ON A DENJOY-BOURBAKI TYPE INEQUALITY AND SOME APPLICATIONS

ILEANA BUCUR

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on the compact interval $[a, b]$. We prove the inequality

$$
f(x)-f(a) \leq v *([a, x] \cap A)+\int_{[a, x] \cap A^{\prime}}^{*} f(t) \mathrm{d} t, \quad \forall x \in[a, b],
$$

where A is on arbitrary subset of $[a, b], A^{\prime} \cap A=\phi,[a, b] \backslash\left(A \cup A^{\prime}\right)$ is a countable set, $v *$ is the outer measure associated with f and $\int_{M}^{*} f \mathrm{~d} t$ is the outer integral of the function f on the subset M. It turns out that there are a lot of consequences of this inequality.

AMS 2000 Subject Classification: 47A56.
Key words: outer measure and integral, variation, absolute continuity, LeibnizNewton formula.

1. THE VARIATION OF A FUNCTION

In what follows an interval $[\alpha, \beta]$ is called proper (interval) if $\alpha<\beta$.
Let $f:[a, b] \rightarrow \mathbb{R}$ be a real continuous function on $[a, b]$. For any proper interval $[\alpha, \beta] \subset[a, b]$ we denote by $v_{f}[\alpha, \beta]$ or simply $v[\alpha, \beta]$ the variation of the function f on the interval $[\alpha, \beta]$, i.e.,

$$
v[\alpha, \beta]=\sup \left\{\sum_{i=0}^{n-1}\left|f\left(x_{i+1}\right)-f\left(x_{i}\right)\right| ; \alpha=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=\beta\right\}
$$

It is known that if $a \leq \alpha<\beta<\gamma \leq b$ we have

$$
0 \leq v([\alpha, \gamma])=v([\alpha, \beta])+v([\beta, \gamma])
$$

$v[\alpha, \beta]=\sup v\left[\alpha_{n}, \beta_{n}\right]$ if $\alpha_{n} \downarrow \alpha$ and $\beta_{n} \uparrow \beta$.
Moreover, if $\left(\left[\alpha_{n}, \beta_{n}\right]\right)_{n}$ is a sequence of intervals such that the sets $\left[\alpha_{n}, \beta_{n}\right] \cap\left[\alpha_{m}, \beta_{m}\right]$ have no interior point, for $n \neq m$ and $\bigcup_{n}\left[\alpha_{n}, \beta_{n}\right]=$ (α, β) then

$$
v[\alpha, \beta]=\sum_{n} v\left[\alpha_{n}, \beta_{n}\right]
$$

MATH. REPORTS 12(62), 2 (2010), 127-135

Indeed, for any $m \in \mathbb{N}$ we have

$$
(\alpha, \beta)=\bigcup_{n \leq m}\left[\alpha_{n}, \beta_{n}\right] \cup \bigcup_{i=1}^{k}\left[\gamma_{i}, \delta_{i}\right]
$$

where the sets $\left[\alpha_{n}, \beta_{n}\right] \cap\left[\alpha_{k}, \beta_{k}\right],\left[\gamma_{i}, \delta_{i}\right] \cap\left[\gamma_{j}, \delta_{j}\right],\left[\alpha_{n}, \beta_{n}\right] \cap\left[\gamma_{i}, \delta_{i}\right]$ have no interior point and therefore

$$
\begin{gathered}
v[\alpha, \beta]=\sum_{n \leq m} v\left[\alpha_{n}, \beta_{n}\right]+\sum_{i=1}^{k} v\left[\gamma_{i}, \delta_{i}\right] \geq \sum_{n \leq m} v\left[\alpha_{n}, \beta_{n}\right] \\
v[\alpha, \beta] \geq \sup _{m \in \mathbb{N}} \sum_{n \leq m} v\left[\alpha_{n}, \beta_{n}\right]=\sum_{n \in \mathbb{N}} v\left[\alpha_{n}, \beta_{n}\right] .
\end{gathered}
$$

