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1. INTRODUCTION

The main ideas related to the study of singularly perturbed differential
systems crystalized by the middle of the 20th century, when A.N. Tihonov es-
tablished the first fundamental result legitimating the reduced system as being
obtained by neglecting the fast variable. The multitude of concrete problems
raised since then has led to many approaches and methods, to the extension
of the results in the domains of Control Theory and Stochastic processes.

The publication of the monograph [1] encouraged the study of singular
perturbations in our country. During the last two decades Professor C. Vârsan
initiated and catalyzed the study of singularly perturbed stochastic systems
proposing new methods: to use the Lie Algebras generated by the diffusion
fields ([9], [10], [11]), consider the dynamical limits, i.e., to rewrite the per-
turbed system as a dynamical perturbed system admitting generalized controls
and to take advantage of the weak convergence of the solutions ([6], [8]) and
many other means of encompassing the difficulties related to the complexity
of the solutions of such systems.

Original results were obtained for hyperbolic systems ([9], [10]), evolution
systems of Cauchy-Kowalevskaia type ([4]), Hamilton-Jacobi systems ([7], [9]–
[11]), parabolic systems ([3], [4], [7], [8]), Langevin equations ([4], [6]).
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The present paper contains results not published yet from the author’s
Ph.D. Thesis [8]; the idea of considering systems leading to invariant measures
was suggested by Professor C. Vârsan and the theoretical background was
provided by [2], [5] and [12].

2. THE PERTURBED SYSTEM, MAIN HYPOTHESES
AND THE STRUCTURE OF ITS SOLUTIONS

We will analyze systems of the form

(1)

{
∂tu = ∆xu + f(x, u, v), t ∈ (0, T ], u(0) = u0(x), x ∈ Rn, u ∈ Rm,

ε∂tv = ∆xv + h(x, u, v), t ∈ (0, T ], v(0) = v0(x), x ∈ Rn, v ∈ Rk,

where the nonlinear applications f(x, u, v) and h(x, u, v) fulfill the conditions:
(i1) f and h are continuous and bounded in the domain D = Rn ×

B(0, ρ1)×B(0, ρ2), with B(0, ρ1) ⊂ Rm, B(0, ρ2) ⊂ Rk;
(i2)

|g(x, u′′, v′′)− g(x, u′, v′)| ≤ L(|u′′ − u′|+ |v′′ − v′|)
for any (x, u′, v′), (x, u′′, v′′) ∈ D, where g ∈ {f, h} and L > 0 is a constant.

For any ε ∈ (0, 1] the system (1) admits a unique local solution

(2) (uε(t, x), vε(t, x)) ∈ B(0, ρ1)×B(0, ρ2),

t ∈ [0, aε], x ∈ Rn if u0(x) ∈ B(0, ρ1/2), v0(x) ∈ B(0, ρ2/2) are continuous
and the hypotheses (i1), (i2) are fulfilled.

Moreover, the solution could be also written with the aid of the associated
system of integral equations

(3)



uε(t, x) =
∫

Rn

u0(y)P (t, x, y)dy+

+
∫ t

0
ds

∫
Rn

f(y, uε(s, y), vε(s, y))P (t− s, x, y)dy,

vε(t, x) =
∫

Rn

v0(y)P
(

t

ε
, x, y

)
dy+

+
1
ε

∫ t

0
ds

∫
Rn

h(y, uε(s, y), vε(s, y))P
(

t− s

ε
, x, y

)
dy,

where

P (τ, x, y) = (4πτ)−n/2 exp
(
−|y − x|2

4τ

)
is a solution of the fundamental parabolic equation

(4) ∂τP (τ, x, y) = ∆xP (τ, x, y), τ > 0, x, y ∈ Rn.
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In order to find a common interval t ∈ [0, a], not depending on ε ∈ (0, 1], such
that the integral equations (3) are verified for any t ∈ [0, a] and ε ∈ (0, 1] it
will prove useful to assume that the function h has the form

(i3) h(x, u, v) = Av + h0(x),

where the (k×k) matrix A is stable, i.e., 〈Av, v〉 ≤ −α|v|2, ∀v ∈ Rk, for some
constant α > 0.

