ON THE MOMENTS OF ITERATED TAIL

RADU PALTANEA and GHEORGHITA ZBAGANU

The classical distribution in ruins theory has the property that the sequence of
the first moment of the iterated tails is convergent. We give sufficient conditions
under which this property holds and also, we construct a counterexample that
shows that this property it is not generally true.
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1. BASIC DEFINITIONS AND STATEMENT OF THE PROBLEM

Let (Q, K, P) be a probability space and L = (1 -, LY (Q, K, P). Thus,
X e Liff X >0 (as.) and EX? < oo for every 1 < p < co. Let M be
the set of the distributions of the random variables X € L. In other words,
F e M iff F([0,00)) = 1 and [2PdF(z) < oo V1 < p < oo. The integral
[ 2PdF (z) = EXP will be denoted by p,(F). It is the pth moment of X. We
shall denote by F(z) the distribution function of F' and by F(x) its right tail.
Precisely, F(z) will stand for F'([0,z]) and F(x) for F((x,o0)).

The set of absolutely continuous probability distribution from M will
be denoted by Mg.. The density of F' (provided that it does exist) will be
denoted by fr and the hazard rate (see e.g. [2]) by Ap. The hazard rate of an
absolutely continuous distribution F' € M is defined by

_ fr(@)
or, alternatively, by
(1.2) F(z) = e Jo Ar@)dy,

The characteristic function of F' will be denoted by ¢ and the moment
generating function (abbreviated as mgf) by mp. Thus, for ¢t € R,

(1.3) w@:/&%ﬂ@,mﬂn:/wﬁw)

MATH. REPORTS 13(63), 1 (2011), 65-74



66 Radu Paltanea and Gheorghita Zbaganu 2

or, integrating by parts

(1.4) er(t) =141t /OOO e F(x)dz, mp(t)=1+ t/ooo e F(x)dx.

Let t*(F') be defined by
(1.5) t*(F) = sup{t € R; mp(t) < oo}.
If t*(F) = oo we say that F' is short tailed; if t*(F') = 0 we call F long
tailed and if 0 < t*(F) < oo, F' is medium tailed. (See e.g. [4].)

In renewal and ruin theories the following distribution is of interest: it is
called the integrated tail (see e.g. [1], [3] or [4]). It is defined for F' € M by

Y F(y)d
(1.6) Fr(z) =0, for x < 0 and Fy(x) = M for z > 0.

Jo” E(y)dy’
The main result in [13] was the following (Theorem 3.5, Corollary 3.7).

THEOREM A. Consider the operator T : My, — My, defined by TF =
Fr. Suppose that the limit Ap(oco) does exist. Then
(1) Ap(o0) = t*(F), where t*(F') is defined by (1.5);
(ii) if F is medium tailed, then T"F — Exp(Ap(00)), n — 00;
if F is short tailed, then T"F — g, n — 00;
if F is long tailed, then T™F does not converge at all.

To be precise, in the case of long tails the result was that the mass of
T™F vanishes at infinity: (I"F)(z) — 1 as n — oo, for z > 0.

Recall that if A\p < Ag, we say that G is HR-dominated by F' (and write
G <ugr F). Obviously, G <ur F = G <4 F: the HR-domination implies the
stochastic one. Further on, if Ar is non-decreasing, then F' is called a IFR-
distribution and if A\ is non-increasing, then F'is a DFR-distribution (see
e [2], [8)):

The main tool used in [13] were the HR-monotonousness properties of 7'
(Propositions 2.5, 2.6 and 3.1). We state them in a shortened way:

LEMMA. Let F,G € My.. Then

(i) Ar < Ag = Arr < A

(ii) of Ap is mon-increasing (respectively non-decreasing), then App is
non-increasing (respectively non-decreasing) too;

(i) if F € IFR then T(F) <urF, and if F € DFR then F <yrT(F).

In this paper we are concerned with studying the moments of T"F' in
order to find another property of the moments of a random variable, besides
the already known ones (see [9]). Our result is

THEOREM B. Let F' € Mg, and let pp = kadF(x) be the moment
of order k. Suppose that the limit Ap(oco) of the hazard rate (1.1) does exist.



3 On the moments of iterated tail 67

Then

1 1
(1.7) lim AL = (with the convention that — = c0.)

Moreover, if Ap(o0) does not exist, it is possible that the limit (1.7) does not
exist, too.

This result can be reformulated in terms of the first moment of T"F'.

