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We introduce an iterative method for finding a common fixed point of a semigroup
of nonexpansive mappings in a Hilbert space, with respect to a sequence of left
regular means defined on an appropriate space of bounded real valued functions
of the semigroup. We prove the strong convergence of the proposed iterative
algorithm to the unique solution of a variational inequality, which is the optimality
condition for a minimization problem. Compared to the similar works, our results
have the merit of imposing weaker hypotheses on coefficients.
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1. INTRODUCTION

Let E be a real Banach space and let C be a closed convex subset of
E. Then, a mapping T of C into itself is called nonexpansive if ‖Tx− Ty‖ ≤
‖x − y‖, for all x, y ∈ C. We denote by F (T ) the set of fixed points of T .
Mann [11] introduced an iteration procedure for approximation of fixed points
of a nonexpansive mapping T in a Hilbert space as follows: Let x0 ∈ C and

xn+1 = (1− αn)Txn + αnxn, n ≥ 0,

where {αn} is a sequence in [0, 1]. See also Halpern [7].
Moudafi [13] introduced the viscosity approximation method for non-

expansive mappings. Let f be a contraction on a Hilbert space H (i.e.,
‖f(x) − f(y)‖ ≤ α‖x − y‖, x, y ∈ H and 0 ≤ α < 1). Starting with an
arbitrary initial x0 ∈ H, define a sequence {xn} recursively by

(1.1) xn+1 = (1− αn)Txn + αnf(xn), n ≥ 0,

where {αn} is a sequence in (0, 1). It is proved [13, 21] that under certain ap-
propriate conditions imposed on {αn}, the sequence {xn} generated by (1.1)
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strongly converges to the unique solution x∗ in F (T ) of the variational in-
equality

〈(I − f)x∗, x− x∗〉 ≥ 0, x ∈ F (T ).
On the other hand, iterative methods for nonexpansive mappings have

recently been applied to solve convex minimization problems; see, e.g., [6, 19,
20, 22, 23]. A typical problem is to minimize a quadratic function over the set
of the fixed points of a nonexpansive mapping on a real Hilbert space H

(1.2) min
x∈F

1
2
〈Ax, x〉 − 〈x, u〉,

where F is the fixed point set of a nonexpansive mapping T on H and u is a
given point in H. Assume A is strongly positive; that is, there is a constant
γ > 0 with the property

〈Ax, x〉 ≥ γ‖x‖2, for all x ∈ H.

In [19] (see also [22]), it is proved that the sequence {xn} defined by the
iterative method below, with the initial guess x0 ∈ H chosen arbitrarily,

(1.3) xn+1 = (I − αnA)Txn + αnu, n ≥ 0,

converges strongly to the unique solution of the minimization problem (1.2)
provided the sequence {αn} satisfies certain conditions.

Marino and Xu [12] combined the iterative method (1.3) with the vis-
cosity approximation method (1.1) and consider the following general itera-
tive method

(1.4) xn+1 = (I − αnA)Txn + αnγf(xn), n ≥ 0,

where 0 < γ < γ/α. They proved that if the sequence {αn} is a sequence in
(0, 1) satisfying the following conditions:

(C1) αn → 0;

(C2)
∞∑

n=0
αn = ∞;

(C3) either
∞∑

n=0
|αn+1 − αn| < ∞ or lim

n→∞
αn+1

αn
= 1;

then the sequence {xn} generated by (1.4) converges strongly to the unique
solution of the variational inequality

(1.5) 〈(A− γf)x∗, x− x∗〉 ≥ 0, x ∈ F,

which is the optimality condition for the minimization problem

min
x∈F

1
2
〈Ax, x〉 − h(x),

where h is a potential function for γf (i.e., h′(x) = γf(x), for x ∈ H).
Finding an optimal point in the intersection F of the fixed point sets of

a family of nonexpansive mappings is a task that occurs frequently in various
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areas of mathematical sciences and engineering. For example, the well-known
convex feasibility problem reduces to finding a point in the intersection of
the fixed point sets of a family of nonexpansive mappings; see, e.g., [2, 5]. A
simple algorithmic solution to the problem of minimizing a quadratic function
over F is of extreme value in many applications including set theoretic signal
estimation; see, e.g., [9, 24].

See, e.g., [4, 18] for solving variational problems defined on the set of
common fixed points of finitely many nonexpansive mappings.

