UNIQUENESS AND QUALITATIVE PROPERTIES OF
THE SOLUTIONS TO THE FUNCTIONAL EQUATION
fof+af+blg=0
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We deal with the functional equation in the title for real and nonzero a, b. Namely,
in this paper we give some qualitative properties for the continuous solutions of
the aforementioned equation, in all cases.
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1. INTRODUCTION

In this part results from [2] and [3] (without proof) which will be used
throughout this paper are introduced.

Iterative polinomial equations are solved in [1] and [9] with rather similar
methods.

Let a,b be real numbers a # 0, b # 0. We shall be concerned with the
functional equation (called fundamental equation.)

fof—i-af—f—blR:O.
Namely, we want to find a continuous function f : R — R having the property
that, for any x € R
f(f(@)) +af(x) + bz =0.
Such a function (in case it exists) will be called a solution of the fundamental

equation (or, simply a solution). In the sequel, the fundamental equation will
be written in the form

fof+4+af+bxr=0.

It is seen that a solution must be a homeomorphism. Moreover, the function
g = f~! satisfies the equation

a 1
— — 1g =0.
9°9+b9+b R
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Incidentally, the fundamental equation will be written alternatively
foftaf £bx=0.

with positive a and b.
The characteristic equation of the problem is the quadratic equation

22 +ar+b=0.

with (complex) roots r1,7o and discriminant A = a? — 4b. Actually, in this
paper we shall study the case when 71,79 are real, because, for non real 71, o
the fundamental equation has no solutions.

THEOREM l.a (Calibration Theorem). Let us assume that f is a solution
and |r1| < |ra|. Then, for any real x, y one has

il -z =yl < |f (@) = f(y)] < ral 2 =yl

LEMMA 1.1. Let us assume 1 < r1 < ro. For any solution f we have the
following properties:

2) £(0) = 0.

b) For any xo € R one has
rizo < f(2o)
rexo < f(20)

<rowg if xo >0,
<rxy ifxg<O.

LEMMA 1.2. Let us assume that ro < r1 < 0. For any solution f, we have
the properties:
a) f(0)=0.
b) For any xg € R,
raxo < f(x0) < mizo  if 2o >0,
rxg < f(zo) <mawe  if o <O0.

LEMMA 1.3. Let us assume that 1o < r1 < —1. Let 0 # g € R and
x1 € [rowo, r1xo] (in case xo > 0) or x1 € [r1xo, r2x0) (in case xy < 0). Using
the coefficients of the fundamental equation we define the sequences (zp)n>0
and (x_y),~q as follows.

a) xn+; = —axn11 — bxy, with starting terms xg and x1. Such a sequence
is the sequence given via Tni1 = f(zy), with starting term xo (see Lemma 1.2
for 1 = f(xp)).

b) The sequence (x_p)

quence (Yn),>q by

, 8 defined in two steps. First, we define the se-

a
Yn4+2 = _gyn—i-l - Byn

with starting terms yo = x1 and y1 = xg.
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Next, we write x_p, = Yn+1 for all natural n. Hence

a 1
LTn-2 = _g Lpn-1— gx—n-
with starting terms xg = y1 and x_1 = yo. Such a sequence is the sequence
given via x_p_1 = f1 (x_p) with starting term xq (see Lemma 1.2 for x1 =
f(xo) & o = f~1 (21)).
In case xy > 0 we have xa, | oo (strictly), wont1 | —oo (strictly),
T_opn | 0 (strictly) and x_on11 T 0 (strictly). This implies

U ([2n, Tonto] U [2—2n, T_2n42]) = (0, 00),
n>0

U ([T2n+1, Toan—1] U [T_2n+1, T—2n—1]) = (—00,0).
n>0

The case xoy < 0 is symmetric (e.g., o, | —00 strictly ...).

LEMMA 1.4. Let us assume that 1 < ry < r9. Let 0 # 29 € R and
x1 € [rxo, r2xo] (in case g > 0) or x1 € [raxo, r120] (in case xg < 0).

Define the sequences (xn)n>0 and (x—p),~o as in Lemma 1.3. In parti-
cular we can take x,11 = f(x,) with starting term xg and x_,_1 = f~ (x_,)
with starting term xo (see Lemma 1.1).

In case xy > 0 we have x, | oo (strictly), x_, | 0 (strictly). In case
xo < 0 we have x, | —oo (strictly) and x_,, T 0 (strictly). This implies

U [xnyxn—i-l] = (07 OO) Zf To > 07
nez

U [zn, 2ng1] = (—00,0)  if 2o < 0.
nez

LEMMA 1.5. Let us assume that 0 < r1 < 1 < r9. Let g € R and
x1 > rixo, 1 > r2xg. Define the sequence (xn)n>0 and (x—_p),~ exactly like
in Lemma 1.3. In particular, we can take x,11 = f(xy,), with starting term x
and x_p_1 = f~ 1 (x_y), with starting term xo.

Then x, T oo (strictly), x_y, | —oco (strictly) and

U [T, Tpt1] = R.

nez

THEOREM 1.6 (Case 1 < ry < ry). We shall write the fundamental equa-
tion in the form

fof—af+bx=0.
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All the solutions f : R — R are of the form
Fi(z) ifxz>0,

flz)y=<¢ 0 if x =0,
Fy(z) ifx <0,

where F1 and Fo are constructed as follows:

1. Construct the sequences (Tn)n>0 and (¥—n), >q according to Lemma 1.4
starting with an arbitrary xoy > 0 and x1 € [r1z9,r2x0]. Consider a bijection
fo i [xo, x1] = [x1, 22] having the property that for any x > y in [xo, 1] one has

(1.1) ri(z —y) < fo(@) = foly) < rao(z —y).
Then, for any natural n, one can construct the bijections

fn : [wnaxn+1] - [$n+17xn+2]

and
fon: [xfn’xfnJrl] - [x7n+17$fn+2]
defined via
(12)  funle) =ar—bf; (@) and L (@) = tx -2 o),

Finally, for any

x € (0,00) = U [T, Tnt1]
nez
we have, for some natural n, either v € [T, znt1] and Fi(z) = fu(z) or
x € [_p,T_nt1] and Fi(x) = f_,(2).

The values at the common endpoints coincide.

2. Construct the sequences (zn)n>0 and (—n),>o according to Lemma 1.4
starting with an arbitrary xo < 0 and x1 € [roxo, r1x0]. Consider a bijection
fo : [x1,x0] = [x2,21] having the property (1.1) for any x >y in [x1,zo].

