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The nonrobustness of classical tests for parametric models is a well known problem
and various robust alternatives have been proposed in literature. Usually, the
robust tests are based on first order asymptotic theory and their accuracy in small
samples is often an open question. In this paper we propose tests which have both
robustness properties, as well as good accuracy in small samples. These tests are
based on robust minimum density power divergence estimators and saddlepoint
approximations.
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1. INTRODUCTION

In various statistical applications, approximations of the probability that
a random variable θn exceed a given threshold value are important, because
in most cases the exact distribution function of θn could be difficult or even
impossible to be determined. Particularly, such approximations are useful for
computing p-values for hypothesis testing. The normal approximation is one
of the widely used, but often it doesn’t ensures a good accuracy to the testing
procedure for moderate to small samples. An alternative is to use saddlepoint
approximations which provide a very good approximation with a small relative
error to the tail, as well as in the center of the distribution. Saddlepoint ap-
proximations have been widely studied and applied due to their excellent per-
formances. For details on theory and applications of saddlepoint approxima-
tions we refer for example to the books Field and Ronchetti [5] and Jensen [10],
as well as to the papers Field [3], Field and Hampel [4], Gatto and Ronchetti
[8], Gatto and Jammalamadaka [7], Almudevar et al. [1], Field et al. [6].

Beside the accuracy in moderate to small samples, the robustness is an
important requirement in hypotheses testing. In this paper, we combine robust
minimum density power divergence estimators and saddlepoint approxima-
tions as presented in Robinson et al. [12] and obtain robust test statistics for
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hypotheses testing which are asymptotically χ2-distributed with a relative er-
ror of order O(n−1). The minimum density power divergence estimators were
introduced by Basu et al. [2] for robust and efficient estimation in general
parametric models. Particularly, they are M-estimators and the associated ψ-
functions can satisfy conditions such that the tests based on these estimators
to be robust and accurate in small samples.

The paper is organized as follows. In Section 2 we present the class of
minimum density power divergence estimators. In Section 3, using the mini-
mum density power divergence estimators, we define saddlepoint test statistics
and give approximations for the p-values of the corresponding tests. In Sec-
tion 4, we prove robustness properties of the tests, by means of the influence
function and the asymptotic breakdown point. In Section 5, we consider the
normal location model and the exponential scale model to exemplify the pro-
posed robust testing method. We show that conditions for robust testing and
good accuracy are simultaneously satisfied. We also prove results regarding
the asymptotic breakdown point of the test statistics.

2. MINIMUM DENSITY POWER DIVERGENCE ESTIMATORS

The class of minimum density power divergence estimators was intro-
duced in Basu et al. [2] for robust and efficient estimation in general parame-
tric models.

The family of density power divergences is defined by

dα(g, f) =
∫ {

f1+α(z)−
(

1 +
1
α

)
g(z)fα(z) +

1
α
g1+α(z)

}
dz, α > 0,

for g and f density functions. When α→ 0 this family reduces to the Kullback-
Leibler divergence (see Basu et al. [2]) and α = 1 leads to the square of the
standard L2 distance between g and f .

Let Fθ be a distribution with density fθ relative to the Lebesgue measure,
where the parameter θ is known to belong to a subset Θ of Rd. Given a random
sample X1, . . . , Xn from Fθ0 and α > 0, a minimum density power divergence
estimator of the unknown true value of the parameter θ0 is defined by

(1) θ̂n(α) := arg min
θ∈Θ

{∫
f1+α
θ (z)dz −

(
1 +

1
α

)
1
n

n∑
i=1

fαθ (Xi)

}
.

Formula (1) determines a class of M-estimators indexed by the parameter
α that specifies the divergence. The choice of α represents an important aspect,
because α controls the trade-off between robustness and asymptotic efficiency
of the estimation procedure. It is known that estimators with small α have



3 Minimum density power divergence estimators and saddlepoint approximations 385

strong robustness properties with little loss in asymptotic efficiency relative
to maximum likelihood under the model conditions.

