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ON A DENJOY-BOURBAKI TYPE INEQUALITY
AND SOME APPLICATIONS
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Let f : [a, b] → R be a continuous function on the compact interval [a, b]. We
prove the inequality

f(x)− f(a) ≤ v ∗ ([a, x] ∩A) +

∫ ∗

[a,x]∩A′
f(t)dt, ∀x ∈ [a, b],

where A is on arbitrary subset of [a, b], A′ ∩A = φ, [a, b]\(A ∪A′) is a countable
set, v∗ is the outer measure associated with f and

∫ ∗
M

fdt is the outer integral of
the function f on the subset M . It turns out that there are a lot of consequences
of this inequality.
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1. THE VARIATION OF A FUNCTION

In what follows an interval [α, β] is called proper (interval) if α < β.
Let f : [a, b] → R be a real continuous function on [a, b]. For any proper

interval [α, β] ⊂ [a, b] we denote by vf [α, β] or simply v[α, β] the variation of
the function f on the interval [α, β], i.e.,

v[α, β] = sup
{ n−1∑

i=0

|f(xi+1)− f(xi)|; α = x0 < x1 < x2 < · · · < xn = β

}
.

It is known that if a ≤ α < β < γ ≤ b we have

0 ≤ v([α, γ]) = v([α, β]) + v([β, γ]),

v[α, β] = sup v[αn, βn] if αn ↓ α and βn ↑ β.
Moreover, if ([αn, βn])n is a sequence of intervals such that the sets

[αn, βn] ∩ [αm, βm] have no interior point, for n 6= m and
⋃

n[αn, βn] =
(α, β) then

v[α, β] =
∑

n

v[αn, βn].
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Indeed, for any m ∈ N we have

(α, β) =
⋃

n≤m

[αn, βn] ∪
k⋃

i=1

[γi, δi],

where the sets [αn, βn] ∩ [αk, βk], [γi, δi] ∩ [γj , δj ], [αn, βn] ∩ [γi, δi] have no
interior point and therefore

v[α, β] =
∑
n≤m

v[αn, βn] +
k∑

i=1

v[γi, δi] ≥
∑
n≤m

v[αn, βn],

v[α, β] ≥ sup
m∈N

∑
n≤m

v[αn, βn] =
∑
n∈N

v[αn, βn].

Using a compacity argument, for any ε, ε′ > 0 we find a finite covering
of the compact interval [α + ε, β − ε] with intervals of the type

(
αn − ε

2n , βn

+ ε
2n

)
, i.e.,

[α + ε, β − ε] ⊂
⋃

n≤m

[
αn −

ε′

2n
, βn +

ε′

2n

]
and therefore

v[α + ε, β − ε] ≤
∑
n≤m

v

[
αn −

ε′

2n
, βn +

ε′

2n

]
≤
∑
n∈N

v

[
αn −

ε′

2n
, βn +

ε′

2n

]
.

Hence, letting ε′ → 0, we get

v[α + ε, β − ε] ≤
∑
n∈N

v[αn, βn].

If ε tends to zero we obtain

v[α, β] ≤
∑
n∈N

v[αn, βn], v[α, β] =
∑
n∈N

v[αn, βn].

For any subset A of [a, b] we define

v∗(A) =

{
inf
{∑

n
v[αn, βn] | αn < βn, A ⊂

⋃
n
(αn, βn)

}
if A 6= φ,

0 if A = φ.

It is not difficult to show that v∗ is an outer measure on P([a, b]), i.e., v∗(φ) = 0,
v∗(A) ≤ v∗(B) if A ⊂ B and

v∗

( ∞⋃
n=1

An

)
≤

∞∑
n=1

v∗(An)

for any sequence (An)n of subsets of the interval [a, b].
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Moreover, if A,B ∈ P([a, b]) are such that Â ∩ B̂ = ∅ then v∗(A ∪ B) =
v∗(A) + v∗(B). In this case, the family Bf of all subsets M of [a, b] which are
v∗-measurable is a σ-algebra on [a, b], the restruction to Bf of v∗ is a positive
measure (called the variation measure associated with f) and Bf contains any
open subsect of [a, b]. Moreover, for any α, β ∈ [a, b], α < β, we have

v∗(α, β) = v[α, β].

It is interesting to remark that if v[a, b] < ∞ then

v∗[α, β] = v∗(α, β) = v[α, β], ∀α, β ∈ [a, b],

v∗({α}) = 0, ∀α ∈ (a, b].