Then, for any natural n, one can construct the bijections

In: [$n+17xn] - [mn+27$n+1]
and
fon: [x—n—l-lax—n] - [x—n+27$—n+1]
defined via (1.2).
Finally, for any
x € (—00,0) = U [Tnt1, Tn)
nez

we have, for some natural n, either x € [Tpi1,xn] and Fr(x) = fuo(z) or
x € [x_pt1,2_p] and Fy(x) = f_p(x). The values at the common endpoints
coincide.
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THEOREM 1.7 (Case 1oy < 11 < —1). All the solutions are obtained as
follows. Start with an arbitrary o > 0, and we choose x1 € [raxg, r120|. Apply
Lemma 1.3 and construct the sequences (xp)n and (x_y),,. Let fo : [zo, x2] —
[x3,x1] be a strictly decreasing bijection having the property

(1.3) —ri(x —y) < fo(y) — fo(z) < —r2(z —y)

for all x >y in [xo, z2].
Construct the following strictly decreasing bijections (for any natural n):

f2n : [x2n7x2n+2] - [$2n+33$2n+1]a

(1.4) fon(z) = —ax — be_nl_l(a:)
Jon+1 ¢ [T2n43, Tant1] — [T2n42, Tonta],
(1.5) font1(x) = —az — bf;n1 (z)
foon t [®—on, T_ont2] = [T—2n43, T_ont1],
(16) Fob@) = =52 = 4 fania (@)

f72n71 : [x72n+la$72nfl] - [$72n7$72n+2]7

(1.7 fhal@) = =52 = 3 f-20()

Since the reunion of all above mentioned intervals is equal to R\ {0}, we
can construct f: R — R, given by

0 if x =0,
x) = :
@={ %@ Foz0
where 0% x belongs to one of the above mentioned intervals which is the domain

of definition for f,, n€Z. The values at the common endpoints coincide.
Then f is a solution and all the solutions can be obtained in this way.

THEOREM 1.8. Assume 0 < ry < 1 < 19 and let f be a solution with
the property f(0) # 0. Then either f(x) > x for any € R or f(z) < x
for any x € R.

I. Assume that f(x) > x for allx € R. Then f can be obtained as follows:
Construct the sequences (Ty)n and (l‘_n)n according to Lemma 1.5, where we
take o = 0 and x1 > 0 arbitrary (the conditions of Lemma 1.5 are fulfilled).
Consider a strictly increasing bijection fy : [0, z1] — [x1,z2] such that

ri(z —y) < fo(x) = foly) < ra(z —y)
for all x >y in [0, z1].
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Then, for any natural n one can construct the bijections fy : [Tn, Tpi1] —
[Tnt1, Tng2] and fop 2 [T p, T_pni1] = [Topi1, Toni2] defined by

a 1

for1(x) =ax —bf, Y (z) and [} (x)= 5%~ gf—n@)
Finally, for any
reER= U [T, Tnt1]
nez
we have, for some natural n, either © € [Tn,xp+1] and f(z) = fu(z), or

(S [x—nvx—n-f—l] and f(x) - f—n(w)

I1. Assume that f(z) < x for any x € R. Then f~'(x) > x for any x € R
and f~' can be constructed according to part 1.

Remark. The characteristic equation for the problem concerning the in-
verse g = 1 is
ba® +ar+1=0

and has the roots rl_l, 7"2_1 where 71, 7o are the roots of the characteristic
equation for f. Consequently, Theorems 1.6 and 1.7 cover the cases 0 < ry <
ro <1, =1 <r; <re <0, too.

2. SUFFICIENT CONDITIONS FOR THEUNIQUENESS
OF THE SOLUTIONS

We consider the functional equation
(E1) fof(x)+af(x)+bx=0,

where the signs of a and b are taken according to the convention from the
beginning of part 1.

We shall establish which conditions guarantee the uniqueness of con-
tinuous solutions of this functional equation. More precisely, if two solutions
coincide on a non degenerate interval under some conditions, then they co-
incide everywhere. We shall see which conditions must fulfill this interval in
each case.

THEOREM 2.1. Let us consider the functional equation (E1) in case A>0.
a) If 1 < 71 < rg and two solutions coincide on I = [a’,b'], I C (0,00) and
/
] > Ty,

then they coincide on (0,00). A similar result holds if I C (—o00,0). If I =
[0,a] the solutions coincide on (0,00). A similar result holds if I = [d’,0].
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b) If ro <11 < —1 and two solutions coincide on I = [a', V'], I C (0,00)
and

b/
= >12
a —

(also if I C (—00,0) and I = [d’,V'] and Z—,l > r3), then they coincide on R. If
0 € I the two solutions coincide on R.

c) If 11 <1 < ry two solutions f and g which coincide on [0,a’] and have
the property that f(0) # 0, g(0) # 0, coincide on R. We have a similar result
for [d’,0].

Proof. Because the solutions are continuous, we can use the correspond-
ing existence theorems from the previous section.
a) We consider the equation fo f —af(x) 4+ bx = 0 with solutions given
by Theorem 1.6. Let f and g two solutions that coincide on [a/, V], [a/, V] C
(0,00). We shall prove that there exist zg, 1 € [a/, V'] such that the sequence
(Zn)nez is that one of Theorem 1.6. We choose 2y = a’ and prove that
[xor1, zora] C [aljb/] .
Indeed
xor1 > a S xory > x0T > 1
and
xorg <V < b > ad're.

These conditions are fulfilled from the hypothesis. Then, because
() r(z—y) < f(z) = f(y) < ra(z—y)

(the same for g), we can take

fo= f|[mo,ml] - g‘[aso,xl} = go-

We define (zp,)nez as in Theorem 1.6, fo : [z, z1] — [%1,x2] is increasing,
bijective and satisfies (). The same for gg, hence fy and gg fulfill the condition
from Theorem 1.6. We shall prove inductively that f,(z) = gn(x) for = €
[Tn, Tny1], n > 0, where f,, and g, are those of Theorem 1.6. We shall prove
that the functions obtained in this way are increasing, bijective, continuous,
and satisfy («) for all n > 0. Let us suppose f,—1 = gn—1. But

fu(@) = az —bf, ()
and
gn(z) = azx — bfn__ll(x).

Because f, !, = g, we have f,(z) = gu(x), for all 2 € [z, 2,11]. Then
f=gon [z,,xni1], ie., f =g on [zg,00). Let us prove now that f_, = g_n,
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for all n > 0. Assume inductively f_,4+1 = g—nt+1 (f—n and g_,, are those of
Theorem 1.6). But

1

fom(z) = 7 (@@ = fonia(2)  for @ € [eonir, 2onpo]
and .
9:111(:(}) = g (aw - g—n—l—l(x)) for z € [$_n+1,$_n+2] .