In this paper, motivated by, Xu [21, 19], Marino and Xu [12], Colao, et al.
[4], Atsushiba and Takahashi [1], Shimizu and Takahashi [15] and Takahashi
[18], we introduce the following iterative algorithm: Let x0 ∈ H, and

(1.6) xn+1 = (I − αnA)T (µn)xn + αnγf(xn), n ≥ 0,

where S = {T (t) : t ∈ S} is a nonexpansive semigroup on H such that
F (S) 6= ∅, X is a subspace of l∞(S) such that 1 ∈ X and the function
t 7→ 〈T (t)x, y〉 is an element of X for each x, y ∈ H, and {µn} is a sequence of
means on X.

We will prove that if {µn} is left regular and {αn} is a sequence in (0, 1)
satisfying the conditions (C1) and (C2), then {xn} converges in norm to a x∗

in F (S), the set of common fixed points of S, which solves the variational in-
equality

(1.7) 〈(A− γf)x∗, x− x∗〉 ≥ 0, x ∈ F (S)

and is the optimality condition for the minimization problem

min
x∈F (S)

1
2
〈Ax, x〉 − h(x),

where h is a potential function for γf . Various applications to the additive
semigroup of nonnegative real numbers and commuting pairs of nonexpansive
mappings are also presented. It is worth mentioning that we obtain our results
without assuming the condition (C3).

2. PRELIMINARIES

Let S be a semigroup. We denote by l∞(S) the Banach space of all
bounded real valued functions on S with supremum norm. For each s ∈ S,
we define ls and rs on l∞(S) by (lsf)(t) = f(st) and (rsf)(t) = f(ts) for
each t ∈ S and f ∈ l∞(S). Let X be a subspace of l∞(S) containing 1 and
let X∗ be its topological dual. An element µ of X∗ is said to be a mean on
X if ‖µ‖ = µ(1) = 1. We often write µt(f(t)) instead of µ(f) for µ ∈ X∗

and f ∈ X. Let X be left invariant (resp. right invariant), i.e., ls(X) ⊂ X
(resp. rs(X) ⊂ X) for each s ∈ S. A mean µ on X is said to be left invariant
(resp. right invariant) if µ(lsf) = µ(f) (resp. µ(rsf) = µ(f)) for each s ∈ S
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and f ∈ X. X is said to be left (resp. right) amenable if X has a left (resp.
right) invariant mean. X is amenable if X is both left and right amenable.
As is well known, l∞(S) is amenable when S is a commutative semigroup or
a solvable group.

A net {µα} of means on X is said to be left regular if lim
α
‖l∗sµα−µα‖ = 0

for each s ∈ S, where l∗s is the adjoint operator of ls.
Let C be a nonempty closed and convex subset of E. A family S =

{T (s) : s ∈ S} is called a nonexpansive semigroup on a C if for each s ∈ S
the mapping T (s) : C → C is nonexpansive and T (st) = T (s)T (t) for each
s, t ∈ S. We denote by F (S) the set of common fixed points of S.

The open ball of radius r centered at 0 is denoted by Br. For a subset
A of E, we denote by coA and the closed convex hull of A. Weak convergence
is denoted by ⇀ .

Below, Lemmas 2.1 and 2.2 can be found in [16, 10, 14], Lemmas 2.3 and
2.5 in [17], Lemma 2.4 in [12], and Lemma 2.7 in [20].

Lemma 2.1. Let f be a function of semigroup S into a Banach space E
such that the weak closure of {f(t) : t ∈ S} is weakly compact and let X be
a subspace of l∞(S) containing all the functions t → 〈f(t), x∗〉 with x∗ ∈ E∗.
Then, for any µ ∈ X∗, there exists a unique element fµ in E such that

〈fµ, x∗〉 = µt〈f(t), x∗〉
for all x∗ ∈ E∗. Moreover, if µ is a mean on X then∫

f(t)dµ(t) ∈ co{f(t) : t ∈ S}.

We can write fµ by
∫

f(t)dµ(t).

Lemma 2.2. Let C be a closed convex subset of a Hilbert space H, S =
{T (s) : s ∈ S} be a nonexpansive semigroup from C into C such that F (S) 6= ∅
and X be a subspace of l∞(S) such that 1 ∈ X and the mapping t 7→ 〈T (t)x, y〉
be an element of X for each x ∈ C and y ∈ H, and µ be a mean on X.

If we write T (µ)x instead of
∫

Ttxdµ(t), then the following hold.
(i) T (µ) is a nonexpansive mapping from C into C.
(ii) T (µ)x = x for each x ∈ F (S).
(iii) T (µ)x ∈ co{Ttx : t ∈ S} for each x ∈ C.
(iv) If µ is left invariant, then T (µ) is a nonexpansive retraction from C

onto F (S).

