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on the occasion of his 70th birthday

NONLINEAR AND TIME DELAY SYSTEMS
FOR FLIGHT CONTROL

VLADIMIR RĂSVAN, DANIELA DANCIU and DAN POPESCU

Starting from the equations occurring in flight control, there are considered time
delay systems with (possibly) discontinuous but bounded nonlinearities. A useful
definition of the solution is based on the so-called extended nonlinearity which
allows development of the standard absolute stability theory; within this theory
a stability result is extended to a significant class of time delay systems and the
so called minimal phase assumption is relaxed. The result is obtained without
applying to sliding modes framework.
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1. THE STARTING POINTS OF THE PAPER

The interacting of the aircraft as a controlled system and of the human
operator (pilot) dynamics results in a closed loop feedback system. As known
[11], feedback may be the source of various instabilities, both in linear and
nonlinear systems. The feedback system pilot-aircraft is a quite uncertain sys-
tem since the human behavior – even of a trained operator, such as a pilot
could be – may be quite unpredictable; at its turn the aircraft behavior is
strongly dependent on the flight envelope which incorporates a description of
the flight parameters (mainly the height and the Mach number – the speed).
This cumulated uncertainty is the source of an instability phenomenon known
as PIO – P(ilot) I(n-the-loop) O(scillations), which are in fact self sustained
oscillations of the feedback system pilot-aircraft due, paradoxically, to the pi-
lot’s efforts to control the aircraft in limit situations. Since the first PIO event
in 1959 there has been a tremendous effort to handle the phenomenon while
new such events occurred. Even if much of the information is classified, there
exists already published matter and the reader is referred to [9] for the basic
notions and descriptions.
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A. From the mathematical point of view, this phenomenon can be viewed
as loosing the stability via self sustained oscillations. The aircraft experts in
PIO consider 3 categories of PIO called PIO I, PIO II, PIO III. The first cate-
gory is considered to occur when both the pilot and the aircraft may be quite
well described by their linear models. The second category is considered to be
the effect of quite large control signals which activate the so-called position and
rate limiters which are nonlinear elements containing a bounded nonlinearity
– the saturation function. Category III PIO are considered fully nonlinear and
non stationary, i.e., time varying. It is considered that if PIO I and PIO II are
prevented, PIO III will not occur and up to now this assumption was verified
practically.

It follows that if nonlinearity is to be taken into account, the theoretical
research has to cope with the position and rate limiters. These are technical
devices which should be modeled in the most adequate way. The analysis of
the existing information, summarized in [10], shows that the position limiter
is a simple saturated nonlinear function expressed, e.g.,

(1) f(σ) =


VL sgnσ, |σ| ≥ εL,

VL

εL
σ, |σ| ≤ εL.

Here, the notation is that of the technological field-aircraft dynamics and con-
trol. The rate limiter is a dynamical structure with local feedback described by

(2) δ̇ = f(δc − δ)

with δc – the input signal and f : R 7→ R as in (1). It is not difficult to
observe that f(σ) thus defined is bounded on R, non-decreasing and also
sector restricted.

If static friction of the actuators is also taken into account, the nonli-
nearities of the limiters associated with the actuators may be also discontin-
uous with discontinuity of the first kind: if σ0 is a discontinuity point, the
limits f(σ0 − 0) and f(σ0 + 0) are both finite.

B. The pilot models used in the PIO analysis are usually linear and
described by transfer functions of rational type multiplied by a pure delay
accounting for a delayed reaction of the human operator. A transfer function
of the form

(3) Hp(s) = Kp
1 + Tds

1 + Tis
e−τs

is standard in the description of the human operator not only for aircraft
but also for power and nuclear power engineering, possibly for chemical engi-
neering, too. A system with the transfer function (3) may be described, for
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instance, by the delay-differential equation

(4) Ti ẏ(t) + y(t) = Kp(Td u̇(t− τ) + u(t− τ)).

If such a model is integrated in a feedback structure, it will lead to a system
described by delay-differential equations with delays occurring in state, input
and output variables.

All these considerations show that it is of certain interest to discuss the
absolute stability of time delay system containing bounded and (possibly)
discontinuous nonlinear functions.