Because f_,11 = g—n+1 we have f:,ll = g:}b, hence
fon(z) =g-n(z) forall z € [x_p, x_pnt1].
Then f_, = g_n, for all n > 0. This means f = g on (0,z9). So f = ¢
n (0,00). Similarly, if [a’,0'] C (—00,0), it follows that f = g on (—o0,0).
Suppose now I = [0,a’]. We take

a/

r1=d and z¢p=—.
T2
Obviously, it follows that xg,x1 € I. The proof is similar to the previous one.
The same proof for I = [a’,0]. Then f =g on (—o0,0).
b) If ro < r1 < —1, let us consider the equation

fof(@)+af(z)+bz=0
with continuous and decreasing solution which fulfils the condition

(B) —ri(x —y) < f(y) — flx) < —r2(z —y)

(for x > y). The solutions are given by Theorem 1.7.
Let f, g two solutions that coincide on [a’,b'] C (0,00). We shall prove
that there exist

r1, 72 € [a’, V] such that r%xo < z9 < r%xo and x1 € [roxg, r120]
such that
T9 4+ axy + brg = 0.
We choose zg = d’. But &/ > a'r3 = b/ > zor3. Because
2 2
[9307"1,5607“2] C [d, V],
we can choose
xy € [zori, zor3] such that o € [/, V],
brog —xo _ —T1T9To — xor% —xor1 (11 + 72)
Ir1 = — S = = XIory.
a —(r1 +72) —(r1 +79)
Similar proof for z1 > xgra, hence the condition x; € [zgra, xor;] is fulfilled.
Then we can define (z,,)nez as in Theorem 1.7. We can consider

folizo,z2] = 90l[z0,02] = 90
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and
fos g0+ [z0, 22] — [23, 21]
fulfil the conditions from Theorem 1.7. Then we can define (fy),,c7 and (gn),,cz
as in Theorem 1.7. They are decreasing, continuous, bijective and satisfy (3).
The functions fi : [x3,21] — [22,24] and g1 : [x3,21] — |22, 24] are given
by the formulas

file) = —az —bfgH(x), gi(x) = —az —bgy ' ().

Hence f; = g1 on [z3,x1].
Now suppose inductively that fo,—1 = gan—1 on [T2p+1, T2n—1]. We shall
prove that fa, = gon on [Ty, Tont2], where

fon—1, 92n—1 : [T2n+1, Tan—1] = [Ton, Ton+t2)
and

fons Gon © [Ton, Tonta] — [Tont3, Tant1] -
We know that

fon(2) = —ax = b- fo, 1 (2),  gon(x) = —az = b- g ().
Then it follows that fa, = g2, On [X2y, Toptol.
In the same way it can be shown that fo,+1 = gont1, Where

font1, 92nt1 ¢ [T2n13, Tant1] — [T2nt2, Tonta]
and fon42 = gon+2, where

font2, G2nt2 ¢ [Tont2, Tonga] = [T2nts, Tonys)
Then f, = g, for all n >0, i.e., f =g on (—o0,x1] U [z, 00).

We prove now that f_,, = g_,, (n > 0). First, we have
F@) =+ (~az — fofa)). g7Ha) = & (~ax — go(a)
where f_1,9-1: [x1,2_1] — [x0, x2]. Because fy = go on [zg, x2] it follows that
f—_11 = gj on [zg,x2], so f-1 = g—1 on [z1,z_1]. Now, suppose inductively
that f_on41 = g—ont1 On [T_2,43, T _2p41), Where
J=2n+1s9—2n41 : [T_2n43, T_2nt1] = [T_2n42, T_2n44]

and we shall prove that f_o, = g_2, on [z_2,, T _2p+2]. Indeed

1 1

[73(@) = 5 (caz = fann(@), 97h,(0) = 5 (a2 = g-2nsa (@)

where

f-on i [T—2n, Tant2] — [T-2n+3, T—2nt1]
and

g—2n ¢ [To2n, T—ont2] = [T—2n+3, To2nt1].
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Because f_9,4+1 = g—2n+1 ON [T_2p43, T_2n4+1] We have

-1 -1
f—zn =4g_9, ON [$72n+3, 1’—2n+1] .

Then f_9, = g_2n ON [T_2p, T_2n42]. Similarly, we can prove that f_g9,_1 =
g—2n—1, where

foon—1,9-2n—1 [T—2n+1, T—2n—1] — [T_2n, T—2n12]

and f_on_2 = g_on—2, Where

foon—2,9-2n2: [T 20 2,T 24] = [T 2041, 2n-1].
Thus it follows that f_,, = g_,, for all n > 0. Then it follows that f = g on
(z1,0) U (0,20). Obviously, f(0) = g(0) =0 and so f = g.

Let f and g two solutions which coincide on [a’,b'] C (—o00,0). We
shall prove that there exist z1,23 C [a/,V] with 23 € [z173,217}] and x5 €
[x171, 2172], Tespectively

ZTo € |:x17 :El:|
re Tl

such that 3 + aze + bxy = 0 and z9 + axy + brg = 0. We choose 21 = V.
Because

[blrg, b,rﬂ - [a’, b/]a
we can choose
T3 € [b’r%, b’r%]

and then z3 € [d/,b']. We choose xo = —“%dbxl. We must prove that zo €
[x171, x172]. But
—x173 —rirewy —x172 (1 4+ 72)
T2 > = = x179.
—(r1+12) —(r1 +r2)

Similarly, we have xo > z171. Choose

. —axry — T2 < (7‘1 + 1"2) Tl — X171 €
0= < = —.

b r1Tr2 T
Similarly, we have xg > %, hence z1 € [xgra, xor1]. So, we can define (zy,)nez

like in Theorem 1.7. Let us prove that f = g on [z, z2]. Denote

f1= fligsa) and g1 = glzs,0)-

Obviously, fi = g1. The functions fi,¢1 : [x3,21] — [z2, 4] are continuous,
bijective and fulfill the relationship (3).
We define the function h : [z3, z1] — R (we shall see that one can consider
h:|x3,x1] — [0, x2])
fi(z) + ax g1(x) + ax

Mo) === —="73
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The function h is continuous; because f; and g; fulfill (3). It follows that h
fulfills the relationship

A <h@) —hy) < T w>y
1 T2
Hence h is decreasing on [z3, x| and
h(zs) = _filws) faxs  xstars .
b b
h(zy) = f1($1)b+ ary @ J;cm .