Using a compacity argument, for any $\varepsilon, \varepsilon^{\prime}>0$ we find a finite covering of the compact interval $[\alpha+\varepsilon, \beta-\varepsilon]$ with intervals of the type $\left(\alpha_{n}-\frac{\varepsilon}{2^{n}}, \beta_{n}\right.$ $\left.+\frac{\varepsilon}{2^{n}}\right)$, i.e.,

$$
[\alpha+\varepsilon, \beta-\varepsilon] \subset \bigcup_{n \leq m}\left[\alpha_{n}-\frac{\varepsilon^{\prime}}{2^{n}}, \beta_{n}+\frac{\varepsilon^{\prime}}{2^{n}}\right]
$$

and therefore

$$
v[\alpha+\varepsilon, \beta-\varepsilon] \leq \sum_{n \leq m} v\left[\alpha_{n}-\frac{\varepsilon^{\prime}}{2^{n}}, \beta_{n}+\frac{\varepsilon^{\prime}}{2^{n}}\right] \leq \sum_{n \in \mathbb{N}} v\left[\alpha_{n}-\frac{\varepsilon^{\prime}}{2^{n}}, \beta_{n}+\frac{\varepsilon^{\prime}}{2^{n}}\right]
$$

Hence, letting $\varepsilon^{\prime} \rightarrow 0$, we get

$$
v[\alpha+\varepsilon, \beta-\varepsilon] \leq \sum_{n \in \mathbb{N}} v\left[\alpha_{n}, \beta_{n}\right]
$$

If ε tends to zero we obtain

$$
v[\alpha, \beta] \leq \sum_{n \in \mathbb{N}} v\left[\alpha_{n}, \beta_{n}\right], \quad v[\alpha, \beta]=\sum_{n \in \mathbb{N}} v\left[\alpha_{n}, \beta_{n}\right]
$$

For any subset A of $[a, b]$ we define

$$
v^{*}(A)= \begin{cases}\inf \left\{\sum_{n} v\left[\alpha_{n}, \beta_{n}\right] \mid \alpha_{n}<\beta_{n}, A \subset \bigcup_{n}\left(\alpha_{n}, \beta_{n}\right)\right\} & \text { if } A \neq \phi \\ 0 & \text { if } A=\phi\end{cases}
$$

It is not difficult to show that v^{*} is an outer measure on $\mathrm{P}([a, b])$, i.e., $v^{*}(\phi)=0$, $v^{*}(A) \leq v^{*}(B)$ if $A \subset B$ and

$$
v^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} v^{*}\left(A_{n}\right)
$$

for any sequence $\left(A_{n}\right)_{n}$ of subsets of the interval $[a, b]$.

Moreover, if $A, B \in \mathrm{P}([a, b])$ are such that $\widehat{A} \cap \widehat{B}=\emptyset$ then $v^{*}(A \cup B)=$ $v^{*}(A)+v^{*}(B)$. In this case, the family B_{f} of all subsets M of $[a, b]$ which are v^{*}-measurable is a σ-algebra on $[a, b]$, the restruction to B_{f} of v^{*} is a positive measure (called the variation measure associated with f) and B_{f} contains any open subsect of $[a, b]$. Moreover, for any $\alpha, \beta \in[a, b], \alpha<\beta$, we have

$$
v^{*}(\alpha, \beta)=v[\alpha, \beta] .
$$

It is interesting to remark that if $v[a, b]<\infty$ then

$$
\begin{gathered}
v^{*}[\alpha, \beta]=v^{*}(\alpha, \beta)=v[\alpha, \beta], \quad \forall \alpha, \beta \in[a, b], \\
v^{*}(\{\alpha\})=0, \quad \forall \alpha \in(a, b] .
\end{gathered}
$$

