk}$ $(i \in \{1, 2, ..., m\}, j \in \{1, 2, ..., n\}, k \in \{1, 2, ..., p\})$, then $PQ \in \mathcal{R}_{m,p}^{ik}$.
 - (ii) $\forall i \in S_r$, \mathcal{R}_r^i is closed under multiplication.

Proof. (i) We have

$$(PQ)_{ik} = P_{\{i\}}Q^{\{k\}} = P_{ij}Q_{jk} = 1,$$

i.e., $PQ \in \mathcal{R}_{m,p}^{ik}$.

(ii) This follows from (i).

THEOREM 1.13. Let $P \in \mathcal{R}_{m,n}^{ij}$. Then

$$\alpha(P) = \mu(P) = \mu(P^{\{j\}}).$$

Proof. We know that $\mu(P) \leq \alpha(P)$ since $\mu \leq \alpha$. Further, let us show that $\mu(P) \geq \alpha(P)$. From $P \in S_{m,n}$ and $P_{ij} = 1$ we have $P_{ik} = 0, \forall k \in \{1, 2, ..., n\}, k \neq j$. It follows that

$$\mu(P) = \min_{1 \le l \le m} P_{lj}.$$

Let $u \in \{1, 2, ..., m\}$ such that $\mu(P) = P_{uj}$. Further,

$$\sum_{k=1}^{n} \min (P_{uk}, P_{ik}) = \min (P_{uj}, P_{ij}) = P_{uj} = \mu(P).$$

Therefore,

$$\alpha(P) \leq \mu(P)$$
.

By $\mu(P) \leq \alpha(P)$ and $\mu(P) \geq \alpha(P)$, we have

$$\alpha(P) = \mu(P).$$

Now,

$$\mu(P) = \min_{1 \le l \le m} P_{lj} = \mu(P^{\{j\}}).$$

Therefore,

$$\mu(P) = \mu(P^{\{j\}}). \quad \Box$$

More generally, we have the following result.

THEOREM 1.14. Let $P \in S_{m,n}$ and $\Delta \in \operatorname{Par}\left(\{1,2,\ldots,m\}\right)$. Suppose that $\forall K \in \Delta, \ \exists i = i(K) \in K, \ \exists j = j(K) \in \{1,2,\ldots,n\} \ \text{such that} \ P_K \in \mathcal{R}^{lj}_{|K|,n},$ where $l \ (l \in \{1,2,\ldots,|K|\})$ is the row of $P_K \ (P_K \in S_{|K|,n})$ corresponding to $i \ ((P_K)_{lj} = P_{ij} = 1)$. Then

$$\gamma_{\Delta}(P) = \mu_{\Delta}(P) = \min_{K \in \Delta, u = u(K)} \mu(P_K^{\{u\}}),$$

where $u = u(K) \in U_K := \{ w \mid w \in \{1, 2, ..., n\} \text{ and } \exists v \in K \text{ such that } P_{vw} = 1 \}$ is given, $\forall K \in \Delta$.

Proof. By Theorem 1.13, we have

$$\gamma_{\Delta}(P) = \min_{K \in \Delta} \alpha(P_K) = \min_{K \in \Delta} \mu(P_K) = \mu_{\Delta}(P).$$

The second equality follows from Theorem 1.13 and $\mu_{\Delta}(P) = \min_{K \in \Delta} \mu\left(P_K\right)$. \square

A vector $x \in \mathbf{R}^n$ will be understood as a row vector and x' is its transpose. Consider also the canonical basis $(e_i(n))_{i \in \{1,2,\dots n\}}$ of \mathbf{R}^n and $e(n) = \sum_{i=1}^n e_i(n)$

(i.e., $e(n) = (1, 1, \dots, 1)$).

THEOREM 1.15. Let $(P_n)_{n\geq 1}$ be a Markov chain.

- (i) If $P_n \in \mathcal{R}_r^i$ $(i \in S = \{1, 2, ..., r\})$, $\forall n \geq 1$, then $\exists \Delta \in \operatorname{Par}(S)$ such that the chain is strongly Δ -ergodic on $\{i\}$ $(A = \{i\}, B = \mathbb{N}, \Sigma = (\{i\}) \in \operatorname{Par}(\{i\}))$.
 - (ii) (a generalization of (i)) Let

$$G = \{i \mid i \in S \text{ and } P_n \in \mathcal{R}_r^i, \ \forall n \ge 1\}.$$

If $G \neq \emptyset$, then $\exists \Delta \in \operatorname{Par}(S)$ such that the chain is strongly Δ -ergodic on G $(A = G, B = \mathbf{N}, \Sigma = (\{i\})_{i \in G} \in \operatorname{Par}(G))$.

(iii) (another generalization of (i)) If $\exists H, \emptyset \neq H \subseteq S$, such that $(P_n)_H^H = Q_n, \forall n \geq 1$, where $Q_n \in S_{|H|}, \forall n \geq 1$, then $\exists \Delta \in \operatorname{Par}(S)$ such that the chain is strongly Δ -ergodic on H with respect to (H) $(\Sigma = (H) \in \operatorname{Par}(H))$.

Proof. (i) This follows from (iii).

(ii) Obviously, $\exists \Delta \in \operatorname{Par}(S)$ such that the chain $(P_n)_{n\geq 1}$ is strongly Δ -ergodic on G if and only if $\forall i \in G$, $\exists \Delta' = \Delta'(i)$ such that it is strongly Δ' -ergodic on $\{i\}$. Now, (ii) follows from (i).