Therefore h : [x3,x1] — [z, z2] is bijective. Denote

fo=h™' and go=h"", fo,g0: [v0,22] — [73,71].

It follows that fy = go and obviously

fi(z) = —azx — bfo_l(:c), g1(z) = —azx — bgo_l(x).

It is clear that xgr? < x9 < xor3. So, f and g coincide on [zg, 2], where
(zn)nez is defined as in Theorem 1.7. Using the same reasoning as in the
previous case it will follow that f and g coincide on R.

c) If r1 <1 < rq9, we consider the equation

fof(@)—af(z)+bz=0

with continuous and increasing solutions given by Theorem 1.8 (case f(z)>x).

Let f and g two solutions which coincide on [0,a’]. Tt follows from the
hypothesis that f and g have no fixed points. If f(z) > z, for any x € R it
follows that g(z) > z, for any z € R (f and g coincide on [0,a’]). Choose
x1 = d, r9g = 0. We can define (x,)nez as in Theorem 1.8; z;, — 00 and

T_np — —oo. We can define fy and go by fo = flow,) and go = gljo,a-

n
The functions fo,go : [0,21] — [z1,22] are continuous, bijective and fulfill
(a). Defining (fn),,cz as in Theorem 1.8, it will follow that f,, are continuous,
bijective and fulfill («). Similarly to a) one can prove inductively that f, = gy,
for all n € Z. Therefore f = g on R.

We shall prove now that if f and g coincide on [V/, 0], they coincide on R
(where b’ < 0). Let (xp)nez be the sequence which appears in the construction
of the solution in Theorem 1.8. We choose zg = 0 and 1 = —b- ¥, 21 > 0.
Let us prove that f(z) = g(x) for z € [0, —b-b']. We have 21 —azg+bzr_1 = 0;
rg = 0 = 2_; = b'. Hence, considering (fy), ez and (gn),cz (the functions
which appear in the construction of the solution in Theorem 1.8), we have
f-1:[z-1,0] — [0,21] and g_1 : [x_1,0] — [0,21]. It is clear that f_; = g
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implies the fact that £~ (z) = g~{(2) for x € [0, 2;]. But

fob@) =~ e+ (@), g7Hw) =~ (ar + go(a)

where fo : [0,21] — [z1,22], go ¢ [0,21] — [z1,22]. Hence fo(z) = go(),
for all z € [0,z1]. According to the fact which has been proved, it follows
that f = ¢ on R.

The case f(x) < z, for z € R, is similar. O

Remark. Concerning the uniqueness properties of the solutions of a func-
tional equation, the reader may consult the papers [4], [7] and, especially, [6].

3. QUALITATIVE PROPERTIES OF THE SOLUTIONS

In this paragraph, we shall establish that solutions of equation
(E1) fof(x)+af(x)+br=0,

which are monotonous, are also continuous if b # 0 and a = 0. We shall look
for conditions in general case such that a monotonous solution of equation (E1)
becomes continuous. At the end of this paragraph, we shall give some topo-
logical properties for the set of the solutions of equation (E1) if a # 0, b # 0.

A) First, we study the case a = 0 and b # 0. So far, we studied only the
continuous solutions of equation (E1). In Theorems 3.1-3.5 one can consider
discontinuous solutions (namely, we give conditions such that monotonous
solutions becomes continuous).

THEOREM 3.1. Let us consider equation (E1). Then if a = 0, b # 0, every
monotonous solution is also continuous.

Proof. a) If b > 0 the equation becomes f o f(z) = —bx, b > 0. Since f
is monotonous, this equality is absurd.

b) If b < 0 the equation becomes f o f(z) = —bx, —b > 0. Obviously,
—bx is bijective, so f is bijective. Because f is monotonous and bijective it is
continuous. [

B1) Let us consider the case a#0, b#0. First, we study the case A<0.

THEOREM 3.2. If the characteristic equation of the functional equation
(E1) has no real roots (so the equation 1 + ar +b = 0 has the discriminant
A < 0), then equation (E1) has no monotonous solutions.

Proof. Let us suppose for n contradiction that there exists f monotonous
which satisfies equation (E1). We have A < 0 = b > 0. Hence —af(x) =
fof(x)+bx. Next,a <0< f 1 (ie., f is increasing). The equation becomes
fof(x)—af(xz)+bxr =0, a,b > 0. Consequently, bx = af(x) — fo f(z) =
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ax— f(x) T on A =Im f. Then, for z > y we have ax — fz > ay— f(y). Hence
f(l')_f(y) <(I(l'—y) fOI'I'>y, x,yelmf.

Let
Boz{f(x)—f(y) (x,y) € R xR, :r>y}.
r—=y
By is bounded above by a, so there exists A\g = sup By, A\g > 0. Hence
WS)\O forall z >y, x,y € Im f.
Let x >y, z,y € Im f. It follows that f(z), f(y) € Im f
ffx) = ffy) b
JIN) JINI T g — —
®) f@) — 1) 7 e = 5
Ty

Write By = {% ‘ (x,y) e RxR, = > y} Then it is obvious that

B1 C By. It is obvious that there exists A\; = sup By. Since B1 C By = A\ <
Ao and A; > 0. Taking into account () we get

M <a-— ;0.
In the same way one can obtain the sets
5, {1
fr@) = ()
Obviously, B, C B,_1 C --- C By C By. Then, there exists A\, = sup B,,.
Since B, C Bp,_1 = Ay < Ap_1 and A\, > 0. But

(r,y) € R xR, x>y}.

@) - ) b

e 7 R = g
@) - ) oy
OB R R W

Hence it is obvious that the sequence )\, is decreasing and all the terms are
positive so it is convergent. Let A the limit of the sequence. Passing to the
limit in the previous relation we obtain

)\ga—§:>)\2—a)\+b§0.

Taking into account that A < 0, this inequality is absurd. Similar proof if
a>0&f1. O

B2) We shall now deal with the case A > 0.
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THEOREM 3.3 (Case 0 < r1 < rg). Let f be an increasing function, which
satisfies (E1). If, additionally, for

= {109t o),
- {{2L) 1ot
f@) = fy)
we have A\ = sup By = sup By (if this supremum is bounded), then f is conti-
NUOUS.