A slightly relaxed hypothesis on the function h will also prove useful

(i′3) h(x, u, v) = Av + h0(x, u),

where again 〈Av, v〉 ≤ −α |v|2 and h0(x, u) fulfils conditions similar to (i1)
and (i2).

By denoting Φ(τ) = exp(τA), τ ≥ 0 and by using (i3) we are able to
rewrite vε(t, x) as

vε(t, x) = Φ(τ)
∫

Rn

v0(y)P (τ, x, y)dy+(5)

+
∫ τ

0
Φ(τ − s)ds

∫
Rn

h0(y)P (τ − s, x, y)dy,

where τ
∆= t

ε and |Φ(τ)| ≤ exp(−ατ), ∀τ ≥ 0.
It is easily seen that

vε(t, x) ∈ B(0, ρ2) ⊆ Rk

for any t ∈ [0, T ] and ε ∈ (0, 1] if ρ2 > 0 is sufficiently large.
Therefore the system (3) could be rewritten in the form

(6)



uε(t, x) =
∫

Rn

u0(y)P (t, x, y)dy+

+
∫ t

0
ds

∫
Rn

f(y, uε(s, y), vε(s, y))P (t− s, x, y)dy,

vε(t, x) = Φ(τ)
∫

Rn

v0(y)P (τ, x, y)dy+

+
∫ τ

0
Φ(τ − s)

∫
Rn

h0(y)P (τ − s, x, y)dyds, τ =
t

ε
.

Remark 2.1. Based upon the hypotheses (i1), (i2) and the successive
approximations method we could find a unique continuous solution

(7) (uε(t, x), vε(t, x)) ∈ B(0, ρ1)×B(0, ρ2),

t ∈ [0, a], x ∈ Rn which is uniformly bounded in ε ∈ (0, 1] and verifies the
system (6) on an interval t ∈ [0, a] not depending on ε ∈ (0, 1].
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Further, by using a direct computation involving the improper integrals
in (6), we deduce that the solution (uε(·), vε(·)) of this latter system verifies
also the parabolic system (1).

Let v̂(x) ∈ Rk be the continuous function defined by

(8) v̂(x) =
∫ ∞

0
Φ(σ)

[∫
Rn

h0(y)P (σ, x, y)dy

]
dσ.

It is not difficult to see that vε(t, x) defined in (6) fulfills

(9) lim
ε↓0

vε(t, x) = v̂(x)

for any t ∈ [0, a], x ∈ Rn and that v̂(·) defined by (8) fulfills

(10) ∆xv̂(x) + Av̂(x) + h0(x) = 0

for any x ∈ Rn.
Let u = û(t, x) be the unique solution of the first equation in (6) corres-

ponding to v = v̂(x),

û(t, x) =
∫

Rn

u0(y)P (t, x, y)dy+(11)

+
∫ t

0
ds

∫
Rn

f(y, û(s, y), v̂(y))P (t− s, x, y)dy.

Then u = û(t, x), t ∈ [0, a], x ∈ Rn fulfills the first parabolic equation from
(1) for v = v̂(x), i.e.,

(12)

{
∂tû(t, x) = ∆xû(t, x) + f(x, û(t, x), v̂(x)), t ∈ (0, a],

û(0, x) = u0(x), x ∈ Rn.

3. THE REDUCED SYSTEM AND THE DYNAMICAL LIMITS

It can be noticed that the reduced system associated to (1) follows to be
the parabolic-elliptic one given by (12) and (10). Indeed, putting together the
remarks and results in the previous section we obtain the next theorem.