2. MOMENTS OF T"(F)

PROPOSITION 1 (Moments of Fr). Let F € M, ux = pui(F) be the mo-
ments of F, ¢ be the characteristic function of Fr. Then

(2.1) /xdeI(:c) = pp(F) = ﬁ’ vk >0.

Proof. We know ¢;(t) = @i(flzl. Then

(™) _ ) =1 Ke(t) — 1 —tu)

Fr) — — ljm P\ T 2
k(1) i 100 FER(RY) T im0 LRy
If we apply I’Hospital’s rule k + 1 times, the last limit is (k‘ff)lm. O

PROPOSITION 2. Let F' € M. Let F, = T"(F) and p, ) = [2*dF,(z)
be the moments of F,. Let also pu,, = [ 2™dF(x) be the moments of F. Then

Hn+k
2.2 = —
22 T

k

Proof. Let ¢ be the characteristic function of F' and ¢,, be the charac-
teristic function of T™F. The recurrence between the characteristic functions

Pp 1S

o (pn(t) —1
(2.3) Ont1(t) = Hon) (0)

which can be better written as

(2.4) on(t) =1+ t(QOn)/(O)SDn—H(t)'

Let z, = (¢5)'(0). With our notation, one can easily see that z, = iu,. Let
k > 1. By differentiating (2.4) k times and applying Leibniz’s formula one gets

25) ()"0 = 20 (Heons) @) + (B + D(ns)®(0)).
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For ¢t = 0 we find that ik+1un7k+1 = ik“‘l,un,mnj%k. Hence the moments satisfy
the recurrence

Mn k+1
2.6 =(k+1 & =
(2.6) fnger1 = (b + 1)1 b1k € Btk e
Then we prove by induction
Hn—j54-1,k+5 .
(2.6a) Hn+1,k = ;CJZ-J#, I1<j<n+L

Indeed, for j = 1, relation (2.6a) coincides with relation (2.6). If (2.6a) is true
for j < n, then applying again relation (2.6) we find

Hn—j k+j4+1

Lt = Mn—j+1k+i  G+i+Dpn—j1 _ Mn—jk+j+1
ntlk = grj T (ki) _Hn—jitl T (ktjtl '
( J )/‘”*JJrLJ ( j )(j+1)un—j,1 ( j+1 )Mn*J,J+1

For j = n 4 1 one gets ppr16 = ("f’::rﬁ Replacing n with n — 1 we

n+1
get 2.2). O
COROLLARY 3. With the same notation as in Proposition 2, the first

moment of F, is

Hn+1
2.7 nl = ———.
(2.7) Hin,1 (n+1)uy

Proof. Obvious. O
Now we take into account the monotonicity properties stated in Lemma.

PROPOSITION 4. Let F € M, and let A be the hazard rate of F.
() If F eIFR then (2zt-) | 5l as n — oo
n

(n+1)pn

(i) If F €DFR then (G225-) 1 55 as n— oo,

Proof. If F € IFR then the sequence of random variables (F},),, F, =
T™(F), is HR-decreasing. This implies that F}, 11 <gr Fj,. Therefore, u1(F41)
< pi(Fy), (see e.g. [8]). Thus the sequence (fin,1)n is non-increasing. It must
have a limit. But we know that F;,, — Exp(A(c0)). By Beppo-Levi’s theorem,
the first moments of F), should converge to the first moment of Exp(A(c0)),

that is, to ﬁ If FF € DFR and A(o0) = 0, then the sequence (dj:fr)zn .

cannot have other limit but co. For, if that limit would be A € R (let us say)
then, by (2.2), pinx = =i~ would converge to k!IA\*, k € N. Hence F), would

("2

converge to Exp(A), contradiction. O
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Proof of Theorem B — direct part. Let A = Ap(00). Suppose first that
0 <A< oo. Let

(2.8) M(z) = inf A((z,00)) and  A*(z) =sup A((z,00)), = >0.

Then A, < A < A%, A, is non-decreasing, \* is non-increasing. Moreover, as
A(00) = A does exist, A (00) = A*(c0) = A

Let F, be the distribution with hazard rate A\, and F* be the distribution
with hazard rate A\*. Then F, €IFR, F* €éDFR and F* <ygr F <gr Fx.
According to the above lemma — (iii), the sequence (T™F™),, is HR-increasing
(since F* is a DFR distribution) and (T™F,), is HR-decreasing (since F} is a
IFR distribution). By the same lemma — (i) we have the inequalities

(2.9) T"(F*) <ur T"(F) <ur T"(F,).