(z,y) € Im f x Im f, m>y}

Proof. The equation can be written f o f(z) — af(z) + bx = 0, with
a,b>0. Hence af(x) — fo f(z) T or ar — f(z) T on A =1Im f. Thus

0< @)= 1)
Ty
We write A = sup By. According to the hypothesis, we have \ = sup Bj.
Let us suppose that A > ro. We have

fof@—fofly) _ b
fl@)=fly) Lﬁ(y)

xT

<a foralz>y, x,y€ A

for all z,y € Im f.

Consequently,
fof(@)—fof(y) b

<a-— —.

fl@)=fly)  — A
But a — % < XA (A2 —a)X+0b >0, because A > rp). This contradicts the fact
that A = sup B;. It follows that A < r9. Hence

fz) = fy)

r—=y

<ry forallz >y, z,y € Imf.

Let us suppose for a contradiction that there exists xzg,y9 € R with
o > Yo, such that

f(zo) — f(yo) S

Lo — Yo -
Then f(xo), f(y0) € Im f and
fof(zo) = foflyo)
flao) = fo) " Tt 7Ty

But a — % =711 +rg— % = r9. Contradiction. Hence
f(x) — f(y)

r—y
This means that f is continuous. [

<ry forxz>vy, z,y e R
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THEOREM 3.4 (Case ro < 11 < 0). Let fbe a function which satisfies
(E1). If, additionally the sets By and By from Theorem 3.3 have the same
infimum (if this infimum is bounded) then f is continuous.

Proof. The functional equation becomes
(E2) fo f@)+af(@)+ bz =0,
a,b > 0. Obviously, f is decreasing (f |). Since —bx = fo f(z) +a- f(x) =
fof(x)+af(x)]. But f|= f(x)+ax ] onIm f
$M<a, z,y €lm f, x> y.
=Yy
Consequently, there exists
5\ Sup{f(y) —fy)
T —Y
According to the hypothesis
fof(@)—fofly)
A = sup {
fy) = f(x)
Hence A < a and A > 0.
Let us suppose for a contradiction that A > —ry. For z,y € Im f,

fof(x)—fof(y) b

(x,y)elmfxlmf,x>y}.

(x,y)EImfomf,x>y}.

@) —f) ¢ Tmgwm YUY
z—y
We write f(z) =w and f(y) = v = u < v. Hence
flw)—flo) b fw) = fv) _
w—v J(@)=1(y) v—u
z—y
_ b fw) — f(v) b
_a_f(y)—f(x):> V—u <a_x'
z—y
We have
b
—— <A
o=+ <X
because A2 — a) + b > 0. The inequality
b
—— <A
a h <
contradicts the definition of A\. Hence A < —ry. Then it follows that

fly) — f(z)
-y

< —r9 forany z,y € Im f, x >y.
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If there exist xg > yo, o, yo € R, such that

f(yo) — f(x0)

o — Yo

> =T,

then obviously f(zo), f(yo) € Im f, f(yo) > f(zo). However, we have

fof(@o) = fofm) b b
f (o) — f (o) —a f(yg()):J;(()wo) = —r’
But a — —er = —ry. Contradiction. Hence
fly) = f(z)

< —r9, forallz,y e R, x >y.
r—y

This means that f is continuous on R. [

THEOREM 3.5 (Case 11 <0<r2). Let us consider the functional equation
(E3) fof(x)—af(z)—bx =0,

with a,b > 0. Then

a) Fvery decreasing solution is continuous.

b) Let us suppose that there exists an increasing solution f of equa-
tion (E3).

Consider the sets

o= {H= 10
T —y

(x,y) € Bx B, x > y} where B = f(Im f),

and

_ffof(x)—fofly)
“‘{ @)~ 1)

Let us additionally suppose that if A\ = inf Cy > —oo then A\ = inf Cy
and if Ao = sup Cy < oo then Ao =supCi. Then f is continuous.

(x,y)eBxB}.

Proof. a) Let us suppose that f is decreasing. Since f o f is increasing
it follows that af(z) + bz is increasing, so, if z > y, we have
— b
af(x)+bx>af(y)+by=0< f) = J(@) < —.
x—y a
This shows that f is continuous.
b) Let us suppose that f is increasing. Firstly we shall prove that f(z)—
fly) = re(x —y) for all z > y, z,y € f(Imf). Denote A = Im f. Since
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fof(x)—af(z) T, we have f(z) —ax T on A. Hence for all z > y,
@) - I

z,y €Im f = Ty >
fof(x)—fofly) _ b fof(z)—fofly) b
f@-fy)  CTITw T e - fy) e
Then for all z >y, x,y € f(A), there exist p; < pa, with p; > 0, such that
R O
r—y

Then A\ =inf Cy and Ay =supCp, 0 < A1 < Xo. Let z,y € B,z >y

fof(@)=fofw) _
fa)—fl) T Ew STy

According to the choice of \s it is obvious that a + % > Ao. Anyway we have

fof(x)—fofly)
ORI RO

According to the choice of A\; it follows that a + /\% < )\1. Because

b
— >\
a+)\1_ 2

we have al1 + b > A\ Xo. Because

b
— <A\
a—+ Ny 1
we have als + b < A1 Aa. Consequently, als + b < aA; + b and thus it follows
that Ay < Aq. It follows from these facts and from definition of A\; and Ay that

A1 = Ao. Then we have

b
— =\
a+ h\
Hence A = ro. Then we have
@) 1w _
r—y
and
M >ry forallz >y, xz,y € f(A).
r—y
This means
f(z) — f(y)

=Ty, I,YE€ f(A)
z—y
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Then, for all z,y € A, x >y,

f(@) = J) _ b b
T —y —a+ (fO}‘g;:;g)(y)) —a+ro
Hence
f@) — fy)

=ry forallz,y€ A, x>y.
r—Yy
Let x,y € R be such that x > y (obviously f(z) > f(y) and f(z),
fly) € A). We write f(z) =u and f(y) =v =

@) - ) _ b _ b
T -y _a+<f0f(fv)—f0f(y)> IR IORSICN
flx) = f(y) u—v
for u,v € A, u > v,
:>f(x)—f(y) = b =ry forallz,y e R, x> y.
r—y —a+ 712

Hence f(x) = roz + ¢, for all z € R. Obviously, f is continuous. O

Remark. We have a similar result in the other case, i.e.,
fof(x)+af(x)—br=0, a,b>0.

Remark. We are mainly concerned with continuous solutions of our func-
tional equation. Of course, discontinuous solutions do exist.

We shall present an example of discontinuous solutions of equa-
tion (E1).