In the general case we have v∗({α}) ∈ {0,∞} and for any sequence (An)n

from Bf such that An ∩Am = φ if n 6= m we have

v∗
(

A ∩
(⋃

n

An

))
=
∑

n

v∗(A ∩An).

Moreover, for any increasing sequence (An)n, An⊂ [a, b] we have v∗(
⋃

n An) =
supn v∗(An)

2. OUTER LEBESGUE INTEGRAL

For any function g : [a, b] → R we associate an element of R denoted by∫ ∗
[a,b] gdλ or

∫ ∗
[a,b] gdt given by∫ ∗

[a,b]
gdλ = inf

{∫
[a,b]

ϕdλ|ϕ : [a, b]→(−∞,∞], ϕ lower semicontinuous, ϕ≥g

}
.

Usually, this element is called the outer Lebesgue integral of the function
g with respect to the Lebesgue measure λ on [a, b].

In the same way it is defined the interior Lebesgue integral of the function
g on the interval [a, b] with respect to the Lebesgue measure λ, namely,∫

∗[a,b]
gdλ =

= sup
{∫

[a,b]
Ψdλ, Ψ : [a, b] → [−∞,∞), Ψ ≤ g, Ψ upper semicontinuous

}
.

Obviously, we have∫
∗[a,b]

gdλ = −
∫ ∗

[a,b]
(−g)dλ ≤

∫ ∗

[a,b]
gdλ.
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It is known that the function g is integrable with respect to the Lebesgue
measure λ on [a, b] iff we have∫ ∗

[a,b]
gdλ =

∫
∗[a,b]

gdλ ∈ R.

In this case we have ∫
[a,b]

gdλ =
∫ ∗

[a,b]
gdλ =

∫
∗[a,b]

gdλ.

3. THE KEY LEMMA

As above, we consider a continuous function f : [a, b] → R and for any
point x0 ∈ [a, b] we denote

Df(x0) = lim
x→x0

sup
f(x)− f(x0)

x− x0
.

Let A1 = {x1, x2, x3, . . .} be a countable subset of the interval [a, b], A2

an arbitrary subset of [a, b] and G an open subset of [a, b] (endowed with the
topology associated with the usual distance d(x, y) = |x− y|) such that

[a, b] = A1 ∪A2 ∪G.

Let further ϕ be a lower semicontinuous function

ϕ : [a, b] → (−∞,∞]

such that
Df(x)1A2(x) ≤ ϕ(x), ∀x ∈ [a, b]

and let us suppose Df(x) < ∞ for all x ∈ A2 and ε, εxn be strictly positive
real numbers for all n ∈ N such that

∑
n εxn ≤ ε.

Lemma 1. If f , A1, A2, G, ϕ, ε, εxn are as above, we have

f(x)− f(a) ≤
∑
xi<x

εxi +
∫

[a,x]
ϕ(t)dt + v([a, x] ∩G) + ε(x− a), ∀x ∈ [a, b],

where v is the variation measure associated with f .

Proof. Since ϕ is lower semicontinuous and ϕ(x) > −∞ for all x ∈ [a, b]
we deduce that ϕ is lower bounded and the integral

∫
[a,x] ϕ(t)dt > −∞ for

any x ∈ [a, b]. If there exists x0 ∈ [a, b] such that
∫
[a,x0] ϕ(t)dt = +∞, then we

have
∫
[a,x] ϕ(t)dt = +∞ for all x ∈ [x0, b]. The function

x →
∑
xi<x

εxi, x → v([a, x] ∩G)
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being increasing, the stated inequality holds for any x ∈ [x0, b] if there exists
a point x0∈[a, b] such that v([a, x0] ∩G)=+∞ or

∫
[a,x0] ϕ(t)dt=+∞.

So, we may consider a point y0 ∈ [a, b] such that v([a, x] ∩G) < ∞ and∫
[a,x] ϕ(t)dt < ∞, ∀x ∈ [a, y0).

For our purpose we may suppose that y0 = b. Let now M be the subset
of [a, b] given by

M =
{

y ∈ [a, b] | f(x)−f(a) ≤
∑
xi<x

εxi +
∫

[a,x]
ϕ(t)dt+ε(x−a), ∀x ∈ [a, y]

}
.

Obviously, a ∈ M and we shall denote z0 = supM . We have to show that
z0 = b. We suppose the contrary, i.e., z0 < b.

