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1. INTRODUCTION

The reinsurance problem appears at first sight to be a problem that
can be analyzed in terms of classical economic theory if the objectives of the
companies are formulated in an operational manner by means of Bernoulli’s
utility concept: one should not maximize the expected gain, but the expected
utility of the gain [3]. However, closer investigations show that the economic
theory is only relevant part of the way. Then the problem becomes a problem
of cooperation between parties that have conflicting interests, and that are free
to form and break any coalitions which may serve their particular interests [14].
Classical economic theory is powerless when it comes to analyze such problems.
The only theory which at present seems to hold some promise of being able
to sort out and explain this apparently chaotic situation, is Game Theory.

The concept of core of a game was introduced in 1959 by Gillies [12]. It
provides a very attractive solution, if any, of a general game. However, it has
the unpleasant property of being empty for a large class of games. The concept
of the core of a market game has proved very useful in economic applications of
game theory because it is nonempty. This fact was proved by Debreu and Scarf
[9] in 1963. Later, in 1981, Baton and Lemaire [4] introduced the collective
rationality condition and characterized the core for important special cases
of negative exponential utility functions. These types of utility functions are
characterized by a constant risk aversion and possess very desirable properties,
proved by Gerber [10] in 1974.

In the following we present a brief game-theoretic approach to risk allo-
cation problem.

Let N = {1, 2, . . . , n} be a finite set of agents and let S an arbitrary
subset of N . The characteristic function v : 2N → R of the game gives the
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total payoff which the players that belong to a coalition S ∈ 2N obtain by
cooperating.

Let zi be the payoff to player i that cooperates in the game. So,

(1)
n∑

i=1

zi = v (N) ,

that represents the “collective rationalit”, meaning that the players that co-
operate will obtain the maximum total payoff [13].

If we see N as a group of n reinsurers having preferences ≥i, i ∈ N over
a suitable set of random variables denoted by R, or gambles with realizations
(outcomes) in some A ⊆ R, then we represent these preferences by the von
Neumann-Morgenstern expected utility. This means that there is a set of
continuous utility functions ui : R → R, such that X ≥i Y if and only
if Eui(X) ≥ Eui(Y ), where E stands for the mean operator. We assume
monotonic preferences, and risk aversion, so that we have u′i(w) > 0, u′′i (w) ≤ 0
for all w in the relevant domains [7]. In some cases we shall also require strict
risk aversion, to mean strict concavity for some ui. For a better understanding
we assume that each agent is endowed with a random variable payoff Xi called
initial portfolio. More precisely, there exists a probability space (Ω,K, P ) such
that we have the payoff Xi (ω) when ω ∈ Ω occurs and, moreover both expected
values and variances exist for all these initial portfolios, to mean that all Xi ∈
L2 (Ω,K, P ) [8]. Because every agent can negotiate any affordable contracts,
we will have a new set of random variables Yi, i ∈ N, representing the final
portfolios.

Assumption (1) corresponds to Pareto optimality in our reinsurance mar-
ket [2], i.e., the optimal solution Y solves

(2)
n∑

i=1

λiEui (Yi) = EuλN
(XN ) ,

where λN = (λ1, λ2, . . . , λn) , λi ∈ R∗
+, i = 1, n are the agent weights, XN

=
∑
i∈N

Xi gives agent pricing and the last element is given by EuλN
(XN ) :=

sup
Z1,...,Zn

∑
i∈N

λiEui (Zi) s.t.
∑
i∈N

Zi ≤ XN , a.s..

Next, the condition zi ≥ v ({i}) represents “individual rationality” and
corresponds to Eui (Yi) ≥ Eui (Xi) , i ∈ N , which implies that no player will
participate in the game if it can obtain more by himself [1]. This rationality
assumption is natural to be imposed because it corresponds to any coalition
of the players, i.e., for any S ∈ 2N . So, we can write

(3)
∑
i∈S

zi ≥ v (S) , ∀S ∈ 2N .
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We can see condition (3) as: “social stability”. It corresponds in a rein-
surance market to a further restriction [2] on the investor weights λ 6= 0
such that

(4)
∑
i∈S

λiEui (Yi) ≥ EuλS
(XS) , XS =

∑
i∈S

Xi,

where

(5) EuλS
(XS) := sup

Z1,...,Zn

∑
i∈S

λiEui (Zi) s.t.
∑
i∈S

Zi ≤ XS , a.s.

and λS = (λi1 , λi2 , . . . , λik), λik ∈ R∗
+, S = {i1, i2, . . . , ik} .