Assume a,b € Q are such that A > 0 and VA ¢ Q. Then r; and 7o
belong to the field Q [v/A |. Let us define f : R — R by

f(a:):{ rmz ifz e Q[VA],
rox if x & Q[VA].

a) The function f is continuous only at z = 0.

Indeed, Q[v/A ] and R\ Q[v/A ] are dense in R and the continuity at
some point & # 0 would lead to a contradiction.

b) The function f satisfies equation (E1) because 2 € Q[VA ] = riz €
Q[VA ] and o ¢ Q[VA ] = rpe ¢ Q[VA].

We end with some topological properties for the set of solutions of the
equation (E1). As usual, we shall write

CR)={f:R—R| f continuous} .
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It is well known that C(R) becomes a Fréchet space with the metric

sup | f(x) — g(x)|

. L zG[*nyn]
d(fjg)7n>1 o]+ s[up }|f(x)—g($)\;
el re|—n,n

which generates the topology of uniform convergence on compact sets. If f,, —
f in this topology, we shall write f, — f. From now on, we understand by
solution of equation (E1) a continuous function, which satisfies this functional
equation.

We obtain a general result which holds in all situations:

THEOREM 3.6. The set of solutions of the equation
fof+af(x)+bxr=0
is closed in the space C(R).

Proof. First, let us prove that the function
H:C[R)xCR)—CR), H(f,g)=1Ffog

is a continuous function in C'(R). More precisely, we shall prove that if f,, —%
f and g, S g then f, 0 g, “S fog.

Let K be a compact. We must show that f, o g, — f o ¢ uniformly on
K. Let ¢ > 0. We must find n(e) such that for n > n(¢)and x € K one has

(3.1) [(fog)(@) = (fuogn)(x)] <e.

We denote A(x) = |(fog)(x) — (fn o gn)(x)|- Then for any x € R and n € N
one has

(32) Az) <|(fog)(x) = (fogn) (@) +|(fogn)(x) = (fnogn)(x)|.

First, we shall prove that there exists a compact K such that for any n one
has g,(K) C Ko, g(K) C Ky. Because g, — g on K, there exists n; such that
if n > ny and x € K one has

(3-3) 9(z) — gn(2)] < 1.

It follows from (3.1) that —1+ g(x) < gn(z) < 1+ g(z). We write Ky = g(K)
and we notice that K> is also compact.
= gn(x) € [-1 +inf Ky, 1 + sup K»| for all n > ny and thus we have

gn(K) C [-1 +inf Ko, 1 4+ sup K»| = [a, b] for all n > n;.
With this notation we have

(@) gn(K) C [a,b], n>n;.
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Obviously, if n < n; there exist ay,, b, € R such that g,(K) C [an,by,]. Then
it follows that

gn(K) C [min(ay, az,as,...,an,,a), max(by,ba,bs, ..., by, ,0)] = K.
Finally, we have
(3.4) gn(K) C Ko, Vn>1.

Next, we shall prove that for £ > 0 there exists na(e) such that if n > ny(e)
and z € K one has

€
(3.5) [f(9(2)) = flgn(2))] < 5.
Let ¢ > 0. Because f is uniformly continuous on Ky there exists 6 > 0 such
that for u,v € Ky, |u —v| < § it follows that

(3.6) ) = F) < 5.

Because g, —— g, for an arbitrary § > 0 there exists ny(e) such that for all

n > ng(e) and z € K one has |g(z) — gn(z)| < 6. From («) it follows that
9(x), gn(x) € Ko and then from (3.6) for all n > ny(e) and x € K we have

€

[f(9(2)) = flgn(2))] < 5.

Now, we shall prove that for ¢ > 0 there exists nz(¢) such that for all
n > n3(e) and € K one has

(3.7) [ (9a(®)) = falgal@)] < 5.

Because f, —% f, for an arbitrary ¢ > 0 there exists n3(g) such that for all
n > ns(e) and y € Ky one has
€

)~ fulw)] < 5

Obviously for x € K, we have g,(z) € Ko and so we have (3.7). It follows
from (3.2), (3.5) and (3.7) that for an arbitrary ¢ > 0 there exists n(e) =
max [na(g), n3(e)] such that for all n > n(e) and z € K one has

[(fog)(@) = (fnogn)(z)| <e.
Thus it follows that f, o g, — f o ¢ uniformly on K. Therefore,

Jnogn L fog,
so H is continuous.
From this one can see that the function F' : C(R) — C(R), defined by
F(f) = fof+af+ blgr is continuous.
Then F~!({0}) is a closed set, i.e., the set of solutions of equation (E1),
is a closed set. U
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Next, we shall establish some topological properties of the set of solutions
for each significantly case. We shall discuss these properties, depending on the
roots of the characteristic equation associated to the functional equation (E1).

A) The case 1 <11 < ro.
Let K C R an arbitrary compact.

Notation. a) S is the set of solutions of the equation fof(z)—af(z)+bx =
0 with a,b > 0 (equation (E1)).

b) Let C(K) the space of continuous real functions on a compact K.
Then C(K) is a Banach space with the norm

IfI| = sup | f(2)].
zeK

c) Sk ={f : K — R | there exists fy € S such that f(z) = fo(x) for all
x € K}.

THEOREM 3.7. The set Sk has the following topological properties:
a) Sk is equicontinuous;
b) Sk is relatively compact in C(K). (The closure is compact.)

Proof. a) We have to prove that for every ¢ > 0 there exists J. > 0, such
that, if |z —y| < 6. = |f(z) — f(y)| < ¢, for every f € Sk.

Since f = fo on K and fy € 5, according to Theorem 1.a, we have for
every x,y € K

(3.8) [fo(x) = fo(y)] < ralz —yl.

Hence |f(z) — f(y)| < ro|lx — y|, for every x,y € K. Then |z —y| < 6. =
|f(z) = f(y)| <re-d: < e (see (3.8)). The sufficient condition is
£
0e < —.
T2
Obviously, d. does not depend on f, so Sk is equicontinuous.
b) Now we shall prove that Sk is a bounded set. Let fo € S = |fo(z) —
fo(0)] < ro|x| (see (3.8). Since fp(0) = 0 we have

(3.9) [ fo(2)| < rafzl.
It is obvious that for f € Sk there exists fo € Sk with fo(z)= f(x). Therefore,
(3.10) |[f ()] < rala],

for all z € K. It is obvious that we can find M such that |z| < M for all
x € K (K is compact in R, so it is bounded) = f(x) < roM (see (3.10). This
bound is the same for all the functions f € Sk. So, according to Arzela-Ascoli
Theorem, Sk is relatively compact. O

Next, we shall establish some topological properties of S (in C(R)).