Theorem 3.1. Let f(x, u, v) ∈ Rm and h(x, u, v) ∈ Rk such that the
hypotheses (i1), (i2) and (i3) are fulfilled. For each ε ∈ (0, 1] we consider
(uε(t, x), vε(t, x)) the solution of (1) written by the means of the integral equati-
ons (6). Let (û(t, x), v̂(x)), t ∈ [0, a], x ∈ Rn given by (12), respectively (8), i.e.,

∂tû(t, x) = ∆xû(t, x) + f(x, û(t, x), v̂(x)), t ∈ (0, a],

û(0, x) = u0(x), x ∈ Rn,

v̂(x) =
∫ ∞

0
Φ(σ)

[∫
Rn

h0(y)P (σ, x, y)dy

]
dσ.
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Then

lim
ε↓0

(uε(t, x), vε(t, x)) = (û(t, x), v̂(x))

for each t ∈ [0, a] and uniformly with respect to x ∈ Rn.

Proof. Indeed, by using the Remark 2.1, the unique solution of (6),
(uε(t, x), vε(t, x)), (t, x) ∈ [0, a]×Rn is also the unique solution of the integral
system (1).

In the same time, v̂(x), x ∈ Rk defined by (8) fulfills (9) and (10).
We need only to prove that uε(t, x) defined in (6) has the property

(13) lim
ε↓0

uε(t, x) = û(t, x)

for each t ∈ [0, a], x ∈ Rn, where û(·) fulfills (11) and (12).
We have, successively

|uε(t, x)− û(t, x)| ≤(14)

≤
∫ t

0
ds

∫
Rn

|f(y, uε(s, y), vε(s, y))− f(y, û(s, y), v̂(y))|P (t− s, x, y)dy ≤

≤ L

∫ t

0
ds

∫
Rn

[|uε(s, y)− û(s, y)|+ |vε(s, y)− v̂(y)|]P (t− s, x, y)dy ≤

≤ L

∫ t

0
‖uε(s, ·)− û(s, ·)‖ds + C

∫ t

0
exp

(
−α

t

ε

)
ds,

where ‖uε(s, ·)− û(s, ·)‖ ∆= sup
x∈Rn

‖uε(s, x)− û(s, x)‖ and |vε(t, x)− v̂ξ(x)| ≤

C exp
(
−α t

ε

)
for any x ∈ Rn.

By using now Gronwall’s lemma, from(14) we obtain

(15) ‖uε(t, ·)− û(t, ·)‖ ≤ εC1, t ∈ [0, a] ,

where C1 > 0 is constant.
We may conclude then that (13) holds for any t ∈ [0, a] and uniformly

with respect to x ∈ Rn, which completes the proof. �

Remark 3.2. The result from Theorem 3.1 does not change if the hypo-
thesis (i3) is replaced by the more relaxed (i′3).

To begin proving this, let us choose ρ2 > 0 sufficiently large such that
ρ2 ≥ 2C

α , where |h0(y, u)| ≤ C for any y ∈ Rn and u ∈ B(0, ρ1) ≤ Rm, α > 0
being the constant from (i′3).
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We have to replace the integral system (6) with

(6′)



uε(t, x) =
∫

Rn

u0(y)P (t, x, y)dy+

+
∫ t

0
ds

∫
Rn

f(y, uε(s, y), vε(s, y))P (t− s, x, y)dy,

vε(t, x) = Φ(τ)
∫

Rn

v0(y)P (τ, x, y)dy+

+
∫ τ

0
Φ(τ − s)ds

∫
Rn

h0(y, uε(s, y))P (τ − s, x, y)dy

for τ
∆= t

ε and by using again the successive approximations method we con-
clude this new system has a unique solution

(uε(t, x), vε(t, x)) ∈ B(0, ρ1)×B(0, ρ2), t ∈ [0, a] , x ∈ Rn

for any ε ∈ (0, 1].
We define for each u(t, x) ∈ B(0, ρ1), x ∈ Rn continuous and each t ∈

[0, a] the map V (t, x;u) by

(16) V (t, x;u) =
∫ ∞

0
Φ(σ)

[∫
Rn

h0(y, u(t, y))P (σ, x, y)dy

]
dσ, x ∈ Rn.