It follows that p1 (T"(F*)) < p1(T™(F)) < p1(T™(Fy)). According to (2.7) we
obtain the inequalities

(2.10) p(T"(F¥)) < (n’iﬁ < (T"(F)).

But the sequence (uq (T™(F™))), is increasing and the sequence (u1 (7" (Fy)))n
is decreasing. Moreover, T"(F*) — Exp(A) and T"(F*) — Exp(\) as n — oo,
(Theorem A) and the convergence is monotonous. According to Beppo-Levi’s
theorem, 1i(T"(F*)) — i (Exp(\)) and 1 (T"(F,)) — it (Exp(A)). The
proof is complete since y(Exp(A)) = 1.

Consider now the case A = co. We use the inequality 7" (F') <ur T"(F})
from (2.9). We know (Theorem A) that 7" (F}) is decreasing and converges to

dp. Then py (T™(Fy)) must converge to 0. Hence (n’f:fr)zn converges to 0, too.

The last case is when A = 0. We use the inequality T"(F*) <gr T"(F).
According to Theorem A, the tails (T"(F™*))(x) converge to 1 and the conver-

gence is monotonous. Thus i (T"(F*)) = [§° T"(F*)(z)dx is increasing and,

again by Beppo-Levi’s theorem, its limit is fooo lde =00. O

Ezample. The Poisson distribution. Let F' = Poisson(\). It is true that
Theorem B cannot be applied as it is stated, since F' is not absolutely contin-
uous. But if we replace F' by TF = Fj, we obtain an absolutely continuous
distribution with A(co) = oo. It means that for the Poisson distribution with

Pnt1l _ g1l _ 1 _ ()

A(o0) = oo we have lim = lim ==
n—oo "Hn n—oo (n+1)ﬂn o0

Remark. The Poisson distribution F' = Poisson(\) has no simple formula
for the moments. It is known that p,(F) = P,(\), where P,()) are the
so called Touchard Polynomials in A (see [5]). They are obtained by the
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recurrence Ty, 11(A) = A Z (3)Pe(X). Our result says that

(2.11) fim LotV

———= =0.
n—oo nT, ()

In the particular case A = 1, the values 7),(1) are famous under the name of
Bell numbers. They represent the number of possible partitions of a n-point
set and are denoted by By, [10]. A particular case of (2.11) points out that

lim % = 0. It is funny that we were able to check the last limit using
n—oo n

brute force, but not for (2.11). Indeed, it is known (see [7]) that

n+1—A(n)
lim Buy/ne
O

=1,

where this time A\(n) = W and W is the so called Lambert function: W :
[0,00) — [0,00) is the inverse of the function z — ze®. Using these facts we
can prove that for the distribution Poisson(1) we have B"“ = \Cf, where C' is
some constant.

The real problem is whether the limit of 7" (F') does always exist if A is

bounded? Is it true that the sequence ( binil ) has always a limit? If the
n

(n‘f'l)ﬂn
second question has an answer in the affirmative, the same would hold for the
first one. But the answer is NO: there exist medium tailed distributions F' for

which the sequence ((n’i’f’)lu ) is bounded and divergent. Of course in this
n/n

case A\p cannot have any limit to infinity.

Proof of the second part of Theorem B. We construct a distribution F €
M, for which the limit hm En_ does not exist. For p > 0,¢>0, u >0

oo (n+1)pun
and k > 0, denote

3¢ 8 1
2.12 A =—- 5
(2.12) (ep) =5 —5+trP+ g3
1
_ c —k
(2.13) B(e,p,v, k) = =3+ (1+3 )<1+p+32k1 3)

We can choose the numbers 0 < p < %, 0<e<l,0<r< % and kg € N, such
that for all & > ko to have A(c,p) < 0 and B(c, p, u, k) < 0. Indeed, choose
two numbers ¢, g2 such that ﬁ <qg < @< g. We can fix the number
0 < ¢ < 1 such that 3° < 3(3 — ¢2). Then we can find a number 7 > 0 such
that B(c,p,v, k) < 0 if p,v,37% € (0,n). Fix v € (0,n) such that v < é and
fix ko € Nsuch that 37%0 € (0,7). Finally, we can choose p € (0,7) such that
p < % and p + ﬁ < q. It follows A(c,p) < ¢1 — g2 < 0 and B(e, p,v, k) <0
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for k > kg. Denote
(2.14) p*=:—A(c,p) and r* = —B(e,p,v, ko).
For k € N, define

k—1
B 3kt k even - gite
ak—{3k & odd and bk—lj[li% .