In the general case we have $v^{*}(\{\alpha\}) \in\{0, \infty\}$ and for any sequence $\left(A_{n}\right)_{n}$ from B_{f} such that $A_{n} \cap A_{m}=\phi$ if $n \neq m$ we have

$$
v^{*}\left(A \cap\left(\bigcup_{n} A_{n}\right)\right)=\sum_{n} v^{*}\left(A \cap A_{n}\right) .
$$

Moreover, for any increasing sequence $\left(A_{n}\right)_{n}, A_{n} \subset[a, b]$ we have $v^{*}\left(\bigcup_{n} A_{n}\right)=$ $\sup _{n} v^{*}\left(A_{n}\right)$

2. OUTER LEBESGUE INTEGRAL

For any function $g:[a, b] \rightarrow \overline{\mathbb{R}}$ we associate an element of $\overline{\mathbb{R}}$ denoted by $\int_{[a, b]}^{*} g \mathrm{~d} \lambda$ or $\int_{[a, b]}^{*} g \mathrm{~d} t$ given by
$\int_{[a, b]}^{*} g \mathrm{~d} \lambda=\inf \left\{\int_{[a, b]} \varphi \mathrm{d} \lambda \mid \varphi:[a, b] \rightarrow(-\infty, \infty], \varphi\right.$ lower semicontinuous, $\left.\varphi \geq g\right\}$.
Usually, this element is called the outer Lebesgue integral of the function g with respect to the Lebesgue measure λ on $[a, b]$.

In the same way it is defined the interior Lebesgue integral of the function g on the interval $[a, b]$ with respect to the Lebesgue measure λ, namely,

$$
\begin{gathered}
\int_{*[a, b]} g \mathrm{~d} \lambda= \\
=\sup \left\{\int_{[a, b]} \Psi \mathrm{d} \lambda, \Psi:[a, b] \rightarrow[-\infty, \infty), \Psi \leq g, \Psi \text { upper semicontinuous }\right\} .
\end{gathered}
$$

Obviously, we have

$$
\int_{*[a, b]} g \mathrm{~d} \lambda=-\int_{[a, b]}^{*}(-g) \mathrm{d} \lambda \leq \int_{[a, b]}^{*} g \mathrm{~d} \lambda .
$$

It is known that the function g is integrable with respect to the Lebesgue measure λ on $[a, b]$ iff we have

$$
\int_{[a, b]}^{*} g \mathrm{~d} \lambda=\int_{*[a, b]} g \mathrm{~d} \lambda \in \mathbb{R}
$$

In this case we have

$$
\int_{[a, b]} g \mathrm{~d} \lambda=\int_{[a, b]}^{*} g \mathrm{~d} \lambda=\int_{*[a, b]} g \mathrm{~d} \lambda .
$$

3. THE KEY LEMMA

As above, we consider a continuous function $f:[a, b] \rightarrow \mathbb{R}$ and for any point $x_{0} \in[a, b]$ we denote

$$
D f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \sup \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Let $A_{1}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ be a countable subset of the interval $[a, b], A_{2}$ an arbitrary subset of $[a, b]$ and G an open subset of $[a, b]$ (endowed with the topology associated with the usual distance $d(x, y)=|x-y|)$ such that

$$
[a, b]=A_{1} \cup A_{2} \cup G
$$

Let further φ be a lower semicontinuous function

$$
\varphi:[a, b] \rightarrow(-\infty, \infty]
$$

such that

$$
D f(x) 1_{A_{2}}(x) \leq \varphi(x), \quad \forall x \in[a, b]
$$

and let us suppose $D f(x)<\infty$ for all $x \in A_{2}$ and $\varepsilon, \varepsilon_{x_{n}}$ be strictly positive real numbers for all $n \in \mathbb{N}$ such that $\sum_{n} \varepsilon_{x_{n}} \leq \varepsilon$.