A straightforward calculation shows that V (t, x;u), x ∈ Rn verifies V (t, x;u) ∈
B(0, ρ2) and also the equation

(17) ∆xV (t, x) + AV (t, x) + h0(x, u(t, x)) = 0, x ∈ Rn

for each t ∈ [0, a].
By using the Lipschitz continuity of h0(y, u) in u ∈ B(0, ρ1) (according

to (i1) for h0), we obtain from (16) that V (t, x;u) fulfills also

(18)
∣∣V (t, x;u′′)− V (t, x;u′)

∣∣ ≤ L
∥∥u′′(t, ·)− u′(t, ·)

∥∥ , t ∈ [0, a] , x ∈ Rn

for any continuous applications u′′(t, x), u′(t, x) ∈ B(0, ρ1), where ‖u′′(t, ·) −
u′(t, ·)‖ ∆= sup

x∈Rn
|u′′(t, x)− u′(t, x)|. Therefore, V (t, x;u) is Lipschitz conti-

nuous regarded as a map from the space of continuous bounded functions
u(t, ·) ∈ C(Rn;B(0, ρ1)) to the space of continuous bounded functions v(t, ·) ∈
C(Rn;B(0, ρ2)) and (18) could be rewritten as

(19)
∥∥V (t, · ;u′′)− V (t, · ;u′)

∥∥ ≤ L
∥∥u′′(t, ·)− u′(t, ·)

∥∥ , ∀t ∈ [0, a] ,

where u′(·), u′′(·) ∈ C ([0, a]×Rn;B(0, ρ1)) and L > 0 is constant. The
standard process of successive approximations defines then u = û(t, x) with
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t ∈ [0, a], x ∈ Rn as a unique solution of the integral system

(20)


û(t, x) =

∫
Rn

u0(y)P (t, x, y)dy+

+
∫ t

0
ds

∫
Rn

f(y, û(s, y), V (s, y; û)P (t− s, x, y)dy

û(t, x) ∈ B(0, ρ1), (t, x) ∈ [0, a]×Rn,

where the map V (t, x;u) defined by (16) fulfills (17) and (19).
We denote now

v̂(t, x) = V (t, x; û), (t, x) ∈ [0, a]×Rn

and by using (17) and (20) see easily that the pair of continuous functions
(û(t, x), v̂(t, x)) ∈ B(0, ρ1)×B(0, ρ2) is a solution of the reduced system

(21)

{
∂tû = ∆xû + f(x, û, v̂(t, x)), û(0, x) = u0(x), t ∈ (0, a] , x ∈ Rn,

∆xv̂ + Av̂ + h0(x, û(t, x)) = 0, (t, x) ∈ [0, a]×Rn.

We will show that taking the limit of the solution (uε(t, x), vε(t, x)),
(t, x) ∈ [0, a]×Rn of the integral system (6′) for ε ↓ 0 we obtain the solution
(û(t, x), v̂(t, x)) , (t, x) ∈ (0, a]×Rn of the reduced system (21).

For this purpose we first define for any ε ∈ (0, 1] the mapping

Vε(t, x;u), (t, x) ∈ [0, a]×Rn, u(·) ∈ C ([0, a]×Rn;B(0, ρ1))

as

(22)


Vε(t, x;u) ∆= Φ(τ)

∫
Rn

v0(y)P (τ, x, y)dy+

+
∫ τ

0
Φ(τ − s)ds

∫
Rn

h0(y, uε(s, y))P (τ − s, x, y)dy,

Vε(t, x;u) ∈ B(0, ρ2), τ
∆= t

ε .

The same straightforward computations that prove V (t, x;u) defined in (16)
has the properties (17), (19) could be used to check that Vε(t, x;u) fulfills

(23)

{
∂tVε = 1

ε [∆xVε + AVε + h0(x, u(t, x))] , t ∈ (0, a] ,

Vε(0, x) = v0(x), x ∈ Rn,

and

(24)
∥∥Vε(t, · ;u′′)− Vε(t, · ;u′)

∥∥ ≤ L′1
∥∥u′′(t, ·)− u′(t, ·)

∥∥ ,

where u′(·), u′′(·) ∈ C ([0, a]×Rn;B(0, ρ1)) and L1 > 0 is constant.
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By using now Vε(t, x;u) we define (just as we previously defined the
solution of (20)) u = ũε(t, x) as the unique solution of the system

ũε(t, x) =
∫

Rn

u0(y)P (t, x, y)dy+(25)

+
∫ t

0
ds

∫
Rn

f(y, ũε(s, y), Vε(s, y; ũε))P (t− s, x, y)dy

with ũε(0, x) = u0(x) and ũε(t, x) ∈ B(0, ρ1) for any t ∈ [0, a], x ∈ Rn and
ε ∈ (0, 1].