48 Traian Cristian Gidea 22

THEOREM 3.8. The set S is a compact set in C(R).

Proof. According to Theorem 3.6 it is enough to prove that S is relatively
compact in C(R). Because C'(R) is a metric space, it is enough to prove that

every sequence in S has a Cauchy subsequence. Let K, = [-n,n]|. Obviously
R=|J K,
n>1

and K,, C [O( n+1 - According to Theorem 3.7 we have
(3.11) Sk, is relatively compact in C'(K,,).

Let (fp)p be a sequence in S. According to (3.11), (fp), furnishes the
sequence ( fpl Kn)p which has a Cauchy subsequence with respect to the norm
on C(Ky).

Write this subsequence in the form (u), C C (R), hence (u}), is Cauchy
in the seminorm |[| ||, on C'(R) given by the formula

Ifllg, = sup |f(2)].
re Ky

Continuing, (u}), furnishes a subsequence (u3), C (uy), which is Cauchy in

the seminorm || ||, on C'(R), given by the formula
1fllz, = sup [f(@)].
rEKo

Continuing this process, we obtain at step h, the subsequence (u;f)p of the
preceding sequence which is Cauchy in the seminorm || ||, given by

1fllk, = sup [f(2)].
zeKy,

The final step consists in considering the sequence (vp), given by v, = up,
which is Cauchy in any || || for p > 1, and is a subsequence of all (u;)p,
i > 1. Then (vp), is a Cauchy sequence, with respect to the distance d which
exists on C'(R). Therefore, S is relatively compact in C'(R). Thus it follows

that S is compact in C(R). O

o
Remark 1. We take a sequence of compact sets K,, CKnt1, K C R,

n > 1 and
K:UKn.

n>1
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Let us denote by C'(K) the space of continuous functions defined on K. Then
C(K) is a Fréchet space with the distance

sup |f(z) — g()]

d— i zeK,,
&7 T swp 7))

Let the topology on C(K) be the topology of uniform convergence on compact
sets. Then, we denote

Sk ={f: K — R there exists fy € S such that f(z) = fo(z) for all x € K}.

It can be proved in the same way that Sk is relatively compact in C(K).
Remark 2. The case ro < r1 < —1 is similar to the previous one.

B) The caser; <1 < ro.
Let

K:UKn

n>1

with K, CIO(n_H, K, compacts, K, C R.

Let us consider S ¢ C(R), Sk, C C(K,) and Sx C C(K) with the
same significance as in case A. The difference with respect to the previous
case is that f(0) can take any real value. Therefore Sk is no longer relatively
compact in C(K) because Sk is no longer a bounded set. (In fact, neither
Sk, are no longer bounded sets.)

We shall try to find similar topological properties in this case.

Notations. d) S(K,m) = {f : K — R | there exists fop € S such that
f(z) = fo(z) for all z € K and fy(0) € [-m,m]}, m € N (S(K,m) C C(K)
for m € N).

e) S(K,,m)={f: K, — R| there exists fp € S such that f(z) = fo(z)
for all z € K,,, fo(0) € [-m,m]}, m € N (S(K,m) C C(K,) for all m € N).

f) S(m)={f:R—-R| f €S and f(0) € [-m,m]}, m € N.

With this notation we shall prove that Sk is the limit of an increasing
sequence of relatively compact sets of C'(K). Also we shall prove that Sk is
the limit of an increasing sequence of relatively compact sets of C'(K).

LEMMA 3.9. The sets S(K,, m) have the following topological properties:
a) S(Ky,m) are bounded sets in C(Ky);
b) S(Kp,m) are relatively compact sets in C(Ky).

Proof. a) Let f € S(K,,m). Hence there exists fy € S such that f(x) =
fo(x) and fo(0) € [-m,m] = r1(z —0) < fo(z) — fo(0) < ro(x — 0), for every
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x € K,, (see Theorem 1.a)

(3.12) = fo(z) < rex + fo(0) < rox + m,
(3.13) = fo(z) > rixz + f(0) > riz —m.
Since z € K,, we have

(3.14) there exists M,, = sup K,, and m,, = inf K,,.

It follows from (3.12) and (3.14) that fo(z) < roM,, +m. It follows from
(3.13) and (3.14) that fo(z) > rim, — m.

These bounds do not depend on f, so S(K,, m) is a bounded set in C(K,).

b) The proof of the fact that S(K,, m) is equicontinuous is the same as
the proof of Theorem 3.7 point a). According to the Theorem of Arzela-Ascoli,
S(Ky,m) is relatively compact in C(K,,). O

THEOREM 3.10. Let us consider the sets S(K,m) and Sk. Then they
have the following topological properties:

a) The sets S(K,m) are relatively compact in C(K).

b) The set Sk is the limit (in the sense of set theory) of an increas-
ing sequence (with respect to the inclusion relation) of relatively compact sets

from C(K).

Proof. a) The proof is analogous to the proof of Theorem 3.8 (see Re-
mark 1).

b) It is obvious that
(3.15) S(K,m) C Sk,

for all m € N. Also, it is clear that S(K, m) C S(K,m+1). Hence, the sequence
of sets S(K,m) is increasing (with respect to the inclusion relation). From
(3.15) we have

(3.16) lJ S(&E.m) c Sk.
m>1
We shall prove that
Sk c | J S(K,m).
m>1
Let fo € S such that f = fy on K with f3(0) € R. There exists m such that
f0(0) € [-=m, m]. Then there exists m such that f € S(K,m), so

(3.17) Sk € | J S(K,m).
m>1
It follows from (3.16) and (3.17) that
Sk = | J S(K,m).

m>1
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According to Lemma 3.9, the sets S(K,m) are relatively compact in C(K),
so Sk is the limit of an increasing sequence of relatively compact sets from
CK). O

CONSEQUENCE 3.11. The set S C C(R) is the limit (in the sense of set
theory) of an increasing sequence (with respect to the inclusion relation) of
compact sets of C(R).

Proof. We choose K,, = [—n,n|. Obviously,
R=|] K,
n>1

According to Theorem 3.10,
S={]J S(m),
m>1

and the sets S(m) are relatively compact in C(R). (Obviously, S(m C S(m+1).)
It remains to prove that S(m) are closed in C(R).

Let m € N arbitrary taken. Let f, € S(m), f, —> f. We shall prove
that f € S(m). Since f, € S(m) we have f, € S, so
(3.18) fes

(see Theorem 3.6). Let us prove that f(0) € [-m,m]. Since f, € S(m).
We have

(3.19) —m < fp(0) < m.
Letting p — oo in (3.19), we get
(3.20) —m < f(0) <m.