Lemma 1. If $f, A_{1}, A_{2}, G, \varphi, \varepsilon, \varepsilon x_{n}$ are as above, we have

$$
f(x)-f(a) \leq \sum_{x_{i}<x} \varepsilon x_{i}+\int_{[a, x]} \varphi(t) \mathrm{d} t+v([a, x] \cap G)+\varepsilon(x-a), \quad \forall x \in[a, b]
$$

where v is the variation measure associated with f.
Proof. Since φ is lower semicontinuous and $\varphi(x)>-\infty$ for all $x \in[a, b]$ we deduce that φ is lower bounded and the integral $\int_{[a, x]} \varphi(t) \mathrm{d} t>-\infty$ for any $x \in[a, b]$. If there exists $x_{0} \in[a, b]$ such that $\int_{\left[a, x_{0}\right]} \varphi(t) \mathrm{d} t=+\infty$, then we have $\int_{[a, x]} \varphi(t) \mathrm{d} t=+\infty$ for all $x \in\left[x_{0}, b\right]$. The function

$$
x \rightarrow \sum_{x_{i}<x} \varepsilon x_{i}, x \rightarrow v([a, x] \cap G)
$$

being increasing, the stated inequality holds for any $x \in\left[x_{0}, b\right]$ if there exists a point $x_{0} \in[a, b]$ such that $v\left(\left[a, x_{0}\right] \cap G\right)=+\infty$ or $\int_{\left[a, x_{0}\right]} \varphi(t) \mathrm{d} t=+\infty$.

So, we may consider a point $y_{0} \in[a, b]$ such that $v([a, x] \cap G)<\infty$ and $\int_{[a, x]} \varphi(t) \mathrm{d} t<\infty, \forall x \in\left[a, y_{0}\right)$.

For our purpose we may suppose that $y_{0}=b$. Let now M be the subset of $[a, b]$ given by
$M=\left\{y \in[a, b] \mid f(x)-f(a) \leq \sum_{x_{i}<x} \varepsilon x_{i}+\int_{[a, x]} \varphi(t) \mathrm{d} t+\varepsilon(x-a), \forall x \in[a, y]\right\}$.
Obviously, $a \in M$ and we shall denote $z_{0}=\sup M$. We have to show that $z_{0}=b$. We suppose the contrary, i.e., $z_{0}<b$.

The following situations arise.
Case 1. $z_{0} \in A_{1}$, i.e., there exists $n_{0} \in \mathbb{N}$ such that $z_{0}=x_{n_{0}}$. Since $z_{0}=x_{n_{0}}, \varepsilon_{x_{n_{0}}}>0$ and

$$
f\left(z_{0}\right)-f(a) \leq \sum_{x_{i}<z_{0}} \varepsilon x_{i}+\int_{\left[a, z_{0}\right]} \varphi(t) \mathrm{d} t+v\left(\left[a, z_{0}\right] \cap G\right)+\varepsilon\left(z_{0}-a\right)<+\infty
$$

we deduce

$$
f\left(z_{0}\right)-f(a)<\sum_{x_{i} \leq z_{0}} \varepsilon x_{i}+\int_{\left[a, z_{0}\right]} \varphi(t) \mathrm{d} t+v\left(\left[a, z_{0}\right] \cap G\right)+\varepsilon\left(z_{0}-a\right)<\infty
$$

and therefore, taking into account that the functions

$$
x \rightarrow f(x), \quad x \rightarrow \int_{[a, x]} \varphi(t) \mathrm{d} t, \quad x \rightarrow v([a, x] \cap G), \quad x \rightarrow \varepsilon(x-a)
$$

are continuous (they are finite) we get

$$
f(x)-f(a)<\sum_{x_{i}<x} \varepsilon x_{i}+\int_{[a, x]} \varphi(t) \mathrm{d} t+v([a, x] \cap G)+\varepsilon(x-a),
$$

for any $x \in\left[z_{0}, z_{0}+\eta\right]$ where $\eta \in \mathbb{R}, \eta>0$ is sufficiently small. Hence $z_{0}+\eta \in M$ and this fact contradicts the choice of z_{0}.