Recall the metric (nearest point) projection PK from a Hilbert space H
to a closed convex subset K of H is defined as follows: given x ∈ H, PKx is
the only point in K with the property

‖x− PKx‖ = inf{‖x− y‖ : y ∈ K}.
PK is characterized as follows.
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Lemma 2.3. Let K be a closed convex subset of a real Hilbert space H.
Given x ∈ H and y ∈ K. Then y = PKx if and only if there holds the inequality

〈x− y, y − z〉 ≥ 0, ∀z ∈ K.

Lemma 2.4. Assume A is a strongly positive linear bounded operator on
a Hilbert space H with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I−ρA‖ ≤
1− ργ.

Lemma 2.5. Let C be a closed convex subset of H and T : C → C a
nonexpansive mapping with F (T ) 6= ∅. If {xn} is a sequence in C weakly
converging to x and if {(I−T )xn} converges strongly to y, then (I−T )x = y.

The following lemma is an immediate consequence of the inner product
on H.

Lemma 2.6. For all x, y ∈ H, there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.
Lemma 2.7. Assume {an} is a sequence of nonnegative real numbers

such that
an+1 ≤ (1− γn)an + δn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∞∑

n=1
γn = ∞;

(ii) lim sup
n→∞

δn/γn ≤ 0 or
∞∑

n=1
|δn| < ∞.

Then lim
n→∞

an = 0.

Throughout this paper, A will denote a strongly positive linear bounded
operator with coefficient γ > 0 and f a contraction with coefficient 0 < α < 1
on Hilbert space H.

3. STRONG CONVERGENCE OF A GENERAL INTERATIVE METHOD

The following is our main result.

Theorem 3.1. Let S = {T (t) : t ∈ S} be a nonexpansive semigroup on
H such that F (S) 6= ∅. Let X be a left invariant subspace of l∞(S) such that
1 ∈ X, and the function t 7→ 〈T (t)x, y〉 is an element of X for each x, y ∈ H.
Let {µn} be a left regular sequence of means on X and let {αn} be a sequence

in (0, 1) such that αn → 0 and
∞∑

n=0
αn = ∞. Let x0 ∈ H, 0 < γ < γ/α and

let {xn} be generated by the iterative algorithm (1.6). Then {xn} converges in
norm to x∗ ∈ F (S) which is a unique solution of the variational inequality
(1.7). Equivalently, we have PF (S)(I −A + γf)x∗ = x∗.
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Proof. Since αn → 0 and 0 < γ − γα, we my assume, with no loss of
generality, that αn < ‖A‖−1 and

(3.1) 0 < [2(γ − γα) + αnγ(2γα− γ)]αn < 1.

Let p be an arbitrary element of F (S). Then

‖xn+1 − p‖ = ‖(I − αnA)(T (µn)xn − p) + αn(γf(xn)−Ap)‖
≤ (1− γαn)‖xn − p‖+ αn‖γf(xn)−Ap‖ (by Lemma 2.2)
≤ (1− γαn)‖xn − p‖+ αn(γ‖f(xn)− f(p)‖+ ‖γf(p)−Ap‖)

≤ (1− (γ − γα)αn)‖xn − p‖+ αn‖γf(p)−Ap‖

= (1− (γ − γα)αn)‖xn − p‖+ (γ − γα)αn
‖γf(p)−Ap‖

γ − γα
.

It follows from induction that

‖xn − p‖ ≤ max
{
‖xn − p‖, ‖γf(p)−Ap‖

γ − γα

}
= M0, n ≥ 0.

Set D = {y ∈ H : ‖y−p‖ ≤ M0}. We remark D is a S-invariant bounded
closed convex set and {xn} ⊆ D. We will show that

(3.2) lim sup
n→∞

sup
y∈D

‖T (µn)y − T (t)T (µn)y‖ = 0, ∀t ∈ S.

Our proof of (3.2) follows the lines of a proof in [1]. Let ε > 0. By [3, Theo-
rem 1.2], there exists δ > 0 such that

(3.3) co Fδ(T (t);D) + Bδ ⊆ Fε(T (t);D), ∀t ∈ S.