2. THE BASIC SYSTEM AND THE MAIN RESULT

We shall consider throughout this paper the system

(5) ẋ(t) = Ax(t) +
r∑
1

bq∗i x(t− τi)− bϕ(c∗x(t))

which is obviously a special case of

(6) ẋ(t) = Ax(t) +
r∑
1

Bix(t− τi)− bϕ(c∗x(t))

with Bi = bq∗i being special dyadic matrices. It is worth mentioning that for
a single delay case (r = 1) such systems were introduced in [8] accompanied
by the remark that higher order delay-differential equations of the form

(7) y(n)(t) +
n−1∑

1

aiy
(i)(t) +

n−1∑
1

biy
(i)(t− τ) = u(t)

can be given the above form with

(8)

x =


y
y′

...
y(n−1)

 , b =


0
0
...
1

 , q =


b0
b1
...

bn−1

 ,

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

 .
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Using the Cauchy formula of constants variation an integral equation

(9) σ(t) = ρ(t)−
∫ t

0
κ(t− τ)ϕ(σ(τ))dτ

can be associated with (6) hence to (5), where we denoted

ρ(t) = c∗

(
X(t)x0(0) +

r∑
1

∫ 0

−τi

X(t− τi − θ)Bix0(θ)dθ

)
,

κ(t) = c∗X(t)b, σ = c∗x,

X(t) being the Cauchy matrix of

ẋ(t) = Ax(t) +
r∑
1

Bix(t− τi)

with the usual definition.

A. The nonlinear function ϕ : R 7→ R is supposed to satisfy the conditions
of [5, 6, 7]: i) piecewise continuous with finite (first kind) discontinuities;
ii) bounded, i.e., |ϕ(σ)| ≤ m, ∀σ∈R; iii) subject to the pseudo-sector condition

(10) ϕ(σ)σ − εσ2 − ϕ2(σ)
k

> 0, 0 < k ≤ +∞

for some ε ∈ [0, k/4), 0 < |σ| ≤ mc, where c > 0 is defined by the conditions
of the problem. Condition (10) is sector-like since we may consider polar co-
ordinates in the plane (σ, ϕ), namely, σ = r cos θ, ϕ = r sin θ to obtain from
(10), r 6= 0,

sin θ cos θ − ε cos2 θ − sin2 θ

k
> 0,

which becomes
tan2 θ

k
− tan θ + ε < 0,

and this gives

ε <
2ε

1 +
√

1− 4ε/k
< tan θ <

1
2
(1 +

√
1− 4ε/k)k < k.

Remark that (10) with finite k will require ϕ(σ) being continuous at
σ = 0. It is possible now to state the following basic result [6].

Theorem 1. Consider a system described by the nonlinear integral equa-
tion (9) under the following assumptions: a) ρ, κ ∈ L1(0,∞) ∩ L2(0,∞);
b) ρ̇, κ̇ ∈ L1(0,∞); c)

∫∞
t |κ(λ)|dλ ∈ L2(0,∞); d) ϕ : R 7→ R is subject
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to conditions i)–iii) stated above, with c being the L1 norm of κ(t). If there
exists some real ϑ such that the frequency domain inequality

(11)
1
k

+ ε|χ(iω)|2 + Re(1 + iωϑ)χ(iω) ≥ 0 , ∀ω ∈ R+,

holds, then lim
t→∞

σ(t) = 0. Here χ(s) is the Laplace transform of κ(t).

While the result is quite old we shall not reproduce its proof but rather
comment on it. Since ϕ(σ) is discontinuous, we have to make clear the sense
of defining the solution. As mentioned in [6], the solution of (2.5) is viewed in
the sense of Azbelev [2, 3]. The time delay system (6) is a time delay system
with discontinuous right hand side whose solution should be defined in one
of the possible ways for such systems. With the same arguments as in [7],
we choose the approach of the “extended nonlinearity” which may be called
“partly differential inclusion”: if σ0 is some discontinuity point of ϕ(σ), then
the solution of (6) is defined as the solution of

(12)

ẋ(t) = Ax(t) +
r∑
1

Bix(t− τi) + bξ(t),

ξ(t) = −ϕ(c∗x(t))

and if c∗x(t) = σ0 then ξ(t) ∈ [−ϕ(σ0 +0),−ϕ(σ0− 0)], where for convenience
we took ϕ(σ0− 0) < ϕ(σ0 +0). In this case, since the extended nonlinearity is
obviously integrable, the solution of (9) may be considered as the solution of