Case 2. $z_{0} \in A_{2}$. Since $D f\left(z_{0}\right)<\infty$ and $\varphi\left(z_{0}\right) \geq D f\left(z_{0}\right)$ there exists $\alpha \in \mathbb{R}$ such that

$$
D f\left(z_{0}\right)<\alpha<\varphi\left(z_{0}\right)+\varepsilon .
$$

Using the fact that φ is a lover semicontinuous function we have $\alpha<\varphi(x)+\varepsilon$ for any x belonging to a neighbourhood of z_{0}. On the other hand, from the definition of $D f\left(z_{0}\right)$ we deduce that we have

$$
\frac{f(x)-f\left(z_{0}\right)}{x-z_{0}}<\alpha
$$

for any $x\left(x \neq z_{0}\right)$ from a neighbourhood of z_{0}. Hence there exists $z>z_{0}$ such that

$$
\frac{f(x)-f\left(z_{0}\right)}{x-z_{0}}<\alpha<\varphi(t)+\varepsilon, \quad \forall t, x \in\left(z_{0}, z\right]
$$

and therefore, by integration on the interval $\left(z_{0}, x\right]$,

$$
f(x)-f\left(z_{0}\right)<\int_{\left[z_{0}, x\right]} \varphi(t) \mathrm{d} t+\varepsilon\left(x-z_{0}\right) .
$$

Since by the hypothesis we have

$$
f\left(z_{0}\right)-f(a) \leq \sum_{x_{i}<z_{0}} \varepsilon x_{i}+\int_{\left[a, z_{0}\right]} \varphi(t) \mathrm{d} t+v\left(\left[a, z_{0}\right] \cap G\right)+\varepsilon\left(z_{0}-a\right),
$$

we deduce
$f(x)-f(a) \leq \sum_{x_{i}<z_{0}} \varepsilon x_{i}+\int_{[a, x]} \varphi(t) \mathrm{d} t+v\left(\left[a, z_{0}\right] \cap G\right)+\varepsilon(x-a), \quad \forall x \in\left(z_{0}, z\right]$
and therefore
$f(x)-f(a) \leq \sum_{x_{i}<x} \varepsilon x_{i}+\int_{[a, x]} \varphi(t) \mathrm{d} t+v([a, x] \cap G)+\varepsilon(x-a), \quad \forall x \in\left(z_{0}, z\right]$.
Since by the hypotheses the above inequality holds also for any $x \in\left[a, z_{0}\right]$, we deduce that $z \in M$ and again the contradictory relation $z>z_{0}$.

Case 3. $z_{0} \in G \backslash A_{2}$. Since G is a countable union of pairwise disjoint open interval of the topological space $[a, b]$ and $z_{0}<b$ we deduce that there exists $c \in\left(z_{0}, b\right)$ such that $\left[z_{0}, c\right] \subset G$. On the other hand, $z_{0} \notin A_{2}$ and therefore $\varphi\left(z_{0}\right) \geq 0$. Using again the fact that φ is lower semicontinuous we may choose $c^{\prime} \in\left(z_{0}, c\right)$ such that $\varphi(t)>-\varepsilon$ for any $t \in\left(z_{0}, c^{\prime}\right)$ and therefore we have

$$
\int_{\left[z_{0}, x\right]} \varphi(t) \mathrm{d} t>-\varepsilon\left(x-z_{0}\right), \quad-\int \varphi(t) \mathrm{d} t<\varepsilon\left(x-z_{0}\right), \quad \forall x \in\left[z_{0}, c^{\prime}\right] .
$$