(iii) Let $i \in S$. We have

$$(P_{m,n+1})_{\{i\}}^{H} = (P_{m,n})_{\{i\}} (P_{n+1})^{H} \ge (P_{m,n})_{\{i\}}^{H} (P_{n+1})_{H}^{H} =$$
$$= (P_{m,n})_{\{i\}}^{H} Q_{n+1}, \quad \forall m, n, \ 0 \le m < n.$$

Set t = |H|. Further,

$$(P_{m,n+1})_{\{i\}}^H e'(t) \ge (P_{m,n})_{\{i\}}^H Q_{n+1} e'(t) = (P_{m,n})_{\{i\}}^H e'(t), \quad \forall m, n, \ 0 \le m < n.$$

Therefore, $((P_{m,n})_{\{i\}}^H e'(t))_{n>m}$ is an increasing sequence, $\forall m \geq 0$. This implies that $((P_{m,n})_{\{i\}}^H e'(t))_{n>m}$ is convergent, $\forall m \geq 0$. Consequently, $\exists \Delta \in \text{Par}(S)$ such that the chain $(P_n)_{n\geq 1}$ is strongly Δ -ergodic on H with respect to (H). \square

THEOREM 1.16. Let $(P_n)_{n\geq 1}$ be a Markov chain.

- (i) If $\exists \Delta \in \operatorname{Par}(S)$ such that the chain is strongly Δ -ergodic on $A \times B$ with respect to Σ , then $\exists \Delta' \in \operatorname{Par}(S)$ with $\Delta \preceq \Delta'$ such that it is strongly Δ' -ergodic on $\mathcal{C}A \times B$ with respect to $(\mathcal{C}A)$, where $\mathcal{C}A$ is the complement of A.
- (ii) The chain is strongly Δ -ergodic on $A \times B$ with respect to (A) if and only if it is strongly Δ -ergodic on $\mathcal{C}A \times B$ with respect to $(\mathcal{C}A)$. In particular, the chain is strongly ergodic on A with respect to (A) if and only if it is strongly ergodic on $\mathcal{C}A$ with respect to $(\mathcal{C}A)$.

Proof. Obvious.
$$\Box$$

The following two results show that Δ -ergodic theory can be used to obtain results in ergodic theory (for other examples see, e.g., Theorems 3.6, 3.10, and 3.12 in [10] (the latter is Theorem 1.23 below)).

THEOREM 1.17. Let $(P_n)_{n\geq 1}$ be a Markov chain. Let $\Sigma=(\{i\})_{i\in S}$, $\emptyset \neq K \subseteq S$, $w \in S$, and $s\geq 0$. Suppose that $\exists t>s$, $\exists u=u(t)\in K$ such that $(P_{s,t})_{\{u\}}>0$. Then the following statements are equivalent.

(i) The chain is strongly ergodic at any time $m, 0 \le m \le t$, with

$$\lim_{n \to \infty} P_{m,n} = e'(r)e_w(r) := \Pi, \quad \forall m, \ 0 \le m \le t.$$

(Obviously, $\Pi^{\{w\}} = e'(r)$.)

(ii) K is included in a strongly ergodic class at time s with

$$\lim_{n \to \infty} (P_{s,n})_K = e'(v)e_w(r),$$

where v := |K|.

Proof. (i) \Rightarrow (ii) Obvious.

(ii) \Rightarrow (i) Let $0 \le m < t$ and n > t. We have

$$(P_{s,n})_{\{u\}}^{\mathcal{C}\{w\}} = (P_{s,t}P_{t,n})_{\{u\}}^{\mathcal{C}\{w\}} = (P_{s,t})_{\{u\}} (P_{t,n})^{\mathcal{C}\{w\}}.$$

Because $\lim_{n\to\infty} (P_{s,n})_{\{u\}}^{\mathcal{C}\{w\}} = 0$ (the zero vector) and $(P_{s,t})_{\{u\}} > 0$, we have

$$\lim_{n\to\infty} (P_{t,n})^{\mathcal{C}\{w\}} = 0 \text{ (the zero matrix)}.$$

Therefore,

$$\lim_{n\to\infty} P_{t,n} = \Pi.$$

Hence the chain is strongly ergodic at time t. Further,

$$P_{m,n} = P_{m,t}P_{t,n} \to P_{m,t}\Pi = \Pi \text{ as } n \to \infty,$$

i.e., the chain is strongly ergodic at time m with $\lim_{n\to\infty} P_{m,n} = \Pi$. \square

THEOREM 1.18. Let $(P_n)_{n\geq 1}$ be a Markov chain. Let $\Sigma=(\{i\})_{i\in S}$, $\emptyset \neq K \subseteq S$, $w \in S$, and $s\geq 0$. Suppose that there exist two sequences $s< t_1 < t_2 < \cdots$ and $u_1=u_1(t_1)\in K$, $u_2=u_2(t_2)\in K,\ldots$ such that $(P_{s,t_l})_{\{u_l\}}>0$, $\forall l\geq 1$. Then the following statements are equivalent.

(i) The chain is strongly ergodic with

$$\lim_{n \to \infty} P_{m,n} = e'(r)e_w(r) := \Pi, \quad \forall m \ge 0.$$

(ii) K is included in a strongly ergodic class at time s with

$$\lim_{n \to \infty} (P_{s,n})_K = e'(v)e_w(r),$$

where v := |K|.

Proof. (i) \Rightarrow (ii) Obvious.

(ii) \Rightarrow (i) As in the proof of (ii) \Rightarrow (i) in Theorem 1.17, the chain is strongly ergodic at time t_l with $\lim_{n\to\infty} P_{t_l,n} = \Pi$, $\forall l \geq 1$. Now, let $m \geq 0$. Obviously, $\exists l \geq 1$ such that $m < t_l$. Further, for $n > t_l$,

$$P_{m,n} = P_{m,t_l} P_{t_l,n} \to P_{m,t_l} \Pi = \Pi \text{ as } n \to \infty,$$

i.e., the chain is strongly ergodic at time m with $\lim_{n\to\infty} P_{m,n} = \Pi$. It follows that the chain is strongly ergodic with $\lim_{n\to\infty} P_{m,n} = \Pi$, $\forall m \geq 0$. \square

A special case of the hypothesis of Theorem 1.18 is $u_1 = u_2 = \cdots := u \in K$. Below we give a sufficient condition for $(P_{s,t_l})_{\{u\}} > 0$, $\forall l \geq 1$. For this, we need the following notion.

Definition 1.19 (see, e.g., [12, p. 80]). Let $T \in N_{m,n}$. We say that T is a column-allowable matrix if it has at least one positive entry in each column.