The set of vectors Z that satisfy (5) is called the core of the game. It
yields a very attractive solution when not empty, but for a large class of games
it is empty. The concept is very useful in economic applications.

The paper is organized as follows. In Section 2 we present the basic game
model for a reinsurance market. In Section 3 we define, in a original way, the
core of a reinsurance market and give some properties of it. The paper ends
with Section 4, where we find a form for the market core when the reinsurers
have negative exponential utility functions.

2. A GAME MODEL FOR A REINSURANCE MARKET

In this section we present the structure of a game model applied in the
case of a reinsurance market.

Definition 1. A competitive reinsurance market is an ordered pair
〈
N ,

{EuλS
(XS)}S⊆N

〉
consisting of the agent set N = {1, 2, . . . , n} interpreted as

(re)insurers, where uλ (·) : R→ R is the von Neumann-Morgenstern expected
utility, and Euλ∅ (X∅) = 0.

Let RM (u) be a competitive reinsurance market and RM (N,X) =
{RM (u) | u ∈ U} the set of all reinsurance markets, where N = {1, 2, . . . , n}
is the set of the players, X = (X1, X2, . . . , Xn) the initial random vectors,
Xi ∈ L2 (Ω,K, P ) , and U = {u | u : R → R is concave and increasing}.

Definition 2. A competitive reinsurance market is said to be monotonie
if EuλS

(XS) ≤ EuλT
(XT ) for S ⊂ T ⊆ N.

Definition 3. A competitive reinsurance market is additive if

EuλS∪T
(XS∪T ) = EuλS

(XS) + EuλT
(XT )

for all S, T ⊂ N and S ∩ T = ∅.

Definition 4. A competitive reinsurance market is superadditive if

EuλS
(XS) + EuλT

(XT ) ≤ EuλS∪T
(XS∪T )
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for all S, T ⊂ N and S ∩ T = ∅.

Definition 5. A competitive reinsurance market is said to be an essential

reinsurance market if EuλN
(XN ) >

n∑
i=1

λiEui (Xi) .

For each subset S ⊂ N we denote by 1S the characteristic vector of S:

(1S)i =
{ 1 if i ∈ S,

0 if i ∈ N\S.

Definition 6. A map γ : 2N\ {∅} → R+ is said to be balanced if∑
S∈2N\{∅}

γ (S) 1S = 1N .

Definition 7. A collection B of coalitions is called balanced if there is a
balanced map γ such that B =

{
S ∈ 2N | γ (S) > 0

}
.

Definition 8. A competitive reinsurance market is balanced if

(6)
∑

S;S⊂N

γ (S) EuλS
(XS) ≤ EuλN

(XN )

for each balanced map γ : 2N\ {∅} → R+.

Let us consider two reinsurance markets. We shall answer the question
“When can we say that the first market is essentially the same the second
market?”

Definition 9. Let two reinsurance markets. Then the first reinsurance
market

〈
N, {EuλS

(XS)}S⊆N

〉
is strategically equivalent to the reinsurance

market
〈
N, {EūλS

(XS)}S⊆N

〉
if there exist k > 0 and a payoff ai, i ∈ S,

such that

(7) EuλS
(XS) = kEūλS

(XS) +
∑
i∈S

ai, ∀S; S ⊆ N.

Definition 10. Let α, β ∈ R. A competitive reinsurance market
〈
N ,

{EuλS
(XS)}S⊆N

〉
is called a reinsurance market in (α, β)-form if Euλ{i}(Xi) =

α, ∀i ∈ N and EuλN
(XN ) = β.