From the previous considerations we have also

$$
f(x)-f\left(z_{0}\right) \leq v\left(\left[z_{0}, x\right]\right)=v\left(\left[z_{0}, x\right] \cap G\right), \quad \forall x \in\left[z_{0}, c^{\prime}\right]
$$

and therefore

$$
\begin{gathered}
f(x)-f(a)=f\left(z_{0}\right)-f(a)+f(x)-f\left(z_{0}\right) \leq \\
\leq \sum_{x_{i}<z_{0}} \varepsilon x_{i}+\int_{\left[a, z_{0}\right]} \varphi(t) \mathrm{d} t+v\left(\left[a, z_{0}\right] \cap G\right)+\varepsilon\left(z_{0}-a\right)+v\left(\left[z_{0}, x\right] \cap G\right) \leq \\
\leq \sum_{x_{i}<x} \varepsilon x_{i}+\int_{[a, x]} \varphi(t) \mathrm{d} t-\int_{\left[z_{0}, x\right]} \varphi(t) \mathrm{d} t+v([a, x] \cap G)+\varepsilon\left(z_{0}-a\right) \leq \\
\leq \sum_{x_{i}<x} \varepsilon x_{i}+\int_{[a, x]} \varphi(t) \mathrm{d} t+v([a, x] \cap G)+\varepsilon(x-a)
\end{gathered}
$$

for all $x \in\left[z_{0}, c^{\prime}\right]$. Hence we arrive again to a contradiction and we get $z_{0}=b$.

4. THE MAIN RESULT

As before, $f:[a, b] \rightarrow \mathbb{R}$ will be a continuous function, v, respectively v^{*}, denote the variation, respectively, outer variation of the function f defined as above.

Theorem 2. Let A and B be two subset of the interval $[a, b]$ such that the set $[a, b] \backslash(A \cup B)$ is at most countable and $D f(x)<\infty$ for any $x \in A$. We have

$$
f(b)-f(a) \leq \int_{[a, b]}^{*} D f \cdot 1_{A} \mathrm{~d} x+v^{*}(B)
$$

whenever the sum from the right hand side makes sense.
Proof. We suppose that $v^{*}(B)<\infty$ or $\int_{[a, b]}^{*} D f \cdot 1_{A} \mathrm{~d} x>-\infty$. In the first case $v^{*}(B)<\infty$ we consider an arbitrary real number $\varepsilon>0$ such that $B \subset G$ and $v(G)<v^{*}(B)+\varepsilon$. The set $[a, b] \backslash(A \cup G)=A_{1}$ is at most countable. If $x_{1}, x_{2}, x_{3}, \ldots$ are the points of A_{1} we consider the real numbers $\varepsilon_{x_{i}}>0$, $i=1,2,3, \ldots$ such that $\sum_{i} \varepsilon_{x_{i}} \leq \varepsilon$.

Using now Lemma we obtain

$$
\begin{aligned}
& f(b)-f(a) \leq \sum_{i} \varepsilon_{i}+\int_{[a, b]}^{*} D f \cdot 1_{A} \mathrm{~d} x+v(G)+\varepsilon(b-a), \\
& f(b)-f(a) \leq \varepsilon+\varepsilon(b-a)+\varepsilon+v^{*}(B)+\int_{[a, b]}^{*} D f \cdot 1_{A} \mathrm{~d} x .
\end{aligned}
$$

The number ε being arbitrary, we get the stated assertion.
Remark 3. In this situation, as corollary, we get

$$
\int_{[a, b]}^{*} D f \cdot 1_{A} \mathrm{~d} x>-\infty .
$$

We suppose now that $-\infty<\int_{[a, b]}^{*} D f \cdot 1_{A} \mathrm{~d} x<\infty$. Then the assertion of the above theorem is obvious if $v^{*}(B)=+\infty$. If $v^{*}(B)<\infty$ the assertion was already proved.