The following situations arise.

Case 1. z0 ∈ A1, i.e., there exists n0 ∈ N such that z0 = xn0 . Since
z0 = xn0 , εxn0

> 0 and

f(z0)− f(a) ≤
∑

xi<z0

εxi +
∫

[a,z0]
ϕ(t)dt + v([a, z0] ∩G) + ε(z0 − a) < +∞

we deduce

f(z0)− f(a) <
∑

xi≤z0

εxi +
∫

[a,z0]
ϕ(t)dt + v([a, z0] ∩G) + ε(z0 − a) < ∞

and therefore, taking into account that the functions

x → f(x), x →
∫

[a,x]
ϕ(t)dt, x → v([a, x] ∩G), x → ε(x− a)

are continuous (they are finite) we get

f(x)− f(a) <
∑
xi<x

εxi +
∫

[a,x]
ϕ(t)dt + v([a, x] ∩G) + ε(x− a),

for any x∈ [z0, z0+η] where η ∈ R, η > 0 is sufficiently small. Hence z0+η ∈ M
and this fact contradicts the choice of z0.

Case 2. z0 ∈ A2. Since Df(z0) < ∞ and ϕ(z0) ≥ Df(z0) there exists
α ∈ R such that

Df(z0) < α < ϕ(z0) + ε.

Using the fact that ϕ is a lover semicontinuous function we have α < ϕ(x)+ ε
for any x belonging to a neighbourhood of z0. On the other hand, from the
definition of Df(z0) we deduce that we have

f(x)− f(z0)
x− z0

< α



132 Ileana Bucur 6

for any x(x 6= z0) from a neighbourhood of z0. Hence there exists z > z0

such that

f(x)− f(z0)
x− z0

< α < ϕ(t) + ε, ∀t, x ∈ (z0, z]

and therefore, by integration on the interval (z0, x],

f(x)− f(z0) <

∫
[z0,x]

ϕ(t)dt + ε(x− z0).

Since by the hypothesis we have

f(z0)− f(a) ≤
∑

xi<z0

εxi +
∫

[a,z0]
ϕ(t)dt + v([a, z0] ∩G) + ε(z0 − a),

we deduce

f(x)− f(a) ≤
∑

xi<z0

εxi +
∫

[a,x]
ϕ(t)dt + v([a, z0]∩G) + ε(x− a), ∀x ∈ (z0, z]

and therefore

f(x)− f(a) ≤
∑
xi<x

εxi +
∫

[a,x]
ϕ(t)dt + v([a, x] ∩G) + ε(x− a), ∀x ∈ (z0, z].

Since by the hypotheses the above inequality holds also for any x ∈ [a, z0],
we deduce that z ∈ M and again the contradictory relation z > z0.

Case 3. z0 ∈ G\A2. Since G is a countable union of pairwise disjoint
open interval of the topological space [a, b] and z0 < b we deduce that there
exists c ∈ (z0, b) such that [z0, c] ⊂ G. On the other hand, z0 /∈ A2 and
therefore ϕ(z0) ≥ 0. Using again the fact that ϕ is lower semicontinuous we
may choose c′ ∈ (z0, c) such that ϕ(t) > −ε for any t ∈ (z0, c

′) and therefore
we have∫

[z0,x]
ϕ(t)dt > −ε(x− z0), −

∫
ϕ(t)dt < ε(x− z0), ∀x ∈ [z0, c

′].

From the previous considerations we have also

f(x)− f(z0) ≤ v([z0, x]) = v([z0, x] ∩G), ∀x ∈ [z0, c
′]
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and therefore

f(x)− f(a) = f(z0)− f(a) + f(x)− f(z0) ≤

≤
∑

xi<z0

εxi +
∫

[a,z0]
ϕ(t)dt + v([a, z0] ∩G) + ε(z0 − a) + v([z0, x] ∩G) ≤

≤
∑
xi<x

εxi +
∫

[a,x]
ϕ(t)dt−

∫
[z0,x]

ϕ(t)dt + v([a, x] ∩G) + ε(z0 − a) ≤

≤
∑
xi<x

εxi +
∫

[a,x]
ϕ(t)dt + v([a, x] ∩G) + ε(x− a)

for all x∈ [z0, c
′]. Hence we arrive again to a contradiction and we get z0 =b. �

4. THE MAIN RESULT

As before, f : [a, b] → R will be a continuous function, v, respectively
v∗, denote the variation, respectively, outer variation of the function f de-
fined as above.