Now we shall prove

Proposition 1. Any essential reinsurance market
〈
N, {EuλS

(XS)}S⊆N

〉
is strategically equivalent to the reinsurance market

〈
N, {EūλS

(XS)}S⊆N

〉
in

(0, 1)-form.
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Proof. We can take

k =
1

EuλN
(XN )−

n∑
i=1

λiEui (Xi)

and

ai =
Eui (Xi)

EuλN
(XN )−

n∑
i=1

λiEui (Xi)
.

So, if we replace the values of k and ai in (7) we have

EūλS
(XS) =

EuλS
(XS)−

∑
i∈S

λiEui (Xi)

EuλN
(XN )−

n∑
i=1

λiEui (Xi)
. �

Definition 11. A reinsurance market
〈
N, {EuλS

(XS)}S⊆N

〉
is called

zero-normalized if Euλ{i} (Xi) = 0 for ∀i ∈ N .

Definition 12. The initial portfolios are X1, X2, . . . , Xn and the market

portfolio XN =
n∑

i=1
Xi. Let f : RM (N,X) → Rn be a map. Then f satisfies:

1. individual rationality if fi (RM (u)) ≥ λiEui (Xi) , i ∈ N ;

2. efficiency if EuλN
(XN ) =

n∑
i=1

fi (RM (u));

3. social stability if additive reinsurance market, ∀RM (u1) ,RM (u2) ∈
RM (N,X), a ∈ RM (N,X), and k > 0, the equation E (u1)λN

(XN ) =
kE (u2)λN

(XN ) + a implies f (RM (u2)) = kf (RM (u1)) + a;

4. the dummy agent property if fi (RM (u)) = λiEui (Xi), ∀RM (u) ∈
RM (N,X) and all dummy players i ∈ N implies

EuλS∪{i}

(
XS∪{i}

)
= EuλS

(XS) + Euλ{i} (Xi) ,

for all S ∈ 2N\{i};

5. the anonymity property if f (RM (u)σ) = σ∗ (f (RM (u))) , ∀σ ∈
Π (N) , where Π (N) is the set of all permutations of N . Here, RM (u)σ

is the reinsurance market with Euσ
λσ(S)

(
Xσ(S)

)
= EuλS

(XS) for all S ⊆ N or

Euσ
λS

(XS) = Euλσ−1(S)

(
Xσ−1(S)

)
for all S ⊆ N , and σ∗ : Rn → Rn is defined

by (σ∗ (x))σ(k) := xk for all x ∈ Rn;

6. additivity if ∀RM(u1), RM(u2) ∈ RM(N,X) we have f
(
RM(u1)+

RM (u2)
)

= f (RM (u1)) + f (RM (u2)) .
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3. THE CORE OF A REINSURANCE MARKET

In the following we define the market core and give a characterization the-
orem. We take fi (RM (u)) = λiEui (Yi), denote the set of “investor weights”
λi, i = 1, n, by

(8) I∗∗ =
{

λ ∈ Rn |
n∑

i=1

λiEui (Yi) ≤ EuλN
(XN )

}
and the set of efficient “investor weights” vectors in the reinsurance market〈
N, {EuλS

(XS)}S⊆N

〉
by I∗, i.e.,

(9) I∗ =
{

λ ∈ Rn |
n∑

i=1

λiEui (Yi) = EuλN
(XN )

}
.

Obviously we have I∗ ⊂ I∗∗.
The “individual rationality” condition, Eui (Yi) ≥ Eui (Xi), i ∈ N ,

should hold in order that a weight vector λ have a real chance to be real-
ized in the reinsurance market.

Definition 13. A weight vector λ ∈ Rn is an imputation for the reinsu-
rance market

〈
N, {EuλS

(XS)}S⊆N

〉
if it is efficient and enjoys the property

of individual rationality, i.e.,

1.
n∑

i=1
λiEui (Yi) = EuλN

(XN ),

2. Eui (Yi) ≥ Eui (Xi) , ∀i ∈ N.

Denote by I the set of imputations λ. Clearly, I is empty if and only

if
n∑

i=1
λiEui (Yi) > EuλN

(XN ) . Actually, I is a simplex with extreme points

f1, f2, . . . , fn, where f i = (f i
1, f

i
2, . . . , f

i
n), i ∈ N , is given by f i

j = λiEui (Xi),
if i 6= j and f i

i = Euλ (XN )−
∑

k∈N−{i}
λkEuk (Xk) .

