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Let f : [a,b] — R be a continuous function on the compact interval [a,b]. We
prove the inequality

f@) - f@ <ox(asn )+ [ o Vo€ lab)
[a,z]NA’
where A is on arbitrary subset of [a,b], A’N A = @, [a,b]\(AU A’) is a countable
set, vk is the outer measure associated with f and | 1\’;1 fdt is the outer integral of
the function f on the subset M. It turns out that there are a lot of consequences
of this inequality.
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1. THE VARIATION OF A FUNCTION

In what follows an interval [a, 3] is called proper (interval) if a < 3.

Let f : [a,b] — R be a real continuous function on [a,b]. For any proper
interval [a, 8] C [a,b] we denote by vf|a, ] or simply v]a, ] the variation of
the function f on the interval [a, (3], i.e.,

n—1
v, f] :sup{2|f(mi+1) —fl@))a=xg<z1 <2< - <Y :ﬁ}.
i=0

It is known that if a < a < 8 <y < b we have

0 < w(le,7]) = v(la, B]) + v ([8,7]),

v[ey, B] = sup v[an, O] if o, | @ and G, T 5.

Moreover, if ([an,0n])n is a sequence of intervals such that the sets
[@n, Bn] N [@m, Bm] have no interior point, for n # m and |J,[on,Bn] =
(ar, B) then

v[e, B] = Zv[an,ﬂn].

n

MATH. REPORTS 12(62), 2 (2010), 127-135



128 Ileana Bucur 2

Indeed, for any m € N we have
k

(O‘7ﬁ) = U [O‘n’ﬁn] U U[’V@'adi]’

n<m =1

where the sets [an, Bn] N [ak, Bkl Vi 0i] N [v4,65], (o, Bn] N [7i, 0] have no
interior point and therefore

k
U[avﬁ] = Z U[O‘nvﬁn] + ZU[%’éi] > Z v[anvﬁn]v
n<m =1 n<m
U[O&,ﬂ] > sup Z U[O‘mﬁn] = Zv[anw@n]-
mENnﬁm neN

Using a compacity argument, for any €, > 0 we find a finite covering
of the compact interval [« + &, 3 — €] with intervals of the type (an — 57, 0n

—I—%), ie.,
e e’
[O(—}—S,ﬁ _E] C nL<Jm |:Oén - %)ﬁn + 2n:|
and therefore
g ¢ ¢ g’
v te,B—e] < Z v |:an_2na/8n+2n:| < ZU |:an_2na/6n+2n:| .
nm neN
Hence, letting &’ — 0, we get
ot e - <3 vlam ).
neN
If £ tends to zero we obtain
’U[Ck,ﬁ] S Zv[an7ﬁn]7 ’U[Oé,ﬁ] - Zv[amﬁn]-
neN neN
For any subset A of [a,b] we define
" { inf { 3 vlan, Ba] | an < Bus AC Ulan, Bn)} ifA# 0,
v = n n

0 if A= ¢.

It is not difficult to show that v* is an outer measure on P(a, b)), i.e., v*(¢) = 0,
v*(A) <v*(B)if AC B and

v* (U An) <> vt(An)
n=1 n=1

for any sequence (A, ), of subsets of the interval [a, b].
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Moreover, if A, B € P([a,b]) are such that AN B = () then v*(AU B) =
v*(A) +v*(B). In this case, the family By of all subsets M of [a,b] which are
v*-measurable is a og-algebra on [a, b], the restruction to By of v* is a positive
measure (called the variation measure associated with f) and By contains any
open subsect of [a,b]. Moreover, for any «, 3 € [a,b], o < 3, we have

v¥(a, B) = vle, f].
It is interesting to remark that if v[a, b] < oo then
v'[a, B] = v (e, B) = vle, B], Ve, B € [a,b],
v*({a}) =0, Va€ (a,b)].

In the general case we have v*({a}) € {0, 00} and for any sequence (A,)s,
from B such that A, N A, = ¢ if n # m we have

v*(Aﬂ (LnJAn>> = zn:v*(AﬁAn).

Moreover, for any increasing sequence (Ay)n, Ay, C[a,b] we have v*(|,, An) =
sup,, v*(A4,)

2. OUTER LEBESGUE INTEGRAL

For any function g : [a,b] — R we associate an element of R denoted by
f[z,b] gd\ or f[;b] gdt given by

/ gd\ = inf {/ ed|p:[a, b] — (—o0, 00|, ¢ lower semicontinuous, 9029}.
[a,b] [a,b]

Usually, this element is called the outer Lebesgue integral of the function
g with respect to the Lebesgue measure A on [a, b].

In the same way it is defined the interior Lebesgue integral of the function
g on the interval [a,b] with respect to the Lebesgue measure A, namely,

/ gd\ =
*[a,b]

= sup {/ UdA, ¥ [a,b] — [-00,00), ¥ < g, ¥ upper semicontinuous}.
[a,b]

Obviously, we have

/ gd\ = —/ (—g)dA S/ gdA.
*[a,b] [a,b] [a,b]
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It is known that the function g is integrable with respect to the Lebesgue
measure A on [a, b iff we have

/ gd\ = / gdX € R.