We recall that a map T which sends an arbitrary distribution function
into the parameter space is a statistical functional corresponding to an esti-
mator θ̂n of the parameter θ0 whenever T (Fn) = θ̂n, Fn being the empirical
distribution function associated to the sample on Fθ0 . The influence function
of the functional T in F0 measures the effect on T of adding a small mass at
x and is defined as

IF(x;T, Fθ0) = lim
ε→0

T (F̃εx)− T (Fθ0)
ε

,

where F̃εx=(1−ε)Fθ0 +εδx and δx represents the Dirac distribution. When the
influence function is bounded, the corresponding estimator is called robust.
More details on this robustness measure are given for example in Hampel
et al. [9].

For any given α, the minimum density power divergence functional at
the distribution G with density g is defined by

Tα(G) := arg min
θ∈Θ

dα(g, fθ).

From M-estimation theory, the influence function of the density power diver-
gence functional is

(2) IF(x;Tα, Fθ0) = J−1{ḟθ0(x)f
α−1
θ0

(x)− ξ},

where ḟθ denotes the derivative with respect to θ of fθ, ξ :=
∫
ḟθ0(z)f

α
θ0

(z)dz
and J :=

∫
ḟθ0(z)ḟθ0(z)

tfα−1
θ0

(z)dz. When J is finite, IF(x;Tα, Fθ0) is bounded,
and hence θ̂n(α) is robust, whenever ḟθ0(x)f

α−1
θ0

(x) is bounded.

3. SADDLEPOINT TEST STATISTICS BASED ON
MINIMUM DENSITY POWER DIVERGENCE ESTIMATORS

In order to test the hypothesis H0: θ = θ0 in Rd with respect to the
alternatives H1: θ 6= θ0, we define test statistics based on minimum density
power divergence estimators.

Let α be fixed. Notice that, a minimum density power divergence estima-
tor of the parameter θ0 defined by (1) is an M-estimator obtained as solution
of the equation

n∑
i=1

ψα(Xi, θ̂n(α)) = 0,

where
ψα(x, θ) = fα−1

θ (x)ḟθ(x)−
∫
fαθ (z)ḟθ(z)dz.
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Assume that the cumulant generating function of the vector of scores ψα(X, θ)
defined by

Kψα(λ, θ) := log EFθ0{e
λtψα(X,θ)}

exists.
The test statistic which we consider is hα(θ̂n(α)), where

hα(θ) := sup
λ
{−Kψα(λ, θ)}.

The p-value of the test based on hα(θ̂n(α)) is

(3) p := PH0(hα(θ̂n(α)) ≥ hα(θn(α))),

where θn(α) is the observed value of θ̂n(α). This p-value can be approximated
as in Robinson et al. [12], as soon as the density of θ̂n(α) exists and admits
the saddlepoint approximation

(4) f
θ̂n(α)

(t) = (2π/n)−d/2enKψα (λα(t),t)|Bα(t)| |Σα(t)|−1/2(1 +O(n−1)),

where λα(t) is the saddlepoint satisfying

K ′
ψα(λ, t) :=

∂

∂λ
Kψα(λ, t) = 0,

| · | denotes the determinant,

Bα(t) := e−Kψα (λα(t),t)EFθ0

{
∂

∂t
ψα(X, t)eλ

tψα(X,t)

}
and

Σα(t) := e−Kψα (λα(t),t)EFθ0

{
ψα(X, t)ψα(X, t)teλ

tψα(X,t)
}
.

Conditions ensuring the saddlepoint approximation (4) are given in Al-
mudevar et al. [1] for density of a general M-estimator and apply here as well.
Under these conditions, using the general result from Robinson et al. [12], the
p-value (3) corresponding to the test that we propose is given by

(5) p = Qd(nû
2
α) + n−1cnû

d
αe−nû

2
α/2

[
Gα(ûα)− 1

û2
α

]
+Qd(nû

2
α)O

(
n−1

)
,

where ûα =
√

2hα(θn(α)), cn = nd/2

2d/2−1Γ(d/2)
, Qd = 1 − Qd is the distribution

function of a χ2 variate with d degrees of freedom,

Gα(u) =
∫
Sd

δα(u, s)ds = 1 + u2k(u)

for

δα(u, s) =
Γ(d/2)|Bα(y)| |Σα(y)|−1/2J1(y)J2(y)

2πd/2ud−1
,
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where for any y ∈ Rd, (r, s) are the polar coordinates corresponding to y,
r =

√
yty is the radial component and s ∈ Sd, the d-dimensional sphere of

unit radius, u =
√

2hα(y), J1(y) = rd−1, J2(y) = ru/(h′α(y)ty) and k(ûα) is
bounded and the order terms are uniform for ûα < ε, for some ε > 0.