Theorem 1. Let a reinsurance market
〈
N, {Euλ (XS)}S⊆N

〉
. If this

market is essential, then
1. Iis an infinite set.
2. Iis the convex hull of the points f1, f2, . . . , fn defined above.

Proof. 1. Since
〈
N, {EuλS

(XS)}S⊆N

〉
is essential, we have a = EuλN

(XN )−∑
k∈N

λkEuk (Yk) > 0. For any n-tuple b = (b1, b2, . . . , bn) of nonnegative num-

bers such that
∑
i∈N

bi = a, the weights vector λ′ = (λ′1, λ
′
2, . . . , λ

′
n) with

λ′iEui (Yi) > λiEui (Xi) + bi, ∀i ∈ N, is an imputations.
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2. This result follows from the characterization theorem of the extreme
points of a polyhedral set [15]. We note that I =

{
λ ∈ Rn | λTA ≥ bT

}
, where

A ∈ Mn,n+2 (R) with the vectors e1, . . . , en, 1n,−1n, as columns, where ei

is the ith vector of the standard basis in Rnand 1n is the vector with all
coordinates equal to 1. To complete the proof we take the vector b of the form
b = (Euλ1 (X1) , . . . , Euλn (Xn) , EuλN

(XN ) ,−EuλN
(XN )). �

It follows from the above theorem that the set of imputations is too large
for an essential reinsurance market. So, we need some criteria to single out
those imputations that are able to appear. We could obtain some subsets of
I as solution concepts. One of them is the core of a reinsurance market.

Definition 14. The market core, denoted by MC, of a reinsurance market〈
N, {EuλS

(XS)}S⊆N

〉
is the set

(10) MC =
{

λ ∈ I |
∑
i∈S

λiEui (Yi) ≥ EuλS
(XS) , ∀S ⊆ N

}
.

If MC 6= ∅ then its elements can be easily obtained because the core is
defined by means of a finite system of linear inequalities.

The next result gives a characterization of the reinsurance market with
a nonempty market core.

Theorem 2. Let a reinsurance market
〈
N, {Euλ (XS)}S⊆N

〉
. Then the

following two assertions are equivalent:
1. MC 6= ∅.
2. The reinsurance market is balanced.

Proof. From equation (10) we deduce that MC 6= ∅ if and only if

(11) Euλ(XN )=min
{ ∑

i∈N

λiEui(Yi) |
∑
i∈S

λiEui(Yi)≥EuλS
(XS), ∀S⊆N

}
.

By the duality theorem from linear programming theory [15], equation (11)
holds iff

(12) Euλ (XN ) = max
{ ∑

i∈N

λiEui (Yi) |
∑

S∈2N\{∅}

γ (S) 1S = 1N , γ > 0
}

.

Now, (12) holds iff equation (6) from Definition 8 does hold. So, we can
conclude that 1) and 2) are equivalent. �
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4. A MARKET CORE WITH EXPONENTIAL UTILITY

In general the core will be characterized by the Pareto optimal allocations
corresponding to investor weights λi in some region restricted by inequalities
as in the following result.

The initial portfolios are denoted by X1, X2, . . . , Xn, the “market port-

folio” is XN =
n∑

i=1
Xi and the reinsurers have negative exponential utility

functions given by ui (x) = 1− aie
− x

ai , x ∈ R, i ∈ N.
The Pareto optimal allocations that result from coalition [11] are Yi =

ai
A XN + bi, where bi = ai lnλi − ai

K
A , A =

n∑
i=1

ai and K =
n∑

i=1
ai lnλi. For

any subset S ⊆ N the corresponding formulas are Yi = ai
AS

XS + bi, where
bi = ai lnλi − ai

KS
AS

, AS =
∑
i∈S

ai , K =
∑
i∈S

ai lnλi, XS =
∑
i∈S

Xi.