By [3, Corollary 1.1], there also exists a natural number N such that

(3.4)

∥∥∥∥∥ 1
N + 1

N∑
i=0

T (tis)y − Tt

(
1

N + 1

N∑
i=0

T (tis)y
)∥∥∥∥∥ ≤ δ,

for all t, s ∈ S and y ∈ D. Let t ∈ S. Since {µn} is strongly left regular,
there exists n0 ∈ N such that ‖µn − l∗

ti
µn‖ ≤ δ/(M0 + ‖p‖) for n ≥ n0 and

i = 1, . . . , N . Then we have

(3.5) sup
y∈D

∥∥∥∥T (µn)y −
∫

1
N + 1

N∑
i=0

T (tis)ydµn(s)
∥∥∥∥

= sup
y∈D

sup
‖z‖=1

∣∣∣∣(µn)s〈T (s)y, z〉 − (µn)s

〈
1

N + 1

N∑
i=0

T (tis)y, z

〉∣∣∣∣
≤ 1

N + 1

N∑
i=0

sup
y∈D

sup
‖z‖=1

|(µn)s〈T (s)y, z〉 − (l∗tiµn)s〈T (s)y, z〉|

≤ max
i=1,...,N

‖µn − l∗tiµn‖(M0 + ‖p‖) ≤ δ, ∀n ≥ n0.
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On the other hand, we note that∫
1

N + 1

N∑
i=0

T (tis)ydµn(s) ∈ co

{
1

N + 1

N∑
i=0

T (t)i(T (s)y) : s ∈ S

}
.

From (3.3), (3.4), (3.5) and the above, we have

T (µn)y =
∫

1
N+1

N∑
i=0

T (tis)ydµn(s) +
(

T (µn)y−
∫

1
N+1

N∑
i=0

T (tis)ydµn(s)
)

∈ co

{
1

N + 1

N∑
i=0

T (tis)y : s∈S

}
+ Bδ ⊆ co Fδ(T (t);D) + Bδ ⊆ Fε(T (t);D),

for all y ∈ D and n ≥ n0. Therefore,

lim sup
n

sup
y∈D

‖T (t)T (µn)y − T (µn)y‖ ≤ ε.

Since ε > 0 is arbitrary, we get (3.2). In this stage, we will show

(3.6) lim
n
‖xn − T (t)xn‖ = 0, ∀t ∈ S.

Let t ∈ S and ε > 0. Then there exists δ > 0 which satisfies (3.3). Take
L0 = (γα + ‖A‖)M0 + ‖γf(p)−Ap‖. From lim αn = 0 and (3.2), there exists
k0 ∈ N such that αn < δ/L0 and T (µn)xn ∈ Fδ(T (t)), for all n > k0. We
note that

‖αn(γf(xn)−AT (µn)xn)‖
≤ αn(γ‖f(xn)− f(p)‖+ ‖γf(p)−Ap‖+ ‖AT (µn)xn −Ap‖)

≤ αn(γα‖xn − p‖+ ‖A‖‖xn − p‖+ ‖γf(p)−Ap‖)

≤ αn((γα + ‖A‖)M0 + ‖γf(p)−Ap‖) ≤ δ

L0
L0 = δ,

for all n > k0. Therefore, we have

xn+1 = T (µn)xn + αn(γf(xn)−AT (µn)xn) ∈ Fδ(T (t)) + Bδ ⊆ Fε(T (t)),

for all n > k0. This shows that

lim sup
n

‖xn − T (t)xn‖ ≤ ε,

and since ε > 0 is arbitrary, we get (3.6).
Banach’ s Contraction Mapping Principal guarantees that PF (S)(γf+(I−

A)) has a unique fixed point x∗ which is the unique solution of the variational
inequality

〈(A− γf)x∗, x− x∗〉 ≥ 0, x ∈ F (S).
We show that

(3.7) lim sup
n→∞

〈xn − x∗, γf(x∗)−Ax∗〉 ≤ 0.
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To see this, we take a subsequence {xnk
} of {xn} such that

lim sup
n→∞

〈xn − x∗, γf(x∗)−Ax∗〉 = lim
k→∞

〈xnk
− x∗, γf(x∗)−Ax∗〉.

We may also assume that xnk
⇀ z. Note that z ∈ F (S) in virtue of Lemma 2.5

and (3.6). Therefore,

lim sup
n→∞

〈xn − x∗, γf(x∗)−Ax∗〉 = 〈z − x∗, γf(x∗)−Ax∗〉 ≤ 0.