Moreover, p admits the following simpler approximation

(6) p = Qd(nû
2
α)(1 +O((1 + nû2

α)/n)).

The accuracy of the test in small samples as it is assured by the appro-
ximations given by (5) and (6) can be accompanied by robustness properties.
This will be discussed in the next sections.

4. ROBUSTNESS RESULTS

The use of a robust minimum density power divergence estimator leads
to a test statistic hα(θ̂n(α)) which is robust, too. This can be proved by com-
puting the influence function, respectively the breakdown point for hα(θ̂n(α)).

The statistical functional corresponding to the test statistic hα(θ̂n(α))
is defined by Uα(G) := hα(Tα(G)), where Tα is the minimum density power
divergence functional associated to θ̂n(α). The following proposition show that
the influence function of the test statistic is bounded whenever the influence
function of the minimum density power divergence estimator is bounded.

Proposition 1. The influence function of the test statistic hα(θ̂n(α)) is

(7) IF(x;Uα, Fθ0) = h′α(θ0)tJ−1{ḟθ0(x)f
α−1
θ0

(x)− ξ},

where J and ξ are those from (2) and

h′α(θ0) = −
EFθ0{e

λα(θ0)tψα(X,θ0) ∂
∂θψα(X, θ0)λα(θ0)}

EFθ0{e
λα(θ0)tψα(X,θ0)}

.

Proof. The minimum density power divergence functional Tα is Fisher
consistent, meaning that Tα(Fθ0) = θ0 (see Basu et al. [2], p. 551). Using this,
derivation yields

(8) IF(x;Uα, Fθ0) =
∂

∂ε
[Uα((1− ε)Fθ0 + εδx)]ε=0 = h′α(θ0)t IF(x;Tα, Fθ0).

Derivation with respect to θ gives

h′α(θ0) = − ∂

∂λ
Kψα(λα(θ0), θ0)λ′α(θ0)−

∂

∂θ
Kψα(λα(θ0), θ0)

= − ∂

∂θ
Kψα(λα(θ0), θ0) = −

EFθ0{e
λα(θ0)tψα(X,θ0) ∂

∂θψα(X, θ0)λα(θ0)}
EFθ0{e

λα(θ0)tψα(X,θ0)}
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using the definition of λα(θ0). Then (7) holds, by replacing h′α(θ0) and (2)
in (8). �

The breakdown point also measures the resistance of an estimator or of
a test statistic to small changes in the underlying distribution.

Maronna et al. [11] (p. 58) define the asymptotic contamination break-
down point of an estimator θ̂n at Fθ0 , denoting it by ε∗(θ̂n, Fθ0), as the largest
ε∗ ∈ (0, 1) such that for ε < ε∗, T ((1 − ε)Fθ0 + εG) as function of G re-
mains bounded and also bounded away from the boundary ∂Θ of Θ. Here
T ((1 − ε)Fθ0 + εG) represents the asymptotic value of the estimator by the
means of the convergence in probability, when the observations come from
(1− ε)Fθ0 + εG. This definition can be considered for a test statistic, too.

The aforesaid robustness measure is appropriate to be applied for both
minimum density power divergence estimators θ̂n(α), as well as for correspon-
ding test statistics hα(θ̂n(α)). This is due to the consistency of θ̂n(α) and
to the continuity to hα, allowing to use Tα(G) and hα(Tα(G)) as asymptotic
values by means of the convergence in probability. The consistency of θ̂n(α)
for Tα(G) when the observations X1, . . . , Xn are i.i.d. with distribution G is
given in Basu et al. [2].

Remark 1. The asymptotic contamination breakdown point of the test
statistic hα(θ̂n(α)) at Fθ0 satisfies the inequality

(9) ε∗(hα(θ̂n(α)), Fθ0) ≥ ε∗(θ̂n(α), Fθ0).