Theorem 3. The market core is characterized by the Pareto optimal
allocations corresponding to investor weights λi that are solutions of the system
of inequalities ∑

i∈S

λi
ai

AS
E

[
e−

Yi
ai

]
≤ e

KS
AS E

[
e−

XS
AS

]
.

Proof. By (10), the market core is characterized by the inequalities

∑
i∈S

λiE

[
1− e−

Yi
ai

]
≥ E

[∑
i∈S

λi −ASe
KS−XS

AS

]

for any S ⊆ N . This is equivalent to
∑
i∈S

λi

[
1 − aiE

[
e−

Yi
ai

]]
≥

∑
i∈S

λi −

ASE
[
e

KS−XS
AS

]
for any S ⊆ N and, finally,

∑
i∈S

λiaiE
[
e−

Yi
ai

]
≤ ASE

[
e

KS−XS
AS

]
for any S ⊆ N. �

Theorem 4. In the case of a reinsurance market with n = 3 agents, the
market core is characterized by the Pareto optimal allocations corresponding
to investor weights λi that are solutions of the system of inequalities

ci,jE
(
e
−

Xi+Xj
ai+aj

)
di,j ≥ aiE

(
e−

XN
A

)
+ ajE

(
e−

XN
A

)
,

2AE
(
e−

XM
A

)
≤

∑
i,j∈{1, 2,3}, i 6=j

ci,je

{
bi+bj
ai+aj

}
E

(
e
−

Xi+Xj
ai+aj

)
,
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for i, j ∈ {1, 2, 3} , i 6= j, where ci,j = (ai + aj) and di,j = e

{
bi+bj
ai+aj

}
.

Proof. Let N = {1, 2, 3} . The conditions
∑
i∈S

λiEui (Yi) ≥ EuλS
(XS) ,

∀S ⊆ N , seen as social stability, for S∈{{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} become

λiE [ui (Yi)] + λjE [uj (Yj)] ≥ E
[
λi + λj − ci,je

K−ak ln λk−(Xi+Xj)

ai+aj

]
2Euλ

N
[XN ] ≥

∑
i,j∈N,i6=j

Euλ{i,j}

[
X{i,j}

]
for i, j, k ∈ N, i 6= j 6= k.

If we replace in this system the negative exponential utility function of,
then we obtain

λiE

[
aie

−Yi
ai

]
+ λjE

[
aje

−
Yj
aj

]
≥ −ci,jE

[
e
−

Xi+Xj
ai+aj

]
di,je

K
A

2E

[ ∑
i∈N

λi −Ae
K−XM

A

]
≥

∑
i,j∈N,i6=j

E

[
λi + λj − ci,je

K−ak ln λk−(Xi+Xj)

ai+aj

]

for i, j ∈ N, i 6= j. This is equivalent to

ci,jE

[
e
−

Xi+Xj
ai+aj

]
di,je

K
A ≥ λiaiE

[
e−

(
1
A

XN+
bi
ai

)]
+ λjajE

[
e
−

(
1
A

XN+
bj
aj

)]
∑

i,j∈N,i6=j

ci,jE

[
e
−(Xi+Xj)

ai+aj

]
di,je

K
A ≥ 2Ae

K
A E

[
e−

XN
A

]
for i, j ∈ N, i 6= j.

If we simplify by λie
bi
ai = e

K
A , then we obtain

ci,jE

[
e
−

Xi+Xj
ai+aj

]
e

bi+bj

(ai+aj) ≥ aiE
[
e−

XN
A

]
+ ajE

[
e−

XN
A

]
2AE

(
e−

XM
A

)
≤

∑
i,j∈N,i6=j

ci,jdi,jE

[
e
−

Xi+Xj
ai+aj

]
,

for i, j ∈ N, i 6= j. �

We see that the market core is characterized by the Pareto optimal al-
locations corresponding to investor weights λi in some region restricted by
inequalities of the above kind, in general a polyhedron in int

(
Rn

+

)
.
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