[a,b] *[a,b]

/ gdA :/ gdA :/ gdA.
[a,b] [a,b] *[a,b]

3. THE KEY LEMMA

In this case we have

As above, we consider a continuous function f : [a,b] — R and for any
point zg € [a, b] we denote

Df(z¢) = lim supM.
z—0 T —
Let A; = {x1,x9,23,...} be a countable subset of the interval [a,b], Ay
an arbitrary subset of [a,b] and G an open subset of [a,b] (endowed with the

topology associated with the usual distance d(x,y) = |z — y|) such that
[a,b] = A1 U Ay UG.
Let further ¢ be a lower semicontinuous function
¢ :[a,b] — (—o0, 0]
such that
Df(z)1a,(x) < o(x), V€ [a,b]
and let us suppose Df(z) < oo for all x € Ag and €,¢,, be strictly positive
real numbers for all n € N such that ) e,, <e.

LEmMA 1. If f, A1, As, G, ¢, ¢, ez, are as above, we have

f(z) = f(a) < Z ex; + / et)dt +v([a,z] N G) +e(x —a), Yz € [a,b],
x;<x [a,]
where v is the variation measure associated with f.

Proof. Since ¢ is lower semicontinuous and p(z) > —oo for all z € [a, b]
we deduce that ¢ is lower bounded and the integral f[a 2] @(t)dt > —oo for
any x € [a,b]. If there exists x¢ € [a,b] such that f[a 2o P(t)dt = +00, then we
have f[a 2 P(t)dt = +oo for all x € [z, b]. The function

x — Z exi,x — v([a,z] N G)

x;<x
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being increasing, the stated inequality holds for any x € [x¢, b] if there exists
a point xg €[a, b] such that v([a, 9] N G)=-+o0 or f[a’mo] (t)dt = +o0.

So we may consider a point yo € [a,b] such that v([a,z] N G) < oo and
f[ax t)dt < oo, Vx € [a,yo).

For our purpose we may suppose that yg = b. Let now M be the subset
of [a,b] given by

M = {ye[ab]lf

<Y ant [ o

;< [a, x]

(t)dt+e(x—a), Vme[a,y]}.

Obviously, a € M and we shall denote 2y = sup M. We have to show that
zg = b. We suppose the contrary, i.e., zg < b.
The following situations arise.

Case 1. zg € Ay, i.e., there exists ng € N such that zy = zp,. Since
20 = Tng; Exny > 0 and

f(=o Z ex; + / (t)dt + v([a, 20) N G) + (20 — a) < +0o0
;<20 [a,20]
we deduce
f(zo Z ex; + / (t)dt +v([a, 20) NG) + e(z0 — a) < o0
;<20 aZO]

and therefore, taking into account that the functions
v @), s [ e, z—u((anG), z—e(—a)
[a,7]

are continuous (they are finite) we get
f@) = fa) < Y en+ [ o+ (a0 G) + <l - a)
[a,2]

for any x € [20, 20+n] where n € R, > 0 is sufficiently small. Hence zo+n € M
and this fact contradicts the choice of zj.

Case 2. zy € Ag. Since D f(zp) < oo and ¢(z9) > D f(zp) there exists
o € R such that
Df(z0) < a < ¢(z20) +e.

Using the fact that ¢ is a lover semicontinuous function we have oo < p(z) +¢
for any = belonging to a neighbourhood of z3. On the other hand, from the
definition of D f(zp) we deduce that we have

f(z) = f(z0)

Tr — 20

<«
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for any z(x # zo) from a neighbourhood of zp. Hence there exists z > zp
such that

f(z) — f(20)

T — 2

<a<p(t)t+e Vta € (2,2]

and therefore, by integration on the interval (2o, z],

f(@) = f(20) < /[ | o(t)dt + e(z — z).
20,T
Since by the hypothesis we have

f(z0 Z ex; + / t)dt + v([a, 20) N G) + (29 — a),

;<20 0’ ZO]

we deduce

f(z Z ex; + / t)dt +v([a, 20] NG) +e(x —a), VY € (z0,2]

;<20

and therefore

f(x) = f(a) < Z ex; +/ e(t)dt +v([a, 2] NG) +e(x —a), Vz € (z0,2].

i <x [a,:v]

Since by the hypotheses the above inequality holds also for any = € [a, 2],
we deduce that z € M and again the contradictory relation z > zj.