Indeed, when ε < ε∗(θ̂n(α), Fθ0), there exists a bounded and closed set K ⊂ Θ,
K ∩ ∂Θ = ∅ and Tα((1− ε)Fθ0 + εG) ∈ K, for all G. By the continuity of hα
as function of θ, hα(K) is bounded and closed in [0,∞) and

Uα((1− ε)Fθ0 + εG) = hα(Tα((1− ε)Fθ0 + εG)) ∈ hα(K),

for all G. This prove the inequality (9).
Remark 1 shows that the test statistic cope with at least as many outliers

as the minimum density power divergence estimator.

5. ROBUST SADDLEPOINT TEST STATISTICS
FOR SOME PARTICULAR MODELS

In this section we consider two particular parametric models, namely the
normal location model and the exponential scale model, in order to provide
examples regarding the robust testing method presented in previous sections.
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For both models, the conditions assuring the approximation (5) of the
test p-value, as well as conditions for robust testing are simultaneously satis-
fied. This confirms the qualities of the proposed testing method from good
accuracy in small samples and robustness point of views.

Consider the univariate normal model N (m,σ2) with σ known, m being
the parameter of interest. For α fixed, the ψ-function associated to the mini-
mum density power divergence estimator θ̂n(α) of the parameter θ0 = m is

ψα(x,m) =
x−m

σα+2(
√

2π)α

[
e−

1
2(x−mσ )2]α

.

For any α > 0, the conditions from Almudevar et al. [1] assuring the appro-
ximation (4) for the density of θ̂n(α) are verified, therefore the p-value of the
test based hα(θ̂n(α)) can be approximated in accordance with (5). On the
other hand, for any α > 0, the test statistic is robust on the basis of the
Proposition 1 and to the fact that the influence function of θ̂n(α) is bounded.
Moreover, for any α > 0, the minimum density power divergence estimator
has the asymptotic breakdown point 0.5, because it is in fact a redescending
M-estimator (see Maronna et al. [11], p. 59, for discussions regarding the
asymptotic breakdown point of redescending M-estimators). Then Remark 1
ensures that ε∗(hα(θ̂n(α)), Fθ0) ≥ 0.5.

Let us consider now the exponential scale model with density fθ(x) =
1
θe
−x/θ for x ≥ 0. The exponential distribution is widely used to model random

inter-arrival times and failure times, and it also arises in the context of time
series spectral analysis. The parameter θ is the expected value of the random
variable X and the sample mean is the maximum likelihood for θ. It is known
that the sample mean and classical test statistics lack robustness and can be
influenced by outliers. Therefore, robust alternatives need to be used.

For α fixed, the ψ-function of a minimum density power divergence esti-
mator θ̂n(α) of the parameter θ is

ψα(x, θ) =
x− θ

θα+2

(
e−

x
θ

)α
+

α

(α+ 1)2θα+1
, x ≥ 0.

For any α > 0, the conditions from Almudevar et al. [1] assuring the approxi-
mation (4) for the density of θ̂n(α) are verified, therefore the p-value of the test
based hα(θ̂n(α)) can be approximated in accordance with (5). Moreover, for
any α > 0, the test statistic is robust on the basis of the Proposition 1 and to
the fact that the influence function of θ̂n(α) is bounded. We also establish an
inferior bound of the asymptotic contamination breakdown point of hα(θ̂n(α)),
using Remark 1 and the following proposition:
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Proposition 2. The asymptotic contamination breakdown point of θ̂n(α)
at Fθ0 satisfies the inequality

α

(α+ 1)2
≤ ε∗(θ̂n(α), Fθ0) ≤

(
e−(1+ 1

α
)
)α

+ α2

(α+1)2(
e−(1+ 1

α
)
)α

+ α
.

Proof. Put F̃εG = (1− ε)Fθ0 + εG, ε > 0 for a given G. Then

(10) (1− ε)EFθ0ψα(X,Tα(F̃εG)) + εEGψα(X,Tα(F̃εG)) = 0.

We first prove that

(11) ε∗(θ̂n(α), Fθ0) ≤

(
e−(1+ 1

α
)
)α

+ α2

(α+1)2(
e−(1+ 1

α
)
)α

+ α
.