Theorem 1.20. Let $(P_n)_{n\geq 1}$ be a Markov chain. Let $\emptyset \neq K \subseteq S$ and $s\geq 0$. If $\exists t>s$, $\exists u=u(t)\in K$ such that $(P_{s,t})_{\{u\}}>0$ and there exists a sequence $t< t_1< t_2<\cdots$ such that P_{t,t_l} is a column-allowable matrix, $\forall l\geq 1$, then $(P_{s,t_l})_{\{u\}}>0$, $\forall l\geq 1$.

Proof. Obvious. \square

The following result is closely related to Theorem 2.1, $(1)\Leftrightarrow(3)$, in [6].

THEOREM 1.21. Let $(P_n)_{n\geq 1}$ be a Markov chain. Let $\emptyset \neq K \subseteq S$ included in a strongly ergodic class on $A \times B$ with respect to Σ . Then the following statements are equivalent.

- (i) The chain is strongly ergodic on $A \times B$ with respect to Σ .
- (ii) The chain is weakly ergodic on $A \times B$ with respect to Σ .

Proof. Obvious. \square

THEOREM 1.22 ([3]). Let $(P_n)_{n\geq 1}$ be a Markov chain. Then it is weakly ergodic if and only if there exists a strictly increasing sequence $0 \leq n_1 < n_2 < \cdots$ (of natural integers) such that $\sum_{s\geq 1} \alpha\left(P_{n_s,n_{s+1}}\right) = \infty$.

Proof. See, e.g., [3] or [4, p. 219]. \square

THEOREM 1.23 ([10]). Let

$$P_n = \begin{pmatrix} Q_n & 0 \\ R_n & T_n \end{pmatrix}, \quad n \ge 1,$$

be a Markov chain and $(K_1, K_2) \in Par(S)$, where $(P_n)_{K_1}^{K_1} = Q_n$, $\forall n \geq 1$. If

- (i) K_1 is included in a weakly (respectively, strongly) ergodic class;
- (ii) T_n is lower triangular, $\forall n \geq 1$, or it is upper triangular, $\forall n \geq 1$;
- (iii) $\prod_{n>t} (P_n)_{ii} = 0, \ \forall t \ge 1, \ \forall i \in K_2,$

then $(P_n)_{n\geq 1}$ is weakly (respectively, strongly) ergodic.

Proof. See [10]. \square

2. RELIABILITY THEORY

In this section we consider the Markov chains from [5]. Generally speaking, the matrices corresponding to a reliability structure depend on the number of structure components and time (time in the sense of Markov chain theory); [1] studies especially the case where the matrices depend on both the number of structure components and time while [5] the case where these only depend on time. Here we do not set forth the Markov chain approach of reliability

structures (for this see [5]), but only we define and study the Markov chains (without their meaning) corresponding to reliability structures from [5].

The underlying Markov chain we need is $(X_n)_{n\geq 0}$ with state space $S=\{0,1,\ldots,r\}$, initial distribution π_0 with supp $\pi_0\subseteq\{0,1,\ldots,r-1\}$, where supp $\pi_0:=\{i\mid i\in S \text{ and } (\pi_0)_i>0\}$ (the support of π_0), and transition matrices $(P_n)_{n\geq 1}$ with $P_n\in\mathcal{R}^r_{r+1}$ (the rows and columns of these matrices are labelled $0,1,\ldots,r$), $\forall n\geq 1$. We call it the reliability Markov chain and frequently shall refer to it as the reliability (finite) Markov chain $(P_n)_{n\geq 1}$

Further, we define reliability Markov chains corresponding to reliability structures from [5] (where they were considered without naming them). We divide them into three classes as follows.

Class I. This contains:

1. Series Markov chains. These are the Markov chains with state space $S = \{0,1\}$ (r = 1), initial distribution $\pi_0 = (1,0)$, and transition matrices

$$P_n = \left(\begin{array}{cc} p_n & q_n \\ & 1 \end{array}\right), \quad n \ge 1$$

 $(p_n + q_n = 1 \text{ and we can omit } 0, \forall n \ge 1).$

2. k-out-of- ∞ : F Markov chains. These are the Markov chains with state space $S = \{0, 1, ..., k\}$ $(k \ge 1)$, initial distribution π_0 with supp $\pi_0 \subseteq \{0, 1, ..., k-1\}$, and transition matrices

We note that a series Markov chain is in fact a 1-out-of- ∞ : F Markov chain.

3. Weighted k-out-of- ∞ : F Markov chains. These are the Markov chains with state space $S = \{0, 1, \dots, k\}$, initial distribution π_0 with supp $\pi_0 \subseteq \{0, 1, \dots, k-1\}$, and transition matrices

with $(P_n)_{i,i+w_n} = q_n$, $\forall n \geq 1$, $\forall i \in S, i+w_n \leq k$, where w_n is a natural number, $1 \leq w_n \leq k$, $\forall n \geq 1$. We call w_n the weight of P_n , $\forall n \geq 1$.

We note that a k-out-of- ∞ : F Markov chain is in fact a weighted k-out-of- ∞ : F Markov chain with $w_n = 1, \forall n \geq 1$.

Class II. This contains:

1. Consecutive-k-out-of- ∞ : F Markov chains. These are the Markov chains with state space $S = \{0, 1, \ldots, k\}$, initial distribution π_0 with supp $\pi_0 \subseteq \{0, 1, \ldots, k-1\}$, and transition matrices

$$P_n = \begin{pmatrix} p_n & q_n & & & \\ p_n & & q_n & & & \\ & \ddots & \ddots & \ddots & \ddots & \\ p_n & & & & q_n \\ & & & & 1 \end{pmatrix}, \quad n \ge 1.$$

2. Weighted consecutive-k-out-of- ∞ : F Markov chains. These are the Markov chains with state space $S = \{0, 1, \dots, k\}$, initial distribution π_0 with supp $\pi_0 \subseteq \{0, 1, \dots, k-1\}$, and transition matrices

with $(P_n)_{i,i+w_n} = q_n$, $\forall n \geq 1$, $\forall i \in S$, $i + w_n \leq k$, where w_n is a natural number, $1 \leq w_n \leq k$, $\forall n \geq 1$. We call w_n the weight of P_n , $\forall n \geq 1$.