0
Let M = )’ ﬁ < 00. The function f, given by
g=1""

1
F= Y g5 Va1
j=1

is a density function since it is positive, integrable and [ f(¢) dt =1. The cor-
responding distribution F' given by F'(z) =0 for x < 0 and F'(z fo

for x > 0 is clear an absolute continuous function. Denote S,, = ‘Z”;l n e N

where the moments p,, n € N, are defined as above. We show that the
sequence (Sy)n has not limit. First note that

[e'e) . J —k
1 /a]+3 1 /ak+3 gk
h=) — > 3" dt
3 ;Mbj o) Mby,

and on the other hand

1 a+37F a; +377 3"
< | —— 3 k—j . J
Mgk_< bk/ak t dt) 1+§ 3 ( o )

J7#k

1 ak+3_k 3k
a

In other words,

where .
Q3
_ by fa; +377
=y B (55)
ik 7 g
Similarly,
1 ak+3_k 3k+1 N
[igh i1 = Mbk/ t> T de ) [1+ 7],
ag
where

3k 41
aj +377

< R 7 .
il < o3 (U120

J#k
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We shall prove that
(2.15) lim pp, =0, lim pj=0.
k—o0 k—oo
For this it is sufficient to show that
(2.16) lim max{yg, v} = 0.
k—o0
Let j,k € N. Using the inequality 0 < p < %, the inequalities

R R
w<1,j<k‘ and L>1,j>k:.
ag ay

are immediate, independently if £ and j are odd or even. It follows that

o b (3T S b (a3
max{’yk’ﬁ}gz:gkﬂ'bij <J> + Z 3’“*].*' <J>

a a
j=1 k j=k+1 J k
=T + T

Limit of TF. Let 1 < j < k. Hence k > 2. First we have

bk, k—1 ) kil 3z+c 1 X
2k _ 33" _ 3= _ 333°(3"-37)
, L

Also

ak 3k
< gU—k+p)3* 3ETH7P _ g(j—ktp)3t 4380

o 3k . . 3k
<aj +3 j> < (3”’) +3 j) — 30k (1 ¢ 3*2j*P)3k

k-1 .
So that we obtain 77 < ) 33"GUk)  where
j=1

. I . i . 1 e
G(]’k):§3(1_3] k>+]—k+p+m+(1€—j)3k
1 —ky 1 k=J
<31 -8R 4 —k 42
<3 (=37 +j trtons T o

It is immediate that the function W(s) = £-3%(1-37%)—5-s+p+ 515, s > 1,
is decreasing. By taking into account (2.16) we obtain G(j,k) < ¥(1) = —p*.
Then TF < (k — 1)37%" and lim T = 0.

k—o0
Limit of T2k. Let 1 <k < j. We have
-1 =1
_ Z 3’L+C

e (s -

J i=k
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Also, similarly as above we obtain

iy 3F

<aj +3 J> < 3(j—k+p)(3k+1)+ﬁ~(3k+1)3*2j*”.
a

Let v be the number fixed at the beginning. It follows

oo
T< Y 3P UHGR-G-R),

Jj=k+1
where
3¢ : 1 1 1
. _ 2 _ aj—k L - o o L
H(j, k) 5 (1-3"")+ <1+ 3k> |:j k+p+ 323’+P1n3} +(k—3) (3k 1/>
<f(1—3f*’“)+ R P P +v(j— k)
=7 3% ) | P gk TV T

For a fixed number k > 1, consider the function ©(s) = 3 - 3°(1 — 3%) + (1 +
37F) [s+p+ m] +vss>1. Wehave ©(s) = —3 3" In3+ (1+37F) +
v < —3.In3+ 34 v < 0. Taking into account relation (2.16) we obtain,
H(j,k) <©(1) = —r* for k > ko. It follows, for such integers k, that

3731“1/

[oe) D

o p

< Y it <N (3—3k”) -

. 1 -3
j=k+1 p=1

and then klim T¥ = 0. Relations (2.15) are proved.
—00

1+
Now, we have Sax = Iy

ak+37k % ak-f—i‘]ilC &
I = / 3 +1dt/3’“-/ 37dt | .
ag A

*
Yk where
Yk

But
k k
ag ak 3 <I<ak+3_k ap +37F 3
3 \ap+3F) == sk ar '
3k
From relations (2.11) and from lim (aki’é_k) =1, we find
—00
. . ag
1 = lim — .
e 5 T 5

Finally, we deduce

lim Sz =37 while lim Sz = 1.

l—o0 l—o00

Since the sequence (S),), has two different limit points it has no limit.
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