Finally, we prove ‖xn − x∗‖ → 0. To this end, we calculate

(3.8) ‖xn+1 − x∗‖2 = ‖(I − αnA)(T (µn)xn − x∗) + αn(γf(xn)−Ax∗)‖2

≤ ‖(I−αnA)(T (µn)xn−x∗)‖2+2αn〈γf(xn)−Ax∗, xn+1−x∗〉 (by Lemma 2.6)
≤ (1− αnγ)2‖xn − x∗‖2 + 2αn〈γf(xn)−Ax∗, xn+1 − x∗〉.

On the other hands,

〈γf(xn)− γf(x∗), xn+1 − x∗〉 ≤ γα‖xn − x∗‖ ‖xn+1 − x∗‖

≤ γα‖xn−x∗‖
√

(1−αnγ)2‖xn−x∗‖2 + 2αn〈γf(xn)−Ax∗, xn+1−x∗〉 (by (3.8))

≤ γα(1−αnγ)‖xn − x∗‖2 + γα‖xn − x∗‖
√

2|〈γf(xn)−Ax∗, xn+1 − x∗〉|
√

αn.

Since {xn} is bounded, we can take a constant G0 > 0 such that

γα‖xn − x∗‖
√

2|〈γf(xn)−Ax∗, xn+1 − x∗〉| < G0, (∀n).

So, from the above, we reach the following

(3.9) 〈γf(xn)− γf(x∗), xn+1 − x∗〉 ≤ γα(1− αnγ)‖xn − x∗‖2 + G0
√

αn.

Now, combining (3.8) and (3.9), we obtain

‖xn+1 − x∗‖2 ≤ (1− αnγ)2‖xn − x∗‖2 + 2αn〈γf(xn)− γf(x∗), xn+1 − x∗〉
+2αn〈γf(x∗)−Ax∗, xn+1 − x∗〉

≤ (1− αnγ)2‖xn − x∗‖2 + 2αn(γα(1− αnγ)‖xn − x∗‖2 + G0
√

αn)
+2αn〈γf(x∗)−Ax∗, xn+1 − x∗〉

= (1− 2αnγ + α2
nγ2 + 2αnγα(1− αnγ))‖xn − x∗‖2 + 2αnG0

√
αn

+2αn〈γf(x∗)−Ax∗, xn+1 − x∗〉
= (1− [2(γ − γα) + αnγ(2γα− γ)]αn)‖xn − x∗‖2

+2αn(G0
√

αn + 〈γf(x∗)−Ax∗, xn+1 − x∗〉).
It then follows that

(3.10) ‖xn+1−x∗‖2 ≤ (1− [2(γ−γα)+αnγ(2γα−γ)]αn)‖xn−x∗‖2 +αnβn,

where
βn = 2(G0

√
αn + 〈γf(x∗)−Ax∗, xn+1 − x∗〉).

By (3.7), we get lim sup
n→∞

βn ≤ 0. Now, considering (3.1), applying Lemma 2.7

to (3.10) concludes that ‖xn − x∗‖ → 0. �
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Corollary 3.2. Let S, X, {µn} and {αn} be as in Theorem 3.1. Let
u, x0 ∈ H and define a sequence {xn} by the iterative algorithm

xn+1 = (I − αnA)T (µn)xn + αnu, n ≥ 0.

Then {xn} converges in norm to a x∗ ∈ F (S) which is the unique solution of
the minimization problem

(3.11) min
x∈F (S)

1
2
〈Ax, x〉 − 〈x, u〉.

Proof. It suffices to take f ≡ u and γ = 1 in Theorem 3.1. �

4. SOME APPLICATIONS

Corollary 4.1. Let S and T be nonexpansive mappings on H with
ST = TS such that F (S) ∩ F (T ) 6= ∅. Let {αn} be a sequence in (0, 1)

satisfying conditions αn → 0 and
∞∑

n=0
αn = ∞. Let x0 ∈ H, 0 < γ < γ/α and

define a sequence {xn} by the iterative algorithm

xn+1 = (I − αnA)
1
n2

n−1∑
i=0

n−1∑
j=0

SiT jxn + αnγf(xn), n ≥ 0.

Then {xn} converges in norm to a unique x∗ ∈ F (S) ∩ F (T ) which solves the
variational inequality

〈(A− γf)x∗, x− x∗〉 ≥ 0, x ∈ F (S) ∩ F (T ).

In particular, taking f ≡ u ∈ H and γ = 1, x∗ is the unique solution of the
minimization problem

min
x∈F (S)∩F (T )

1
2
〈Ax, x〉 − 〈x, u〉.