Taking now ṽε(t, x) ∆= Vε(t, x; ũε), (t, x) ∈ [0, a]×Rn and using (22) and
(23) it follows with no difficulty that (ũε(t, x), ṽε(t, x)) , (t, x) ∈ [0, a]×Rn is
a solution of the integral system (6′).

The uniqueness of the solution of (6′) leads to the identities

ũε(t, x) = uε(t, x), ṽε(t, x) = vε(t, x)

for any (t, x) ∈ [0, a]×Rn, ε ∈ (0, 1] and it also follows that (ũε(t, x), ṽε(t, x))
fulfills the perturbed parabolic system (1).

We will prove the next auxiliary result:

Lemma 3.3. Let V (t, x;u) and Vε(t, x;u) the maps defined by (16) and
(22) respectively, for (t, x) ∈ [0, a] × Rn and u(·) ∈ C ([0, a]×Rn;B(0, ρ1))
and taking values in C ([0, a]×Rn;B(0, ρ2)). Assume the hypotheses (i1), (i2)
and (i′3) are fulfilled. Then lim

ε↓0
Vε(t, x;u) = V (t, x;u) uniformly with respect

to x ∈ Rn and u(·) ∈ Cγ ([0, a]×Rn;B(0, ρ1)) for each t ∈ (0, a], where
the space Cγ ([0, a]×Rn;B(0, ρ1)) ⊆ C ([0, a]×Rn;B(0, ρ1)) is defined below
by (30).

Proof. By using the change τ − s = σ ∈ [0, τ ], s ∈ [0, τ ] and by decom-
posing [0, τ ] ∆=

[
0, t

ε

]
=

[
0, t√

ε

]
∪

(
t√
ε
, t

ε

]
we may rewrite (22) as

Vε(t, x;u) = Φ(τ)
∫

Rn

v0(y)P (τ, x, y)dy+(26)

+
∫ t/

√
ε

0
Φ(τ)

[∫
Rn

h0(y, u(t− εσ, y))P (σ, x, y)dy

]
dσ+

+ηε(t, z) ∆= v̂ε(t, x) + ηε(t, x),

where

(27) ηε(t, x) ∆=
∫ t/ε

t/
√

ε
Φ(σ)

[∫
Rn

h0(y, u(t− εσ, y))P (σ, x, y)dy

]
dσ
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is bounded for ε ∈ (0, 1], (t, x) ∈ [0, a]×Rn and has the property

(28) lim
ε↓0

ηε(t, x) = 0

uniformly for (t, x) ∈ [0, a]×Rn and u(·) ∈ C ([0, a]×Rn;B(0, ρ1)).
On the other hand, for ε → 0 and σ ∈ [0, t/

√
ε] we have

(29) lim
ε↓0

εσ = 0

uniformly for t ∈ [0, a] and by choosing the space of functions

u(·) ∈ Cγ ([0, a]×Rn;B(0, ρ1))

equally uniformly continuous with respect to t ∈ [0, a], i.e.,

(30)
∥∥u(t′′, ·)− u(t′, ·)

∥∥ ≤ γ
(∣∣t′′ − t′

∣∣) ,

where lim
δ↓0

γ(σ) = 0 we obtain

(31) lim
ε↓0

u(t− εσ, x) = u(t, x)

uniformly for x ∈ Rn and u(·) ∈ Cγ ([0, a]×Rn;B(0, ρ1)) for each t ∈ (0, a].
By using (31) in (26) we obtain with no difficulty

(32) lim
ε↓0

v̂ε(t, x) = V (t, x;u)

uniformly for x ∈ Rn and u(·) ∈ Cγ ([0, a]×Rn;B(0, ρ1)) for each t ∈ (0, a].
The equations (28) and (32) complete the proof of the lemma. �

Remark 3.4. It appears as necessary for the family of solutions

uε(t, x), ε ∈ (0, 1] , (t, x) ∈ [0, a]×Rn

defined by (6′) and corresponding to v = Vε(t, x;u) to have an “equal uniform
continuity property” for t ∈ [0, a], property of the type

(33)
∥∥uε(t′′, ·)− uε(t′, ·)

∥∥ ≤ γ
(∣∣t′′ − t′

∣∣) , ε ∈ (0, 1] ,

where γ(δ) verifies lim
δ↓0

γ(δ) = 0.

By definition u = uε(t, x) ∈ B(0, ρ1), t ∈ [0, a], x ∈ Rn is the unique
solution of the integral system

uε(t, x) =
∫

Rn

u0(y)P (t, x, y)dy+(34)

+
∫ t

0
ds

∫
Rn

f(y, uε(s, y), vε(s, y))P (t− s, x, y)dy,

where vε(t, x) ∆= Vε(t, x;uε) and the map Vε(t, x;u) defined in (22) has the
properties (23) and (24).
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Moreover, if u0(·) ∈ C1(Rn;Rm) and fulfills

(i4) pi
0(x) ∆= ∂iu0(x) ∆=

∂u0

∂xi
(x) ∈ B(0, ρ1/2)

for x ∈ Rn, i ∈ {1, . . . , n}, then the solution of (34) is C1 for x ∈ Rn and
pi

ε(t, x) ∆= ∂iuε(t, x) is continuous and verifies the following system

pi
ε(t, x) =

∫
Rn

pi
0(y)P (t, x, y)dy+(35)

+
∫ t

0
ds

∫
Rn

f (y, uε(s, y), vε(s, y)) ∂xiP (t− s, x, y)dy,

pi
ε(t, x) ∈ B(0, ρ1), ∀(t, x) ∈ [0, a] × Rn, i ∈ {1, . . . , n}, for 0 < a suffi-

ciently small.
The statements related to (35) are based upon the standard successive ap-

proximations procedure applied to the combined system of integral equations
(34) and (35), which leads to the unique continuous and uniformly bounded
solution

(
uε(t, x), p1

ε(t, x), . . . , pn
ε (t, x)

)
, (t, x) ∈ [0, a]×Rn.

Therefore, if the initial value u0(·) fulfils (i4), then the solution uε(t, x),
x ∈ Rn defined by (34) is Lipschitz continuous and

(36)
∣∣uε(t, x′′)− uε(t, x′)

∣∣ ≤ C0

∣∣x′′ − x′
∣∣

for any x′, x′′ ∈ Rn, t ∈ [0, a] and ε ∈ (0, 1], where C0 > 0 is constant.
On the other hand, for t ∈ [t′, t′′] ≤ [0, a] we define

(37) ûε(s, x) ∆= uε(t′ + s, x), s ∈
[
0, t′′ − t′

]
, x ∈ Rn,

and by using the related parabolic system{
∂sûε(s, x) = ∆xûε(s, x) + f(x, ûε(s, x), v̂ε(s, x)), s ∈ (0, t′′ − t′] ,

ûε(0, x) = uε(t′, x), x ∈ Rn,

we represent the solution v̂ε(s, x) ∆= vε(t′+s, x) by means of the integral system

ûε(s, x) =
∫

Rn

uε(t′, y)P (s, x, y)dy+(38)

+
∫ s

0
dσ

∫
Rn

f (y, ûε(σ, y), v̂ε(σ, y))P (s− σ, x, y)dy

for any s ∈ [0, t′′ − t′], x ∈ Rn, ε ∈ (0, 1], where ûε(s, x) ∈ B(0, ρ1) and
v̂ε(s, x) ∈ B(0, ρ2).