Case 3. zp € G\Az. Since G is a countable union of pairwise disjoint
open interval of the topological space [a,b] and zp < b we deduce that there
exists ¢ € (z0,b) such that [z9,c] C G. On the other hand, zp ¢ A2 and
therefore ¢(zp) > 0. Using again the fact that ¢ is lower semicontinuous we
may choose ¢ € (29, ¢) such that p(t) > —e for any ¢t € (29,¢’) and therefore
we have

/ p(t)dt > —e(x — 20), —/go(t)dt <e(z —20), V€2,
[20,7]

From the previous considerations we have also

f(aj) - f(ZO) < U([ZOPT]) = U([ZOPT] N G)? Vo € [20701]
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and therefore
f(@) = fla) = f(20) — fla) + f(z) — f(20) <
< Z ex; +/ o(t)dt +v([a, 20) N G) + e(z0 — a) + v([z0,2] N G) <

x; <20 [a»ZO]

< Z ex; + /[w:} o(t)dt — /[zo,:v] et)dt +v([a, 2] NG) +e(z0 —a) <

< Z exH—/ et)dt + v([a, 2] NG) + e(xz — a)
[a,2]
for all z € [z9, ¢']. Hence we arrive again to a contradiction and we get zp=>b. O

4. THE MAIN RESULT

As before, f : [a,b] — R will be a continuous function, v, respectively
v*, denote the variation, respectively, outer variation of the function f de-
fined as above.

THEOREM 2. Let A and B be two subset of the interval [a,b] such that
the set [a,b]\(A U B) is at most countable and Df(x) < oo for any x € A.
We have

*

f(b) = fla) < [ ]Df'lAderv*(B)
a,b

whenever the sum from the right hand side makes sense.

Proof. We suppose that v*(B) < oo or f[: y Df-1adz > —oo. In the first

case v*(B) < oo we consider an arbitrary real number & > 0 such that B C G
and v(G) < v*(B) + e. The set [a,b]\(AUG) = A; is at most countable.
If 1, 29,23,... are the points of A; we consider the real numbers ,, > 0,
i=1,2,3,...such that ) e, <e.
Using now Lemma we obtain
fO) = fla) <Y eit [ Df-1ade+v(G)+e(b—a),
) [avb}
f(b) — fla) <e+4elb—a)+ec+v"(B)+ Df - 14dzx.
[a,b]

The number ¢ being arbitrary, we get the stated assertion. [

Remark 3. In this situation, as corollary, we get
Df - 14dx > —cc.
[a,b]
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We suppose now that —oo < f[z b] Df-14dx < co. Then the assertion of

the above theorem is obvious if v*(B) = +o0. If v*(B) < oo the assertion was
already proved.

COROLLARY 4. If f : [a,b] — R is a continuous function which is deriv-
able at any point x € A where [a,b]\A is at most countable and the function
f' is integrable with respect to the Lebesque measure A we have

SO~ s@ = [ fe
Proof. Taking in the above theorem B = ¢, we have
F(b) - fla) < /M f'(@)da.
On the other hand, applying the same results to the function — f we get
SO+ f@s [ = | e

and therefore

f(0) = f(a) z/[ ’ f(z)dz. O

COROLLARY 5. If f : [a,b] — R is a continuous function which is deriva-
ble at any point x € Ay where A € By, if the function Df -1, is integrable with
respect to the Lebesgue measure on |a,b] and v([a,b]\A) = 0, then we have

f0) - f@< [ Df tade= [ fa.
[a,b] A

Proof. We apply again the above theorem for the functions f and — f. O

COROLLARY 6 (Denjoy-Bourbaki). Let E be Banach space and let f :
[a,b] = E, ¢ : [a,b] — R two continuous functions witch are derivable outside
of a countable subset A of [a,b] and such that

I @)l < ¢'(z),  Vz € [a,\A.
We have
17(b) = Fla)ll < ¢(b) — ¢(a).

Proof. Let L : E — R be a continuous linear functional such that
|L|| =1 and L(f(b) — f(a)) = ||f(b) — f(a)||. The function g : [a,b] — R given
by g(z) = L(f(x)) is continuous on [a,b] and derivable at any point [a, b]\ A.
We have

g@) =L(f'@), 9@ <ILI-If @I <¢' (@), Vaeab\A.
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Using the above theorem we obtain

17 (0) = F(@)l[=lg(b) —g(a)l S/

[a,]

*

Jde < /[a,b] o (z)dz=p(b) - p(a). O

COROLLARY 7 (Denjoy-Bourbaki). Let E be a Banach space and let

f i ]a,b] — E be a continuous function which is also derivable outside of a
countable subset A of [a,b]. We have

1) = f(@)l < (b—a) sup |[If'(H)].

tela,b]\ A

Proof. We apply the previons corollary taking as ¢ the function x —

Mz € [a,b], where M = sup |[|f/(¢)||. O
te€la,b]\A

REFERENCES

[1] N. Bourbaki, Fonctions d’une variable réelle. Hermann, Paris, 1949.

[2] N. Boboc, Analizd Matematicd 11. Editura Univ. Bucuresti, Bucuresti, 1998.

[3] A. Denjoy, Mémoire sur les nombres derivés des fonctions continues. J. Math. Pures et
Appliquées 1 (1915).

[4] J. Dieudonné, Foundations of Modern Analysis. Academic Press, New York, 1960.

[5] M. Nicolescu, Analizd Matematicd, Vol. 1, 11, ITII. Editura Tehnica, Bucuresti, 1957, 1958,
1960.

[6] L. Schwartz, Cours d’Analyse, Tomes I, II. Hermann, Paris, 1967.

Received 20 January 2010 Technical University of Civil Engineering
Department of Mathematics
Bd. Lacul Tei 124
020396 Bucharest, Romania