3. m-consecutive-k-out-of- ∞ : F Markov chains. These are the Markov chains with state space $S = \{0, 1, \ldots, mk\}$, initial distribution π_0 with supp $\pi_0 \subseteq \{0, 1, \ldots, mk - 1\}$, and transition matrices

where

are $k \times k$ matrices, $\forall n \geq 1$.

Obviously, a consecutive-k-out-of- ∞ : F Markov chain is both a weighted consecutive-k-out-of- ∞ : F Markov chain with $w_n = 1$, $\forall n \geq 1$, and a 1-consecutive-k-out-of- ∞ : F Markov chain.

4. Weighted m-consecutive-k-out-of- ∞ : F Markov chains. These are the Markov chains with state space $S = \{0, 1, \dots, mk\}$, initial distribution π_0 with supp $\pi_0 \subseteq \{0, 1, \dots, mk-1\}$, and transition matrices

$$P_{n} = \begin{pmatrix} V_{n} & Y_{n} & & & & & \\ & V_{n} & Y_{n} & & & & \\ & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \\ & & & V_{n} & Y_{n} & & \\ & & & & V_{n} & q_{n}e'_{k}(k) & \\ & & & & & 1 \end{pmatrix}, \quad n \geq 1,$$

where

$$V_{n} = \begin{pmatrix} p_{n} & \cdots & q_{n} & & & & \\ p_{n} & & & q_{n} & & & \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\ p_{n} & & & & q_{n} & & \\ \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\ p_{n} & & & & \ddots & \ddots & \ddots & \vdots \\ \end{pmatrix}, \quad Y_{n} = \begin{pmatrix} & & & & & & & \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & & & & & & \\ q_{n} & & & & & & \\ q_{n} & & & & & & \\ q_{n} & & & & & & \\ \end{pmatrix}$$

are $k \times k$ matrices with $(V_n)_{i,i+w_n} = (Y_n)_{k-w_n+j,0} = q_n$ (we label rows and columns of V_n and Y_n as $0,1,\ldots,k-1$), $\forall n \geq 1, \forall i \in \{0,1,\ldots,k-1\}, i+w_n \leq k-1, \forall j \in \{0,1,\ldots,w_n-1\},$ where w_n is a natural number, $1 \leq w_n \leq k$, $\forall n \geq 1$. We call w_n the weight of P_n , $\forall n \geq 1$. Note that this subclass of Markov chains does not exists in [5]. Also, note that an m-consecutive-k-out-of- ∞ : F Markov chain is a weighted m-consecutive-k-out-of- ∞ : F Markov chain with $w_n = 1, \forall n \geq 1$.

Class III. This contains u-within-consecutive-k-out-of- ∞ : F Markov chains. For ease of the illustration (following [5]) for u=2 these are the Markov chains with state space $S=\{0,1,\ldots,k+1\}$, initial distribution π_0

with supp $\pi_0 \subseteq \{0, 1, \dots, k\}$, and transition matrices

$$P_{n} = \begin{pmatrix} p_{n} & q_{n} & & & & & \\ & & p_{n} & & & q_{n} \\ & & p_{n} & & q_{n} \\ & & & p_{n} & & q_{n} \\ & & & & p_{n} & q_{n} \\ & & & & p_{n} & q_{n} \\ p_{n} & q_{n} & & & 0 \\ 0 & 0 & & & 1 \end{pmatrix}, \quad n \ge 1.$$

Note that in this paper the above case is only considered.

Let $(P_n)_{n\geq 1}$ be a reliability Markov chain. Let $f(r+1) = e(r+1) - e_{r+1}(r+1) \in \mathbf{R}^{r+1}$ (for e(r+1) and $e_{r+1}(r+1)$ see Section 1). Following [5, Theorem 3.1] the reliability R_v and unreliability F_v of a v-component system linearly arranged and labelled $1, 2, \ldots, v$ and which correspond, in the Markovian approach, to initial the distribution π_0 and matrices P_1, P_2, \ldots, P_v are given by

$$R_v = \pi_0 P_{0,v} f'(r+1)$$
 and $F_v = \pi_0 P_{0,v} e'_{r+1}(r+1)$, respectively, $\forall v \ge 1$.

Setting $R_0 = 1$ and $F_0 = 0$ we can call R_v and F_v the reliability and the unreliability at time v ($v \ge 0$) of reliability Markov chain $(P_n)_{n\ge 1}$, respectively. Obviously,

$$F_v = 1 - R_v, \quad \forall v \ge 0.$$

Theorem 2.1. Let $(P_n)_{n\geq 1}$ be a reliability Markov chain. Then

$$R_{v} = \sum_{i \in \text{supp } \pi_{0}} (\pi_{0})_{i} \sum_{j=0}^{r-1} (P_{0,v})_{ij} \quad and \quad F_{v} = \sum_{i \in \text{supp } \pi_{0}} (\pi_{0})_{i} (P_{0,v})_{ir}, \ \forall v \ge 1.$$

In particular, if $\pi_0 = (1, 0, ..., 0)$ (this is the usual case in the reliability theory), then

$$R_v = \sum_{j=0}^{r-1} (P_{0,v})_{0,j}$$
 and $F_v = (P_{0,v})_{0,r}$, $\forall v \ge 1$.

Proof. Obvious. \square

Theorem 2.2. Let $(P_n)_{n\geq 1}$ be a reliability Markov chain. Then

$$\exists \lim_{v \to \infty} R_v, \quad \lim_{v \to \infty} F_v$$

Proof. This follows from Theorems 1.15(i) and 2.1. \square

Set

$$R_{\infty} = \lim_{v \to \infty} R_v$$
 and $F_{\infty} = \lim_{v \to \infty} F_v$.

We call R_{∞} and F_{∞} the limit reliability and the limit unreliability, respectively. Further, we give necessary and/or sufficient conditions for $R_{\infty} = 0$ (equivalently, for $F_{\infty} = 1$). The following result gives necessary and sufficient conditions for $R_{\infty} = 0$.