Proof. Let T (i, j) = SiT j for each i, j ∈ N ∪ {0}. Then {T (i, j) : i, j ∈
N∪{0}} is a semigroup of nonexpansive mappings on C. Now, for each n ∈ N,

define µn(f) = 1
n2

n−1∑
i=0

n−1∑
j=0

f(i, j) for each f ∈ l∞((N ∪ {0})2). Then, {µn} is a

regular sequence of means [17]. Next, for each x ∈ C and n ∈ N, we have

T (µn)x =
1
n2

n−1∑
i=0

n−1∑
j=0

SiT jx,

for each n ∈ N. Therefore, applying Theorem 3.1, the result follows. �
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Corollary 4.2. Let S = {T (t) : t ∈ R+} be a strongly continuous
semigroup of nonexpansive mappings on H such that F (S) 6= ∅. Let {αn}
be a sequence in (0, 1) satisfying conditions αn → 0 and

∞∑
n=0

αn = ∞. Let

x0 ∈ H, 0 < γ < γ/α and define a sequence {xn} by the iterative algorithm

(4.1) xn+1 = (I − αnA)
1
tn

∫ tn

0
T (s)xnds + αnγf(xn), n ≥ 0,

where {tn} is an increasing sequence in (0,∞) such that lim
n→∞

tn = ∞ and

lim
n→∞

tn/tn+1 = 1. Then {xn} converges in norm to a unique x∗ ∈ F (S) which

solves the variational inequality (1.7).

Proof. For n ∈ N, define µn(f) = 1
tn

∫ tn
0 f(t)dt for each f ∈ C(R+),

where f ∈ C(R+) denotes the space of all real valued bounded continuous
functions on R+ with supremum norm. Then, {µn} is a regular sequence of
means [17]. Further, for each x ∈ C, we have T (µn)x = 1

tn

∫ tn
0 T (s)xds. Now,

apply Theorem 3.1 to conclude the result. �

Corollary 4.3. Let S = {T (t) : t ∈ R+} be a strongly continuous
semigroup of nonexpansive mappings on H such that F (S) 6= ∅. Let {αn}
be a sequence in (0, 1) satisfying conditions αn → 0 and

∞∑
n=0

αn = ∞. Let

x0 ∈ H, 0 < γ < γ/α and define a sequence {xn} by the iterative algorithm

(4.2) xn+1 = (I − αnA)rn

∫ ∞

0
exp(−rns)T (s)xnds + αnγf(xn), n ≥ 0,

where {rn} is a decreasing sequence in (0,∞) such that lim
n→∞

rn = 0. Then

{xn} converges in norm to a unique x∗ ∈ F (S) which solves the variational
inequality (1.7).

Proof. For each n ∈ N, define µn(f) = rn

∫∞
0 exp(−rnt)f(t)dt for each

f ∈ C(R+). Then, {µn} is a regular sequence of means [17]. Further, for each
x ∈ C, we have T (µn)x = rn

∫∞
0 exp(−rnt)T (t)xdt. Now, apply Theorem 3.1

to conclude the result. �

Corollary 4.4. In Corollaries 4.3 and 4.4, if we take f ≡ u ∈ H and
γ = 1, then {xn}, defined by (4.1) and (4.2) converge in norm to the unique
solution of the minimization problem (3.11).

Corollary 4.5. Let T be a nonexpansive mapping on H such that
F (T ) 6= ∅. Let {αn} be a sequence in (0, 1) satisfying conditions αn → 0

and
∞∑

n=0
αn = ∞ and let Q = {qn,m} be a strongly regular matrix. Let x0 ∈ H,
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0 < γ < γ/α and define a sequence {xn} by the iterative algorithm

xn+1 = (I − αnA)
∞∑

m=0

qn,mTmxn + αnγf(xn), n ≥ 0.

Then {xn} converges in norm to a unique x∗ ∈ F (T ) which solves the varia-
tional inequality (1.5). In particular, taking f ≡ u ∈ H and γ = 1, x∗ is the
unique solution of the minimization problem (1.2).

Proof. For each n ∈ N, define

µn(f) =
∞∑

m=0

qn,mf(m)

for each f ∈ l∞(N ∪ {0}). Since Q is a strongly regular matrix, for each m,
we have qn,m → 0, as n →∞; see [8]. Then, it is easy to see {µn} is a regular

sequence of means. Further, for each x ∈ C, we have T (µn)x =
∞∑

m=0
qn,mTmx.

Now, apply Theorem 3.1 to conclude the result. �
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