Theorem 2. Let A and B be two subset of the interval [a, b] such that
the set [a, b]\(A ∪ B) is at most countable and Df(x) < ∞ for any x ∈ A.
We have

f(b)− f(a) ≤
∫ ∗

[a,b]
Df · 1Adx + v∗(B)

whenever the sum from the right hand side makes sense.

Proof. We suppose that v∗(B) < ∞ or
∫ ∗
[a,b] Df ·1Adx > −∞. In the first

case v∗(B) < ∞ we consider an arbitrary real number ε > 0 such that B ⊂ G
and v(G) < v∗(B) + ε. The set [a, b]\(A ∪ G) = A1 is at most countable.
If x1, x2, x3, . . . are the points of A1 we consider the real numbers εxi > 0,
i = 1, 2, 3, . . . such that

∑
i εxi ≤ ε.

Using now Lemma we obtain

f(b)− f(a) ≤
∑

i

εi +
∫ ∗

[a,b]
Df · 1Adx + v(G) + ε(b− a),

f(b)− f(a) ≤ ε + ε(b− a) + ε + v∗(B) +
∫ ∗

[a,b]
Df · 1Adx.

The number ε being arbitrary, we get the stated assertion. �

Remark 3. In this situation, as corollary, we get∫ ∗

[a,b]
Df · 1Adx > −∞.
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We suppose now that −∞ <
∫ ∗
[a,b] Df · 1Adx < ∞. Then the assertion of

the above theorem is obvious if v∗(B) = +∞. If v∗(B) < ∞ the assertion was
already proved.

Corollary 4. If f : [a, b] → R is a continuous function which is deriv-
able at any point x ∈ A where [a, b]\A is at most countable and the function
f ′ is integrable with respect to the Lebesgue measure λ we have

f(b)− f(a) =
∫

[a,b]
f ′(x)dx.

Proof. Taking in the above theorem B = φ, we have

f(b)− f(a) ≤
∫

[a,b]
f ′(x)dx.

On the other hand, applying the same results to the function – f we get

−f(b) + f(a) ≤
∫

[a,b]
−f ′(x)dx = −

∫
[a,b]

f ′(x)dx

and therefore

f(b)− f(a) =
∫

[a,b]
f ′(x)dx. �

Corollary 5. If f : [a, b] → R is a continuous function which is deriva-
ble at any point x ∈ A1 where A ∈ Bf , if the function Df ·1A is integrable with
respect to the Lebesgue measure on [a, b] and v([a, b]\A) = 0, then we have

f(b)− f(a) ≤
∫

[a,b]
Df · 1Adx =

∫
A

f ′dx.

Proof. We apply again the above theorem for the functions f and – f . �

Corollary 6 (Denjoy–Bourbaki). Let E be Banach space and let f :
[a, b] → E, ϕ : [a, b] → R two continuous functions witch are derivable outside
of a countable subset A of [a, b] and such that

‖f ′(x)‖ ≤ ϕ′(x), ∀x ∈ [a, b]\A.

We have
‖f(b)− f(a)‖ ≤ ϕ(b)− ϕ(a).

Proof. Let L : E → R be a continuous linear functional such that
‖L‖ = 1 and L(f(b)−f(a)) = ‖f(b)−f(a)‖. The function g : [a, b] → R given
by g(x) = L(f(x)) is continuous on [a, b] and derivable at any point [a, b]\A.
We have

g′(x) = L(f ′(x)), |g′(x)| ≤ ‖L‖ · ‖f ′(x)‖ ≤ ϕ′(x), ∀x ∈ [a, b]\A.
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Using the above theorem we obtain

‖f(b)−f(a)‖=‖g(b)−g(a)‖ ≤
∫ ∗

[a,b]
g′dx ≤

∫
[a,b]

ϕ′(x)dx=ϕ(b)−ϕ(a). �

Corollary 7 (Denjoy–Bourbaki). Let E be a Banach space and let
f : [a, b] → E be a continuous function which is also derivable outside of a
countable subset A of [a, b]. We have

‖f(b)− f(a)‖ ≤ (b− a) sup
t∈[a,b]\A

‖f ′(t)‖.

Proof. We apply the previons corollary taking as ϕ the function x →
Mx ∈ [a, b], where M = sup

t∈[a,b]\A
‖f ′(t)‖. �
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