THEOREM 2.3. Let $(P_n)_{n\geq 1}$ be a reliability Markov chain. Let $\Sigma_1 = (\{i\})_{i\in S}$ and $\Sigma_2 = (\{0,1,\ldots,r-1\},\{r\})$. Then the following statements are equivalent.

- (i) $R_{\infty} = 0$.
- (ii) supp $\pi_0 \cup \{r\}$ is included in a weakly ergodic class at time 0 with respect to Σ_1 .
- (iii) supp $\pi_0 \cup \{r\}$ is included in a strongly ergodic class at time 0 with respect to Σ_1 .
- (iv) supp $\pi_0 \cup \{r\}$ is included in a weakly ergodic class at time 0 with respect to Σ_2 .
- (v) supp $\pi_0 \cup \{r\}$ is included in a strongly ergodic class at time 0 with respect to Σ_2 .

Proof. (i) \Leftrightarrow (iii) See Theorem 2.1.

- (ii) \Rightarrow (iii) Obvious, since $\{r\}$ is included in a strongly ergodic class with respect to Σ_1 .
 - (iii)⇒(ii) Obvious.
- (iv) \Rightarrow (v) Obvious, since $\{r\}$ is included in a strongly ergodic class with respect to Σ_2 .
 - $(v) \Rightarrow (iv)$ Obvious.
 - $(ii)\Leftrightarrow (iv)$ Obvious. \square

THEOREM 2.4. Let $(P_n)_{n\geq 1}$ be a reliability Markov chain. Let $\Sigma_1 = (\{i\})_{i\in S}$ and $\Sigma_2 = (\{0,1,\ldots,r-1\},\{r\})$. Then the following statements are equivalent.

- (i) The chain is weakly ergodic on (time set) B with respect to Σ_1 .
- (ii) The chain is strongly ergodic on B with respect to Σ_1 .
- (iii) The chain is weakly ergodic on B with respect to Σ_2 .
- (iv) The chain is strongly ergodic on B with respect to Σ_2 .

Proof. (i) \Leftrightarrow (ii) See Theorem 1.21.

- (i)⇔(iii) Obvious.
- $(iii)\Leftrightarrow (iv)$ See Theorem 1.21.

The following result gives a sufficient condition for $R_{\infty} = 0$. (For other sufficient conditions, see Theorem 2.3.)

THEOREM 2.5. Let $(P_n)_{n\geq 1}$ be a reliability Markov chain. Let $\emptyset \neq B \subseteq \mathbb{N}$ with $0 \in B$ and $\Sigma = (\{i\})_{i \in S}$. If the chain is weakly ergodic on B with respect to Σ , then $R_{\infty} = 0$.

Proof. Obvious. \Box

A problem is the use of Theorems 1.17 and 1.18. We note that in any reliability Markov chain $(P_n)_{n\geq 1}$ the set $\{r\}$ is included in a strongly ergodic class at time 0.

THEOREM 2.6. Let $(P_n)_{n\geq 1}$ be a k-out-of- ∞ : F, or consecutive-k-out-of- ∞ : F, or 2-within-consecutive-k-out-of- ∞ : F Markov chain (with initial distribution π_0 (the case $\pi_0 = (1, 0, \ldots, 0)$ is closely related to the conclusions below)).

- (i) If $p_1, q_1, p_2, q_2, \dots, p_k, q_k > 0$, then $(P_{0,k})_{\{0\}} > 0$.
- (ii) If $p_l, q_l > 0$, $\forall l \ge 1$, then $(P_{0,n})_{\{0\}} > 0$, $\forall n \ge k$.
- (iii) If $(P_n)_{n\geq 1}$ is a k-out-of- ∞ : F Markov chain, $p_l > 0$, $\forall l \geq 1$, and there exists a strictly increasing sequence $1 \leq l_1 < l_2 < \cdots$ (of natural integers) with $q_{l_h} > 0$, $\forall h \geq 1$, then $\exists n_0 \geq k$ such that $(P_{0,n})_{\{0\}} > 0$, $\forall n \geq n_0$.

Proof. (i) Obvious (by induction).

(ii) We have

$$(P_{0,n})_{\{0\}} = (P_{0,k})_{\{0\}} P_{k,n} > 0, \quad \forall n > k,$$

because $(P_{0,k})_{\{0\}} > 0$ and $P_{k,n}$ is a column-allowable matrix, $\forall n > k$.

(iii) We have
$$P_l = I_{k+1}$$
, if $q_l = 0$. Now, cf. (i) and (ii). \square

Remark 2.7. In general, we have no results similar to Theorem 2.6 for weighted Markov chains. We give an example for weighted k-out-of- ∞ : F Markov chains. Let k=3 and $w_n=2$, $\forall n\geq 1$. Then

$$P_n = \begin{pmatrix} p_n & 0 & q_n & 0\\ 0 & p_n & 0 & q_n\\ 0 & 0 & p_n & q_n\\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \forall n \ge 1.$$

Obviously, $(P_{m,n})_{0,1} = 0$, $\forall m, n, 0 \le m < n$, $\forall l \ge 1$, $\forall p_l, q_l \in [0, 1]$.

THEOREM 2.8. Let $(P_n)_{n\geq 1}$ be an m-consecutive-k-out-of- ∞ : F Markov chain (with initial distribution π_0 (the case $\pi_0 = (1, 0, \dots, 0)$ is closely related to the conclusions below)).

- (i) If $p_1, q_1, p_2, q_2, \dots, p_{mk}, q_{mk} > 0$, then $(P_{0,mk})_{\{0\}} > 0$.
- (ii) If $p_l, q_l > 0$, $\forall l \ge 1$, then $(P_{0,n})_{\{0\}} > 0$, $\forall n \ge mk$.

Proof. (i) Obvious (by induction; P_n has $(P_n)_{0,1} = (P_n)_{1,2} = \cdots = (P_n)_{mk-1,mk} = q_n, \forall n \geq 1$).

(ii) This is similar to the proof of Theorem 2.6(ii). \Box

Further, we give necessary and/or sufficient conditions for strong ergodicity (equivalently, cf. Theorem 2.4, for weak ergodicity) (also, remember that in this case A = S, $B = \mathbb{N}$, and $\Sigma = (\{i\})_{i \in S}$ (see Section 1)).