By using now (37) and (38) for s = t′′ − t′ we obtain

(39)
∣∣uε(t′′, x)−uε(t′, x)

∣∣≤∫
Rn

∣∣uε(t′, y)−uε(t′, x)
∣∣ P (t′′−t′, x, y)dy+C

∣∣t′′−t′
∣∣
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for any x ∈ Rn, ε ∈ (0, 1], where C > 0 is the boundedness constant given by
(i1) for the function f .

We also interpret the first term in the right side of (38) as the expectation
on the probability space {Ω, F, P} related to a Wiener standard process w(t) ∈
Rn, t ∈ [0,∞) and we define y(t;x) ∆= x +

√
2w(t), to obtain∫

Rn

∣∣uε(t′, y)− uε(t′, x)
∣∣ P (t′′ − t′, x, y)dy =(40)

= E
∣∣uε

(
t′, y(t′′ − t′;x)

)
− uε(t′, x)

∣∣ .

Taking advantage of (36) in (40) we are led to∫
Rn

∣∣uε(t′, y)− uε(t′, x)
∣∣ P (t′′ − t′, x, y)dy ≤(41)

≤ C1E
∣∣w(t′′ − t′)

∣∣ ≤ C1

√
|t′′ − t′|

for any [t′, t′′] ⊆ [0, a], x ∈ Rn, ε ∈ (0, 1], where C1 > 0 is constant.
We use now (41) in (39) to deduce

(42)
∥∥uε(t′′, ·)− uε(t′, ·)

∥∥ ≤ C2

√
|t′′ − t′|, ∀

[
t′, t′′

]
⊆ [0, a] , ε ∈ (0, 1] ,

where C2 > 0 is constant.
The calculations above may be resumed in

Lemma 3.5. Let f(x, u, v) ∈ Rm, h(x, u, v) ∈ Rk be such that (i1), (i2)
and (i′3) are fulfilled. Let u0(·) also fulfill hypothesis (i4). Consider uε(t, x)
and û(t, x), t ∈ [0, a], x ∈ Rn, ε ∈ (0, 1] the solutions of the integral system
(6′) corresponding to v = vε(t, x) ∆= Vε(t, x;uε), respectively to v = v̂(t, x) =
V (t, x; û). Then uε(·), û(·) ∈ Cγ ([0, a]×Rn;B(0, ρ1)), where γ(δ) = C2

√
δ is

given by (42) and the space Cγ is defined by (30).

The synthesis of the considerations presented in all the above remarks
and lemmas is given in the next

Theorem 3.6. Assume f(x, u, v) ∈ Rm, h(x, u, v) ∈ Rk and u0(·) ∈
C1(Rn;Rm) are given such that the hypotheses (i1), (i2) and (i′3), respectively
∂iu0(x) ∈ B(0, ρ1/2), i ∈ {1, . . . , n} are fulfilled.

Let (uε(t, x), vε(t, x)), ε ∈ (0, 1], (t, x) ∈ [0, a]×Rn be the solution of the
system (1) represented by the integral equations (6′).

Let (û(t, x), v̂(t, x)), (t, x) ∈ [0, a] × Rn be the solution of the reduced
system (21), where v̂(t, x) ∆= V (t, x; û), vε(t, x) ∆= Vε(t, x;uε), the applications
V (t, x;u), Vε(t, x;u) defined by (16) and (22) and related by Lemma 3.3.

Then lim
ε↓0

(uε(t, x), vε(t, x)) = (û(t, x), v̂(t, x)) uniformly with respect to

x ∈ Rn, for each fixed t ∈ [0, a].
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Proof. The assumption is that the conditions in Lemmas 3.3 and 3.5
are fulfilled, hence uε(·), û(·) ∈ Cγ ([0, a]×Rn;B(0, ρ1)), ε ∈ (0, 1], where
γ(δ) = C2

√
δ. On the other hand, by using (i2) we deduce

(43) |uε(t, x)− û(t, x)| ≤

≤
∫ t

0
ds

[∫
Rn

|f (y, uε(s, y), vε(s, y))− f (y, û(s, y), v̂(s, y))|P (t− s, x, y)dy

]
≤

≤ L

∫ t

0
‖uε(s, ·)− û(s, ·)‖ds + L

∫ t

0
‖vε(s, ·)− v̂(s, ·)‖ds,

for any x ∈ Rn and any t ∈ [0, a], where vε(t, x) ∆= Vε(t, x;uε) = Vε(t, x; û) +
[Vε(t, x;uε)− Vε(t, x; û)], v̂(t, x) ∆= V (t, x; û).