(13) σ(t) = ρ(t) +
∫ t

0
κ(t− τ)ξ(τ)dτ , ξ(t) = −ϕ(σ(t))

with the extended nonlinearity as previously.
The solution definition via extended nonlinearity allows an adequate de-

finition of the sliding modes for time delay systems following the lines of [7]
(a comparison with other reference is worth doing). Fortunately, the way of
proving the results allows avoiding the problem of the sliding modes for (6).
To end this section, if ϕ(σ) is discontinuous at σ = 0, then k = ∞ in (10) and
(11). However, the frequency domain condition is still improved with respect
to the standard Popov inequality, due to the positive term ε|χ(iω)|2; the same
improvement may be obtained via a circle criterion but with the significant
detail that (10) holds only on a finite interval.

B. We shall turn now to the case of system (5) having in mind the line of
[6] where the system is without delays, i.e., qi = 0, i = 1, r. The main problem
here is to obtain lim

t→∞
x(t) = 0. If ϕ(σ) is continuous at 0, it is a standard

way that gives not only the asymptotic behavior (attractiveness of 0) but also
Liapunov stability, hence global asymptotic stability. If ϕ(σ) is discontinuous
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at 0, then it is still possible to obtain for (5) a result which is analogous to
Theorem 3 of (op. cit.)

Theorem 2. Consider system (5) under the following assumptions:
a) the characteristic equation

(14) det
(
λI −A−

r∑
1

bq∗i e
−λτi

)
= 0

has all its roots in the left half plane of C, the pair (c∗, A) is observable, and
there exists k, 0 ≤ k ≤ n− 1, such that c∗Akb 6= 0;

b) ϕ : R 7→ R is such that |ϕ(σ)| ≤ m, has a discontinuity at 0 and
|ϕ(σ)/σ| > ε ≥ 0 for 0 < |σ| ≤ mc, where c is the L1 norm of κ(t) defined
previously. Assume also that there exists some real ϑ such that

(15) ε|χ(iω)|2 + Re (1 + iωϑ)χ(iω) ≥ 0, ∀ω ∈ R+,

with χ(s) = c∗(sI − A − b
∑r

1 q
∗
i e
−sτi)−1b the transfer function of the linear

part of (5), being such that all its transmission (invariant) zeros are outside the
imaginary axis iR. Then limt→∞ x(t) = 0 for any initial condition (x0, ψ(·)),
where ψ is a Rn-valued function defined on [−τ, 0), τ = max {τ1, . . . , τr}.

The proof is sketched in the Appendix and makes largely use of a cano-
nical change of coordinates used in [5, 6] but which goes back to [1] and [13].

3. CONCLUSIONS AND FURTHER DEVELOPMENT

The present paper represents an account of the extension of some re-
sults concerning systems with bounded and discontinuous nonlinearities, to a
special class of time lag systems. In fact, the approach of [6] together with
the idea of considering extended nonlinearities for systems with discontinu-
ous right hand side [7], is a genuine programme that may be carried on for
time delay systems with a single or several bounded and discontinuous nonli-
near functions. Within this programme, it appears possible to discuss sliding
modes for time delay systems in the simplest and most reasonable way. It is
an interesting research for the future, with its applications going beyond the
field that initiated the topics (flight control).

APPENDIX

We shall sketch here the proof of Theorem 2. If the Cauchy formula is
used, we can associate with (5) the integral equation (9) with X(t) defined by

Ẋ(t) = AX(t) +
r∑
1

bq∗iX(t− τi), X(t) ≡ 0, t < 0; X(0) = I.
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Taking into account the assumption on the roots of the characteristic
equation (14), we deduce the estimate |X(t)| ≤ β0e−ατ for some β0 > 0,
α > 0. It follows that all assumptions of Theorem 1 on ρ(t) and κ(t) hold due
to the exponential estimates. It is easily seen that the Laplace transform of the
kernel κ(t) is exactly the transfer function χ(s) in the statement of Theorem 2.
Consequently, the fulfilment of (15) implies the fulfilment of (13) in Theorem 1.
It follows that lim

t→∞
σ(t) = lim

t→∞
c∗x(t) = 0 along the solutions of (5), these

solutions being defined using (12) and the idea of extended nonlinearity of [7]
presented previously.