Theorem 2.9. Let $(P_n)_{n\geq 1}$ be a reliability Markov chain belonging to the union of Classes I, II, and III. If $\exists a > 0$ such that $p_n, q_n > a, \forall n \geq 1$, then the chain is strongly ergodic.

Proof. If $(P_n)_{n\geq 1}$ is a k-out-of- ∞ : F Markov chain, then

Now, we can use Theorem 1.11 for P even if $P \in N_{k+1}$. It follows that $\alpha(P^k) := b > 0$. This implies $\alpha(P_{m,m+k}) \geq b, \forall m \geq 0$. Now, by Theorem 1.22, the chain $(P_n)_{n\geq 1}$ is weakly ergodic. Strong ergodicity now follows from Theorem 2.4.

The others cases have similar proofs.

Theorem 2.10. Let $(P_n)_{n\geq 1}$ be a reliability Markov chain belonging to the union of Classes I, II, and III.

- (i) If $\sum_{n\geq 1} p_n < \infty$, then $(P_n)_{n\geq 1}$ is strongly ergodic. (ii) If $(P_n)_{n\geq 1}$ is strongly ergodic, then $\sum_{n\geq 1} q_n = \infty$.

Proof. (i) Let $(P'_n)_{n\geq 1}$ be a perturbation of the first type of $(P_n)_{n\geq 1}$, where

$$(P'_n)_{ij} = \begin{cases} 0 & \text{if } q_n \text{ is not assigned to entry } (i,j) \text{ of } P_n, \\ 1 & \text{if } q_n \text{ is assigned to entry } (i,j) \text{ of } P_n, \end{cases}$$

 $\forall n \geq 1, \ \forall i, j \in S \ (S \text{ is state space of } (P_n)_{n \geq 1} \text{ and } (P'_n)_{n \geq 1}).$

Case 1. $(P_n)_{n\geq 1}$ belongs to the union of Classes I and II. It follows from Theorem 1.23 that $(P_n')_{n\geq 1}$ is strongly ergodic. Now, by Theorem 1.10, $(P_n)_{n>1}$ is strongly ergodic.

Case 2. $(P_n)_{n\geq 1}$ belongs to Class III (only the case u=2). First, it follows that $(P'_n)_{n\geq 1}$ is weakly ergodic, because

$$P'_{n}P'_{n+1} = \begin{pmatrix} 0 & 0 & \cdots & 1\\ 0 & 0 & \cdots & 1\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & 1 \end{pmatrix}, \quad \forall n \ge 1.$$

Second, by Theorem 1.10, $(P_n)_{n\geq 1}$ is weakly ergodic. Third, by Theorem 1.21, $(P_n)_{n\geq 1}$ is strongly ergodic.

(ii) For $(P_n)_{n\geq 1}$ belonging to Class I, see Theorem 2.11 below. Further, for any $(P_n)_{n\geq 1}$ belonging to the union of Classes II and III, the proof is similar to " \Rightarrow " from the proof of Theorem 2.11 below. \square

THEOREM 2.11. Let $(P_n)_{n\geq 1}$ be a weighted k-out-of- ∞ : F Markov chain. Then the chain is strongly ergodic if and only if

$$\sum_{n\geq 1} q_n = \infty.$$

Proof. " \Rightarrow " Suppose that $\sum_{n\geq 1}q_n<\infty$. Then the chain $(P'_n)_{n\geq 1}$, where

 $P'_n = I_{k+1}$, $\forall n \geq 1$, is a perturbation of the first type of $(P_n)_{n\geq 1}$. Because $(P'_n)_{n\geq 1}$ is strongly $(\{i\})_{i\in S}$ -ergodic, it follows from Theorem 1.10 that $(P_n)_{n\geq 1}$ is strongly Δ -ergodic with $\Delta \neq (S)$ (moreover, using Theorem 1.45 in [9], we have $\Delta = (\{i\})_{i\in S}$), and we reached a contradiction.

"
$$\Leftarrow$$
" See Theorem 1.23.

Remark 2.12. If $(P_n)_{n\geq 1}$ is a consecutive-k-out-of- ∞ : F Markov chain, then condition $\sum_{n\geq 1} q_n = \infty$ is not sufficient for strong ergodicity. Indeed, for $k\geq 2$, let

$$P_{2n-1} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} := E, \ P_{2n} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} := F, \ \forall n \ge 1.$$

(A generalization: $P_n \in \{E, F\}$, $\forall n \geq 1$, E appears a least once in any l consecutive matrices belonging to $(P_n)_{n\geq 1}$, where $2\leq l\leq k$ $(k\geq 2)$, and there exists a sequence $1\leq n_1< n_2<\cdots$ such that $P_{n_t}=F, \ \forall t\geq 1$.) We have $\sum\limits_{n\geq 1}q_n=\infty$ and

$$EF = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}, \quad EFE = E.$$

Therefore, the chain $(P_n)_{n\geq 1}$ is not strongly ergodic.

THEOREM 2.13. Let $(P_n)_{n\geq 1}$ be a consecutive-k-out-of- ∞ : F Markov chain. Then

$$\alpha(P_{m,m+k}) = \mu(P_{m,m+k}) = \mu((P_{m,m+k})^{\{k\}}) = q_{m+1}q_{m+2}\cdots q_{m+k}, \ \forall m \ge 0.$$

Proof. The equalities $\alpha(P_{m,m+k}) = \mu(P_{m,m+k}) = \mu((P_{m,m+k})^{\{k\}})$ follow from Theorem 1.13. Further, let us prove that

$$\mu((P_{m,m+k})^{\{k\}}) = q_{m+1}q_{m+2}\cdots q_{m+k}, \quad \forall m \ge 0.$$

We have

$$= \begin{pmatrix} p_n & 0 & 0 & \cdots & 0 \\ p_n & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_n & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} + \begin{pmatrix} 0 & q_n & 0 & \cdots & 0 \\ 0 & 0 & q_n & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & q_n \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}, \quad \forall n \ge 1.$$