From (24) we have

(44) ‖Vε(t, · ;uε)− Vε(t, · ; û)‖ ≤ L1 ‖uε(t, ·)− û(t, ·)‖ , ∀t ∈ [0, a]

and we rewrite (43) as

(45) ‖uε(t, ·)− û(t, ·)‖ ≤

≤ L2

∫ t

0
‖uε(s, ·)− û(s, ·)‖ds + L

∫ t

0
‖Vε(s, · ; û)− V (s, · ;u)‖ds,

where uε(·), û(·) ∈ Cγ ([0, a]×Rn;B(0, ρ1)), ε ∈ (0, 1] and Vε(t, x;u) ∈ B(0, ρ2),
V (t, x;u) ∈ B(0, ρ2) fulfill the conclusion of Lemma 3.3.

We apply Gronwall’s lemma and from (45) we obtain

(46) ‖uε(t, ·)− û(t, ·)‖ ≤ β(ε)

for any t ∈ [0, a], where β(ε) ∆= L
(∫ a

0 ‖Vε(t, · ; û)− V (t, · ; û)‖dt
)
exp(L2 · a)

has the property

(47) lim
ε↓0

β(ε) = 0.

Therefore, we also obtain that vε(t, x) − v̂(t, x) ∆= Vε(t, x;uε) − V (t, x; û) =
[Vε(t, x; û)− V (t, x; û)] + [Vε(t, x;uε)− Vε(t, x; û)] fulfills

(48) lim
ε↓0

‖vε(t, ·)− v̂(t, ·)‖ = 0

for each t ∈ (0, a] and this completes the proof. �
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FINAL REMARKS

The solution v = v̂(t, x) ∈ B(0, ρ2) ⊂ Rk in Theorem 3.6 is related to
the elliptic system (21) and has the explicit form (16).

It is easily seen that for h0(x, u) = 0 the solution v̂(·) is also identically
0, even if the related elliptic equations ∆v + Av = 0 may have non-trivial
bounded solutions. For example, the equation v′′(x)−v(x) = 0, x ∈ R admits
a one-dimensional space N

∆= {v(x) = λṽ(x), λ, x ∈ R} as set of solutions

(where ṽ(x) =
{

e−x, x ∈ [0,∞) ,
ex, x ∈ (−∞, 0] fulfills the equation v′′ − v = 0 for any

x 6= 0).
The presence of the stable matrix A in the elliptic equations ∆v+Av = 0

is very helpful for defining solutions of the equations ∆v +Av +µh0(x, t) = 0,
v = v̂µ(t, x), µ ∈ [−a, a] continuous with respect to the parameter µ and
avoiding the bifurcation phenomenon related to those elliptic equations.

On the other hand, the solution of the perturbed part in (1)

(∗)

{
ε∂tv = ∆xv + Av + h0(x, uε(t, x)), t ∈ [0, a] , x ∈ Rn,

v(0, x) = v0(x)

could be represented by using a singularly perturbed process yε(t, x) = x +√
2
εw(t) determined by the Wiener standard process.

The solution of (∗) could be written

vε(t, x) = Φ
(

t

ε

)
Ev0(yε(t, x))+

+
1
ε

∫ t

0
Φ

(
t− s

ε

)
Eh0 (yε(t− s), uε(s, yε(t− s, x))) ds

∆= Eṽε(t, x, ω),

where the process ṽε(t, x, ω) fulfills a stochastic parabolic system

(∗∗) εdtṽ = [∆xṽ + Aṽ + h0(x, uε(t, x))] dt +
√

ε (∂xṽ)∗ dW (t), t ∈ (0, a] ,

if v0(·) and h0(·) are C1 and where ∗ is the Ito integral.
The analysis from Theorem 3.6 could be extended to stochastic systems

of the form (∗∗).
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