It follows from (3.18) and (3.20) that S(m) are closed sets in C'(R). Since S(m)
are also relatively compact it follows that S(m) are compact in C(R). O

C) The case 0 < r; <719 < 1.
Let us consider the set S C C(R), where S has the same meaning as in
previous case. First, we shall give a theorem of uniqueness for this case.

THEOREM 3.12. Let two solutions of equation (E1) which coincide on
[a',b], [d,b] C (0,00) such that

V¥ _ rg—rirg + 12
LA 2 122 iy
a T
Then they coincide on (0,00).

Proof. Let f and g two solutions which coincide on [a,']. Denote

fi=fliwy) 91 =9l
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Let fi(a') = ¢ and fi1(b') = d'. Then f; : [/, V] — [¢,d] and ¢1 : [d/, V] —
[/, d'] are bijective, continuous and increasing. It follows from hypothesis that

1 L and 97 Leoincide on [¢, d].

We shall prove that

/
C
d>—=.
1

We know (see Theorem 1.a) that
(3.21) ra(x —y) = filz) = fily) 2 m(z —y),

_ 2
for z,y € [d/,V] ; > y. From hypothesis we have &’ > o (%) Hence
1

2

% 2
(3.22) n >a (ro+ it = a'ry < it (b —d).
1-— 1 1-— 1 1-— T1

We put in (3.21) x = @’ and y = 0. Thus, we obtain
(3.23) fild) < d'rs.
From (3.22) and (3.23) we have

(3.24) fild) < 5 i%n v —a).
We put in (3.21) 2 =¥ and y = @/. Thus, we obtain
(3.25) AE) = fi(d) 2@ —d) = L) = fild) + 110 —a).
From (3.24) we obtain
fla) 4t -y > 2

From (3.25) we have

fl(b/) Z fl(a’/>’ i.e., dl Z il

1 1
Obviously, f~! and ¢! fulfill the equation
bf o f ) —af Hx)+z=0.

The second degree equation associated with our functional equation has the
solutions
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1

According to Theorem 3.1 applied for f~! and ¢~*, f~! and ¢g~! coincide on

(0,00). Then f and g coincide on (0,00). O

Remark 3. We have a similar result if [b,a’] C (—00,0) such that
Vo rd—rire + o

72 r2
1

g\

CONSEQUENCE 3.13. Let two solutions of equation (E1) which coincide
on I = [p,ql|, where p <0 and g > 0. Then they coincide on R.

In the sequel, we shall make some topological considerations. Let f &€
S. According to Theorem 1.a, f is a contraction. Hence, it appears a new
phenomenon over the previous cases.

Notation. g) Let J; C Jo C J3 C --- C J, a sequence of compact
intervals, J, C R such that 0 € J; and J; C J;4.1. Write

al,bl U J

n>1

Denote by C(J) the space of continuous real functions defined on J.

Next, we take the distance and the topology in the Fréchet space C(J)
as in Remark 1. For this reason we put K,, = J, and K = J.

C(Jp) has the same meaning as in notation b) by taking K = J,. On
C(Jp) we consider the norm

1f1l = sup [f(x)].

xEn

The set C(J,,) with this norm is, obviously, a Banach space. We write also:

h) S(J) = {f : J — R | there exists fo € S such that f(z) = fo(z) for
all z € J}, S(J) C C(J);

i) S(Jn) = {f : Jn — R | there exists fy € S such that f(z) = fo(x) for
all z € J,}, S(Jn) C C(Jp).

With this notations we shall prove that S(J) is compact in C(J).

LEMMA 3.14. The set S(J,,) has the following properties:
a) S(Jp) is a bounded set in C(J,).
b) S(Jn) is a relatively compact set in C(Jy).

The proof of this lemma is analogous with the proof of Theorem 3.7.

THEOREM 3.15. The set S(J) has the following properties.
a) S(J) is relatively compact in C(J).
b) S(J) is closed in C(J).
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Proof. a) The proof is similar to the proof of Theorem 3.8 (also see
Remark 1).

b) It is obvious that 0 € J, for all n > 1 and 0 € j First, we shall
prove that S(J,) is closed in C(J,,). Now, let us take an arbitrary n > 1. Let

fp € S(Jy,) such that f, = f on J,. Let us prove that f € S(J,,), i.e., one has
P
to prove that there exists fo € S such that f = fy on J,. In any case there

exists fop, € S such that f,, = f, on J,. We shall prove that for all o € Jp,
fop(@) € Jy. According to Theorem 1.a we have

ri(z = 0) < fop(x) = fop(0) < ra(x = 0).

Thus, if + > 0 we have fop(z) < rx < x < by, and if < 0 we have
fop(z) > 10 > & > ay, so for all a € J,, = fop(a) € J,. Because fo,(x) € J,
for all z € J, = f(x) € J, for x € J,, (J, is compact). Then, it is possible to
speak about fo f(z) for all x € J,,. Next

(3.26) fopo fop = fof on Jy.

(See also the proof of Theorem 3.6.) Since f,, is a solution on R we have
fop © fop(x) — afop(x) + bz =0 for all z € R. Hence

(3.27) lim fop 0 fop(x) — afop(x) + bz =0 for all x € J,.
P—00

According to (3.26) and (3.27), fo f(z) —af(x)+ bz =0, for all z € J,.
Thus it follows that there exists fy € S, such that f = fy on J,. Hence S(J,,)
is closed in C'(Jy).

Let us prove now that S(J) is closed in C(J). We have to prove that if
fp € S(J) such that f, =% f on J, then f € S(J). Since f, € S(J) = f, €
S(Jy,) for all n > 1. Because S(J,) is closed and f, — f on J,, there exists
fon € S such that f = fo, on J,, for all n € N*. Then fo1 = foo = = fon
on Ji, for all n € N*,

Now, we take into account that two solutions which coincide on J; coin-

cide everywhere according to Consequence 3.13. (Obviously we have 0 € J;.)
Consequently, fo1 = foo = -+ = fon on Jp for all x € R. Let zg € J arbitrary.
There exists n such that z¢g € J,. Hence f(z9) = fon(zo) = for(xo). Then
f(z) = for(x) forall z € J = f € S(J),so S(J)is closed in C(J). O

Finally, we have the following theorems.
THEOREM 3.16. S(J) is compact in C(J).

THEOREM 3.17. S is compact in C(R).
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