Setting

$$G_n = \begin{pmatrix} p_n & 0 & 0 & \cdots & 0 \\ p_n & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_n & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}, \quad H_n = \begin{pmatrix} 0 & q_n & 0 & \cdots & 0 \\ 0 & 0 & q_n & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & q_n \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}, \quad \forall n \ge 1,$$

we have

$$P_n = G_n + H_n, \quad \forall n \ge 1.$$

First, we prove that

$$(H_{m,m+t})_{0,k} = 0, \quad \forall m \ge 0, \ \forall t, \ 1 \le t \le k-1.$$

Indeed,

$$(H_{m,m+t})_{0,k} =$$

 $= (H_{m+1})_{0,1} (H_{m+2})_{1,2} \cdots (H_{m+t})_{t-1,k} = 0, \quad \forall m \ge 0, \ \forall t, \ 1 \le t \le k-1.$ Second, we prove that

$$(P_{m+k-v,m+k})^{\{k\}} = (H_{m+k-v,m+k})^{\{k\}}, \quad \forall m \ge 0, \ \forall v, \ 1 \le v \le k.$$

Indeed, this follows by induction with respect to v.

Step 1. v = 1. We have

$$(P_{m+k-1,m+k})^{\{k\}} = (P_{m+k})^{\{k\}} = (G_{m+k} + H_{m+k})^{\{k\}} =$$

$$= (G_{m+k})^{\{k\}} + (H_{m+k})^{\{k\}} = (H_{m+k})^{\{k\}} = (H_{m+k-1,m+k})^{\{k\}}, \quad \forall m \ge 0.$$

$$Step \ 2. \ v \mapsto v + 1 \ (1 \le v + 1 \le k). \text{ We have}$$

$$(P_{m+k-v-1,m+k})^{\{k\}} = P_{m+k-v} (P_{m+k-v,m+k})^{\{k\}} =$$

$$= (G_{m+k-v} + H_{m+k-v}) (H_{m+k-v,m+k})^{\{k\}} =$$

$$(G_{m+k-v} (H_{m+k-v,m+k})^{\{k\}} = 0 \text{ since } (H_{m+k-v,m+k})_{0,k} = 0, \ \forall m \ge 0)$$

$$= H_{m+k-v} (H_{m+k-v,m+k})^{\{k\}} = (H_{m+k-v} H_{m+k-v,m+k})^{\{k\}} =$$

$$= (H_{m+k-v-1,m+k})^{\{k\}}, \ \forall m \ge 0.$$

Third, we show that

$$(H_{m,m+k})^{\{k\}} = \begin{pmatrix} q_{m+1} \cdots q_{m+k} \\ q_{m+1} \cdots q_{m+k-1} \\ \vdots \\ q_{m+1} \\ 1 \end{pmatrix}, \quad \forall m \ge 0.$$

For this, setting

$$Z_n = \begin{pmatrix} 0 & q_n & 0 & \cdots & 0 \\ 0 & 0 & q_n & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & q_n \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}, \quad \forall n \ge 1,$$

and

$$Z = \left(\begin{array}{cccc} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 1 \end{array}\right),$$

we have $H_n = Z_n + Z$, $\forall n \geq 1$. Further, because

$$ZZ_n = 0, \ Z_n Z = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & q_n \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}, \ \forall n \ge 1, \ \text{and} \ ZZ = Z,$$

we have

$$H_{m,m+k} = H_{m+1}H_{m+2} \cdots H_{m+k} = (Z_{m+1} + Z)(Z_{m+2} + Z) \cdots (Z_{m+k} + Z) =$$

$$= Z_{m+1} [(Z_{m+2} + Z) \cdots (Z_{m+k} + Z)] + Z [(Z_{m+2} + Z) \cdots (Z_{m+k} + Z)] =$$

$$= Z_{m+1} [(Z_{m+2} + Z) \cdots (Z_{m+k} + Z)] + Z =$$

$$= Z_{m+1} \left\{ Z_{m+2} [(Z_{m+3} + Z) \cdots (Z_{m+k} + Z)] + Z [(Z_{m+3} + Z) \cdots (Z_{m+k} + Z)] \right\} + \\ + Z = Z_{m+1} Z_{m+2} \left[(Z_{m+3} + Z) \cdots (Z_{m+k} + Z)] + Z_{m+1} Z + Z \right] = \\ \text{(by induction)}$$

$$= Z_{m+1} Z_{m+2} \cdots Z_{m+k} + Z_{m+1} Z_{m+2} \cdots Z_{m+k-1} Z + \cdots + Z_{m+1} Z + Z = \\ = \begin{pmatrix} 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k} \\ 0 & \cdots & 0 & 0 \\ & & \ddots & \ddots & & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & \ddots & \ddots & & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k} \\ & & & & 0 & \cdots & 0 & 1 \end{pmatrix} + \\ = \begin{pmatrix} 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k} \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots & \ddots & \\ 0 & & & \ddots & \ddots & \\ 0 & \cdots & 0 & q_{m+1} q_{m+2} \cdots q_{m+k-1} \\ & & & \ddots &$$

Consequently,

$$(H_{m,m+k})^{\{k\}} = \begin{pmatrix} q_{m+1}q_{m+2} \cdots q_{m+k} \\ q_{m+1}q_{m+2} \cdots q_{m+k-1} \\ \vdots \\ q_{m+1} \\ 1 \end{pmatrix}, \quad \forall m \ge 0.$$

Hence

$$\mu((P_{m,m+k})^{\{k\}}) = \mu((H_{m,m+k})^{\{k\}}) = q_{m+1}q_{m+2}\cdots q_{m+k}, \quad \forall m \ge 0. \quad \Box$$

Theorem 2.14. Let $(P_n)_{n\geq 1}$ be a consecutive-k-out-of- ∞ : F Markov chain.