We shall now prove that lim
t→∞

x(t) = 0. Since b 6= 0 and (c∗, A) is an

observable pair, there exists some k, 0 ≤ k ≤ n− 1, such that ρk+1 = c∗Akb 6=
0, where ρi = c∗Ai−1b, i = 1, . . . , n. Perform now a change of the state
variables in (5) in two steps: the first one takes into account the observability
of the pair (c∗, A) and reads z = Qx, Q being the nonsingular observability
matrix with the rows c∗Ai, i = 0, . . . , n− 1. If ζi are the entries of the vector
z, system (5) becomes

(16)



ζ̇i(t) = ζi+1(t), i = 1, . . . , k,

ζ̇i(t) = ζi+1(t)−ρi(ϕ(ζ1(t))−
r∑
1

q∗jQ
−1z(t−τj)), i=k+1, . . . , n−1,

ζ̇n(t) =
n∑
1

γi−1ζi(t)− ρn(ϕ(ζ1(t))−
r∑
1

q∗jQ
−1z(t− τj)),

where γi are the coefficients of the characteristic equation det (λI −A) = 0.
Next, in the last n − k − 1 equations we shall eliminate the nonlinear

and delay terms using the second change of variables that appears for the first
time in [1] and is also used in [13], namely,

(17) ξi = ζi, i = 1, . . . , k + 1, ξi = ζi − (ρi/ρk+1)ζk+1, i = k + 2, . . . , n

which is obviously invertible. A straightforward computation leads to the
system

ξ̇i(t) = ξi+1(t), i = 1, . . . , k,

ξ̇k+1(t) =
ρk+2

ρk+1
ξk+1(t) + ξk+2(t)− ρk+1(ϕ(ξ1(t))−

r∑
1

q∗j (TQ)−1x̂(t− τj)),

ξ̇i =
(
ρi+1

ρk+1
− ρi

ρk+1
· ρk+2

ρk+1

)
ξk+1 −

ρi

ρk+1
ξk+2 + ξi+1, i=k+2, . . . , n−1,
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ξ̇n =
∑

i6=k+1,k+2

γi−1ξi +

(
n∑

k+1

γi−1
ρi

ρk+1
− ρn

ρk+1
· ρk+2

ρk+1

)
ξk+1+

+
(
γk+1 −

ρn

ρk+1

)
ξk+2,

T being the nonsingular matrix of the second change of variables while x̂ is
the state vector with entries ξi. Remark that only the k+ 1 equation contains
nonlinear and delayed terms. Since ξ1≡ c∗x≡ σ, we deduce that lim

t→∞
ξ1(t) = 0.

But the state variables of (5), hence of the above system, are bounded due
to the boundedness of ϕ and to the stability of the linear part of (5) – the
assumption about the roots of the characteristic equation (14). Therefore,
ξ̇2 is bounded, hence ξ̇1 is uniformly continuous; using the Barbălat lemma
[12], we deduce that lim

t→∞
ξ2(t) = 0. We can continue in this way to obtain

lim
t→∞

ξi(t) = 0, i = 3, . . . , k + 1.
Consider now the subsystem of the variables ξk+2, . . . , ξn, which is a

linear system without delays, with input a linear combination of the previous
state variables ξi(t), i = 1, . . . , k+1, that approach asymptotically 0. But this
system has as eigenvalues the invariant transmission zeros of (5), hence the
zeros of the transfer function χ(s). Since the subsystem is finite dimensional,
we show first that the numerator of χ(s) is a polynomial. Indeed, a rather
straightforward manipulationwill give

(18) χ(s) =
c∗(sI −A)−1b

1−
∑r

1 e−sτiq∗i (sI −A)−1b

and the numerator of χ(s) is the numerator of c∗(sI −A)−1b – a polynomial.
Next, the proof of the assertion concerning the eigenvalues of the subsystem
of the variables ξk+2,. . . ,ξn can be either performed directly or by applying a
general result from e.g. [4] dealing with the properties of the linear systems
subject to changes of the state variables defined by matrices of the form

(19) T =


c∗

...
c∗Ak

W

 ,

where W is such that its rows are a maximal system of independent solutions
of the linear homogeneous system

w∗b = 0, w∗Ab = 0, . . . , w∗Akb = 0.

The eigenvalues of the subsystem of the variables ξk+2, . . . , ξn are thus
outside the imaginary axis, i.e., this subsystem is hyperbolic. On the other
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hand, its solutions are bounded (see above). We can thus apply Lemma 22.3
of [12] to find lim

t→∞
ξi(t) = 0, i = k + 2, . . . , n. This ends the proof. �
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