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In this paper we investigate the starlikness and univalence of certain integral
operators, considering the class of univalent functions defined by the condition∣∣∣ z2f ′(z)

f2(z)
− 1

∣∣∣ < λ, |z| < 1, where f(z) = z + a2z
2 + · · · is analytic in the unit disc

U = {z ∈ C : |z| < 1}.
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1. INTRODUCTION AND PRELIMINARIES

Let A denote the class of analytic functions f(z) normalized by

(1.1) f(z) = z +
∞∑

k=2

akz
k

in the unit disk U = {z ∈ C : |z| < 1}. Denote by S the subclass of A
consisting of functions which are univalent. Given α < 1, a function f ∈ A is
called starlike of order α, denote by S∗(α), if and only if Re(zf ′(z)/f(z)) > α.
A function f ∈ A is said convex of order α, denote by K(α), if and only if
zf ′(z) ∈ S∗(α). In particular, the classes S∗(0) = S∗ and K(0) = K are the
well-known classes of starlike and convex functions in U , respectively. In 1990
Komatu [2] introduced a integral operator

Lλ
af(z) =

aλ

Γ(λ)

∫ 1

0
ta−2

(
log

1
t

)λ−1

f(tz)dt,(1.2)

z ∈ U, a > 0, λ ≥ 0, f(z) ∈ A. Thus, if f(z) ∈ A is of the form (1.1), it is
easily seen from (1.2) that

(1.3) Lλ
af(z) = z +

∞∑
n=2

(
a

a+ n− 1

)λ

anz
n, a > 0, λ ≥ 0.
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We now define a function Lλ
a(z) by

(1.4) Lλ
a(z) = 1 +

∞∑
n=1

(
a

a+ n

)λ

zn, a > 0, λ ≥ 0.

Using the above relation, it is easy to verify that

Lλ
af(z) = zLλ

a(z) ∗ f(z),

and

(1.5) z(Lλ+1
a (z))′ = aLλ

a(z)− aLλ+1
a (z).

Let V (m) denote the class of all functions f ∈ A satisfying the condition

(1.6)

∣∣∣∣∣
(

z

f(z)

)2

f ′(z)− 1

∣∣∣∣∣ < m, z ∈ U, 0 < m ≤ 1.

We set V (1) = V . We remark that from f ∈ V (m) it follows that f(z)
z 6= 0 for

z ∈ U . It is well-known that V ⊂ S (see [4]) and so, for 0 ≤ m ≤ 1 one has
V (m) ⊂ S.

For proving our results we need the following lemmas.

Lemma 1.1 ([1]). Let h(z) be analytic and convex univalent in the unit
disk U with h(0) = 1. Also let

g(z) = 1 + b1z + b2z
2 + · · ·

be analytic in U . If

(1.7) g(z) +
zg′(z)
c

≺ h(z), z ∈ U, c 6= 0,

then

(1.8) g(z) ≺ ψ(z) =
c

zc

∫ z

0
tc−1h(t)dt ≺ h(z), z ∈ U, <(c) ≥ 0, c 6= 0.

and ψ(z) is the best dominant of (1.7) [7].

Lemma 1.2 ([8]). If f, g are analytic and F,G are convex functions such
that f ≺ F, g ≺ G, then f ∗ g ≺ F ∗G.

Lemma 1.3 ([9]). Assume a1 = 1 and an ≥ 0 for n ≥ 2, such that {an}
is a convex decreasing sequence, i.e.,

an − 2an+1 + an+2 ≥ 0 and an+1 − an+2 ≥ 0 for all n ∈ N.
Then

Re

{ ∞∑
n=1

anz
n−1

}
>

1
2

for all z ∈ U.

Lemma 1.4. If a > 0 and λ ≥ 0, then Re{Lλ
a(z)} > 1

2 for all z ∈ U .
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Proof. From the definition of Lλ
a(z) we have

Lλ
a(z) = 1 +

∞∑
n=2

(
a

a+ n− 1

)λ

zn−1 := 1 +
∞∑

n=2

Bnz
n−1.

Since λ and a are positive, we have Bn>0 for all n≥2. We can easily find that

Bn+1−Bn+2 =
(

a

a+ n

)λ

−
(

a

a+ n+ 1

)λ

= aλ (a+ n+ 1)λ − (a+ n)λ

(a+ n)λ(a+ n+ 1)λ
≥ 0,

for all n ≥ 2.
Also,

Bn − 2Bn+1 +Bn+2 =

= aλ ((a+ n)(a+ n+ 1))λ − 2((a+ n)2 − 1)λ + ((a+ n)(a+ n− 1))λ

(a+ n− 1)λ(a+ n)λ(a+ n+ 1)λ
.