(i) If $(P_n)_{n\geq 1}$ is strongly ergodic, then $\forall l$, $\left[\frac{k-2}{2}\right] < l < k$, we have $\sum_{s>0} \min\left(q_{s(k-l)+1}, q_{s(k-l)+2}, \dots, q_{s(k-l)+k-l}\right) = \infty.$

(ii) If
$$\exists t, \ 0 \le t \le k-1$$
, such that
$$\sum_{s \ge 0} q_{sk+t+1} q_{sk+t+2} \cdots q_{sk+t+k} = \infty,$$

then $(P_n)_{n\geq 1}$ is strongly ergodic.

Proof. (i) Let $\left\lceil \frac{k-2}{2} \right\rceil < l < k$. Suppose that

$$\sum_{s>0} \min \left(q_{s(k-l)+1}, q_{s(k-l)+2}, \dots, q_{s(k-l)+k-l} \right) < \infty.$$

Let $n_0 < n_1 < n_2 < \cdots$, where n_s is a natural integer such that

$$\min (q_{s(k-l)+1}, q_{s(k-l)+2}, \dots, q_{s(k-l)+k-l}) = q_{n_s}, \quad \forall s \ge 0.$$

(Therefore, $n_s \in \{s(k-l)+1, s(k-l)+2, \dots, s(k-l)+k-l\}$, $\forall s \geq 0$.) Let

$$P'_{n} = \begin{cases} P_{n} & \text{if } n \notin \{n_{0}, n_{1}, n_{2}, \dots\}, \\ Q & \text{if } n \in \{n_{0}, n_{1}, n_{2}, \dots\}, \end{cases}$$

where

$$Q = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

We have $\sum_{n\geq 1} |||P_n - P'_n|||_{\infty} < \infty$. Because

 $n_{s+1} - n_s \le (s+1)(k-l) + k - l - s(k-l) - 1 = 2(k-l) - 1 < k+1, \ \forall s \ge 0,$ we have

$$n_{s+1} - 1 - n_s < k, \quad \forall s > 0.$$

Consequently, the sequence $(P'_n)_{n\geq 1}$ contains at most k-1 consecutive matrices belonging to $(P_n)_{n\geq 1}$. Further, $\forall m\geq 0,\ \forall u,v,\ 1\leq u\leq k-1,\ 2\leq v\leq k,$ we have

$$(P_{m,m+u}Q)_{\{0\}} = (P_{m,m+u})_{\{0\}} Q = (1,0,\ldots,0),$$

$$(P_{m,m+u}QP_{m+u+1,m+u+v})_{\{0\}} = (P_{m,m+u}Q)_{\{0\}} P_{m+u+1,m+u+v} =$$

$$= (1,0,\ldots,0) P_{m+u+1,m+u+v} = (P_{m+u+1,m+u+v})_{\{0\}},$$

$$(P_{m,m+u}QP_{m+u+1,m+u+v}Q)_{\{0\}} = (P_{m,m+u}QP_{m+u+1,m+u+v})_{\{0\}} Q =$$

$$= (P_{m+u+1,m+u+v})_{\{0\}} Q = (1,0,\ldots,0)$$

etc. and

$$(P_{m,m+u}Q)_{\{k\}} = (P_{m,m+u})_{\{k\}} Q = (0,0,\ldots,1),$$

$$(P_{m,m+u}QP_{m+u+1,m+u+v})_{\{k\}} = (P_{m,m+u}Q)_{\{k\}} P_{m+u+1,m+u+v} =$$

$$= (0,0,\ldots,1) P_{m+u+1,m+u+v} = (P_{m+u+1,m+u+v})_{\{k\}},$$

$$(P_{m,m+u}QP_{m+u+1,m+u+v}Q)_{\{k\}} = (P_{m,m+u}QP_{m+u+1,m+u+v})_{\{k\}} Q =$$

$$= (P_{m+u+1,m+u+v})_{\{k\}} Q = (0,0,\ldots,1)$$

etc. It follows that $(P'_n)_{n\geq 1}$ is not strongly ergodic. By Theorem 1.10, $(P_n)_{n\geq 1}$ is not strongly ergodic, and we reached a contradiction.

(ii) See Theorems 1.21, 1.22, and 2.13. \square

REFERENCES

- M.T. Chao and J.C. Fu, The reliability of a large series system under Markov structure. Adv. in Appl. Probab. 23 (1991), 894–908.
- [2] R.L. Dobrushin, Central limit theorem for nonstationary Markov chains, I, II. Theory Probab. Appl. 1 (1956), 65–80, 329–383.
- [3] J. Hajnal, Weak ergodicity in non-homogeneous Markov chains. Proc. Cambridge Philos. Soc. 54 (1958), 233–246.
- [4] M. Iosifescu, Finite Markov Processes and Their Applications. Wiley, Chichester & Ed. Tehnică, Bucharest, 1980; corrected republication by Dover, Mineola, N.Y., 2007.
- [5] M.V. Koutras, On a Markov chain approach for the study of reliability structures.
 J. Appl. Probab. 33 (1996), 357–367.
- [6] U. Paun, Ergodic theorems for finite Markov chains. Math. Rep. (Bucur.) 3(53) (2001), 383-390.
- [7] U. Păun, New classes of ergodicity coefficients, and applications. Math. Rep. (Bucur.) 6(56) (2004), 141–158.
- [8] U. Păun, General Δ-ergodic theory of finite Markov chains. Math. Rep. (Bucur.) 8(58) (2006), 83–117.
- [9] U. Păun, Perturbed finite Markov chains. Math. Rep. (Bucur.) 9(59) (2007), 183-210.
- [10] U. Păun, Δ-ergodic theory and simulated annealing. Math. Rep. (Bucur.) 9(59) (2007), 279–303.
- [11] U. Păun, General Δ-ergodic theory: an extension. Rev. Roumaine Math. Pures Appl. 53 (2008), no. 2.
- [12] E. Seneta, Non-negative Matrices and Markov Chains, 2nd Edition. Springer-Verlag, Berlin-Heidelberg-New York, 1981. (Revised printing, 2006)

Received 3 May 2006

Romanian Academy
"Gheorghe Mihoc-Caius Iacob" Institute
of Mathematical Statistics and Applied Mathematics
Calea 13 Septembrie nr. 13
050711 Bucharest 5, Romania
paun@csm.ro