Corollary 4. If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function which is derivable at any point $x \in A$ where $[a, b] \backslash A$ is at most countable and the function f^{\prime} is integrable with respect to the Lebesgue measure λ we have

$$
f(b)-f(a)=\int_{[a, b]} f^{\prime}(x) \mathrm{d} x
$$

Proof. Taking in the above theorem $B=\phi$, we have

$$
f(b)-f(a) \leq \int_{[a, b]} f^{\prime}(x) \mathrm{d} x
$$

On the other hand, applying the same results to the function - f we get

$$
-f(b)+f(a) \leq \int_{[a, b]}-f^{\prime}(x) \mathrm{d} x=-\int_{[a, b]} f^{\prime}(x) \mathrm{d} x
$$

and therefore

$$
f(b)-f(a)=\int_{[a, b]} f^{\prime}(x) \mathrm{d} x
$$

Corollary 5. If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function which is derivable at any point $x \in A_{1}$ where $A \in \mathrm{~B}_{f}$, if the function $D f \cdot 1_{A}$ is integrable with respect to the Lebesgue measure on $[a, b]$ and $v([a, b] \backslash A)=0$, then we have

$$
f(b)-f(a) \leq \int_{[a, b]} D f \cdot 1_{A} \mathrm{~d} x=\int_{A} f^{\prime} \mathrm{d} x
$$

Proof. We apply again the above theorem for the functions f and $-f$.
Corollary 6 (Denjoy-Bourbaki). Let E be Banach space and let f : $[a, b] \rightarrow E, \varphi:[a, b] \rightarrow \mathbb{R}$ two continuous functions witch are derivable outside of a countable subset A of $[a, b]$ and such that

$$
\left\|f^{\prime}(x)\right\| \leq \varphi^{\prime}(x), \quad \forall x \in[a, b] \backslash A
$$

We have

$$
\|f(b)-f(a)\| \leq \varphi(b)-\varphi(a)
$$

Proof. Let $L: E \rightarrow \mathbb{R}$ be a continuous linear functional such that $\|L\|=1$ and $L(f(b)-f(a))=\|f(b)-f(a)\|$. The function $g:[a, b] \rightarrow \mathbb{R}$ given by $g(x)=L(f(x))$ is continuous on $[a, b]$ and derivable at any point $[a, b] \backslash A$. We have

$$
g^{\prime}(x)=L\left(f^{\prime}(x)\right), \quad\left|g^{\prime}(x)\right| \leq\|L\| \cdot\left\|f^{\prime}(x)\right\| \leq \varphi^{\prime}(x), \quad \forall x \in[a, b] \backslash A
$$

Using the above theorem we obtain

$$
\|f(b)-f(a)\|=\|g(b)-g(a)\| \leq \int_{[a, b]}^{*} g^{\prime} \mathrm{d} x \leq \int_{[a, b]} \varphi^{\prime}(x) \mathrm{d} x=\varphi(b)-\varphi(a)
$$

Corollary 7 (Denjoy-Bourbaki). Let E be a Banach space and let $f:[a, b] \rightarrow E$ be a continuous function which is also derivable outside of a countable subset A of $[a, b]$. We have

$$
\|f(b)-f(a)\| \leq(b-a) \sup _{t \in[a, b] \backslash A}\left\|f^{\prime}(t)\right\| .
$$

Proof. We apply the previons corollary taking as φ the function $x \rightarrow$ $M x \in[a, b]$, where $M=\sup _{t \in[a, b] \backslash}\left\|f^{\prime}(t)\right\|$.

REFERENCES

[1] N. Bourbaki, Fonctions d'une variable réelle. Hermann, Paris, 1949.
[2] N. Boboc, Analiză Matematică II. Editura Univ. Bucureşti, Bucureşti, 1998.
[3] A. Denjoy, Mémoire sur les nombres derivés des fonctions continues. J. Math. Pures et Appliquées 1 (1915).
[4] J. Dieudonné, Foundations of Modern Analysis. Academic Press, New York, 1960.
[5] M. Nicolescu, Analiză Matematică, Vol. I, II, III. Editura Tehnică, Bucureşti, 1957, 1958, 1960.
[6] L. Schwartz, Cours d'Analyse, Tomes I, II. Hermann, Paris, 1967.