Let ε < ε∗(θ̂n(α), Fθ0). Then, for some C1 > 0 and C2 > 0 we have C1 ≤
|Tα(F̃εG)| ≤ C2, for all G. Take G = δx0 , with x0 > 0. Then (10) becomes

(12) (1− ε)EFθ0ψα(X,Tα(F̃εx0)) + εψα(x0, Tα(F̃εx0)) = 0.

Taking into account that

ψα(x, Tα(F̃εx0)) ≤
1

α(Tα(F̃εx0))α+1

(
e−(1+ 1

α
)
)α

+
α

(α+ 1)2(Tα(F̃εx0))α+1

for all x (the right hand term is the maximum value of the function x →
ψα(x, Tα(F̃εx0))), from (12) we deduce

0 ≤ (1− ε)
[

1
α

(
e−(1+ 1

α
)
)α

+
α

(α+ 1)2

]
+

+ε

[(
x0

Tα(F̃εx0)
− 1

)(
e
− x0
Tα(F̃εx0 )

)α
+

α

(α+ 1)2

]
.

Letting x0 → 0, since Tα(F̃εx0) is bounded we have

ε ≤

(
e−(1+ 1

α
)
)α

+ α2

(α+1)2(
e−(1+ 1

α
)
)α

+ α

and consequently (11) is satisfied.
We now prove the inequality α

(α+1)2
≤ ε∗(θ̂n(α), Fθ0). Let ε > ε∗(θ̂n(α),

Fθ0). Then, there exists a sequence of distributions (Gn) such that Tα(F̃εGn) →
∞ or Tα(F̃εGn) → 0.
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Suppose that Tα(F̃εGn) → 0. Since

ψα(x, Tα(F̃εGn)) ≥
1

(Tα(F̃εGn))α+1

[
α

(α+ 1)2
− 1
]

for all x, (10) implies

(13) 0 ≥ (1− ε)EFθ0

{
(Tα(F̃εGn))

α+1ψα(X,Tα(F̃εGn))
}

+ ε

[
α

(α+ 1)2
− 1
]
.

Using the bounded convergence theorem, we have

lim
n→∞

EFθ0

{
(Tα(F̃εGn))

α+1ψα(X,Tα(F̃εGn))
}

=
α

(α+ 1)2
.

Then (13) yields

0 ≥ (1− ε)
α

(α+ 1)2
+ ε

[
α

(α+ 1)2
− 1
]

which implies that

(14) ε ≥ α

(α+ 1)2
.

Suppose now that Tα(F̃εGn) →∞. Since

ψα(x, Tα(F̃εGn)) ≤
1

α(Tα(F̃εGn))α+1

(
e−(1+ 1

α
)
)α

+
α

(α+ 1)2(Tα(F̃εGn))α+1
,

relation (10) implies

0 ≤ (1− ε)EFθ0

{
(Tα(F̃εGn))

α+1ψα(X,Tα(F̃εGn))
}

+

+ε
[

1
α

(
e−(1+ 1

α
)
)α

+
α

(α+ 1)2

]
.

Using again the bounded convergence theorem, we obtain

0 ≤ (1− ε)
[
−1 +

α

(α+ 1)2

]
+ ε

[
1
α

(e−(1+ 1
α

))α +
α

(α+ 1)2

]
which yields

(15) ε ≥
1− α

(α+1)2

1
α

(
e−(1+ 1

α
)
)α

+ 1
.

Since the bound in (14) is smaller than the bound in (15), we deduce that
ε∗(θ̂n(α), Fθ0) ≥ α

(α+1)2
. �

Remark 2. The asymptotic breakdown point of the test statistic satis-
fies ε∗(hα(θ̂n(α), Fθ0)) ≥ α

(α+1)2
. This is obtained by applying Remark 1 and
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Proposition 2. Particularly, when using the density power divergence corre-
sponding to α = 1, ε∗(hα(θ̂n(α), Fθ0)) ≥ 0.25.
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010374 Bucharest, Romania

and

“Gheorghe Mihoc–Caius Iacob” Institute
of Mathematical Statistics and Applied Mathematics

Calea 13 Septembrie no. 13
050711 Bucharest, Romania