Suppose x = a+ n, and

f(x) = (x(x+ 1))λ − 2(x2 − 1))λ + (x(x− 1))λ.

From the assumption we have x > 1. For proving Bn − 2Bn+1 + Bn+2 ≥ 0 it
is sufficient to show that f(x) ≥ 0 for x > 1. But it is equivalent with(

x

x− 1

)λ

+
(

x

x+ 1

)λ

≥ 2, x > 1.

Let

g(x) =
(

x

x− 1

)λ

+
(

x

x+ 1

)λ

.

Then we have

g′(x) = λxλ−1

(
−(x+ 1)λ+1 + (x− 1)λ+1

(x− 1)λ+1(x+ 1)λ+1

)
,

which is negative for all x > 1. Therefore, g(x) is a decreasing function and
takes its minimum value equal to 2 at infinity. Hence g(x) ≥ 2 for all x > 1,
and from Lemma 1.3 we get our result. �

Lemma 1.5 ([5]). If f ∈ V (m), d := |f ′′(0)|/2 ≤ 1 and 0 ≤ m ≤√
2− d2−2

2 , then f ∈ S∗.

Lemma 1.6 ([7]). If f(z) = z + an+1z
n+1 + · · · (n ≥ 2) belongs to V (m)

and
0 ≤ m ≤ n− 1√

(n− 1)2 + 1
,

then f ∈ S∗.
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2. MAIN RESULTS

We now start our first result beginning with

Theorem 2.1. Let a > 0, λ ≥ 0 and f ∈ V (m) satisfy the condition(
z

f(z)

)
∗ Lλ+1

a (z) 6= 0, ∀z ∈ U,

and G be the transform defined by

G(z) =
z

(z/f(z)) ∗ Lλ+1
a (z)

, z ∈ U.

Further, let c be a nonnegative real number such that c=
∣∣∣ (

a
a+1

)λ+1
f ′′(0)

2

∣∣∣ ≤ 1.
Then we have the following

(1) G ∈ V
(

am
a+2

)
;

(2) G ∈ S∗, whenever 0 < m ≤ a+2
2a

(√
2− c2 − c

)
.

Proof. From the definition of G we obtain
z

G(z)
=

z

f(z)
∗ Lλ+1

a (z).

Differentiating z
G(z) we get that

(2.1) z

(
z

G(z)

)′
=

z

G(z)
−

(
z

G(z)

)2

G′(z).

It is easy to see that

(2.2) z

(
z

f(z)

)′
∗ Lλ+1

a (z) = z

(
z

f(z)
∗ Lλ+1

a (z)
)′
.

From (1.5) and (2.2) we deduce that

z

(
z

f(z)
∗ Lλ+1

a (z)
)′

= a
z

f(z)
∗ Lλ

a(z)− a
z

f(z)
∗ Lλ+1

a (z),

or

(2.3) z

(
z

G(z)

)′
+ a

(
z

G(z)

)
= a

z

f(z)
∗ Lλ

a(z).

Let us define

p(z) =
(

z

G(z)

)2

G′(z) := 1 + d2z
2 + · · · .
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Then p(z) is analytic in U , with p(0) = 1 and p′(0) = 0. Combining (2.1) with
(2.3), one can obtain

(2.4) p(z) = (1 + a)
z

G(z)
− a

z

f(z)
∗ Lλ

a(z).

By differentiating p(z) we get that

(2.5) zp′(z) = (1 + a)z
(

z

G(z)

)′
− az

(
z

f(z)

)′
∗ Lλ

a(z).

In view of (2.3), (2.4) and (2.5), we obtain

ap(z) + zp′(z) = a(1 + a)
z

G(z)
− a2 z

f(z)
∗ Lλ

a(z)+

+ (1 + a)z
(

z

G(z)

)′
− az

(
z

f(z)

)′
∗ Lλ

a(z)

= a(1+a)
z

f(z)
∗ Lλ

a(z)−a2 z

f(z)
∗ Lλ

a(z)−a
(

z

f(z)

)′
∗ Lλ

a(z)

= a
z

f(z)
∗ Lλ

a(z)− a

[
z

f(z)
−

(
z

f(z)

)2

f ′(z)

]
∗ Lλ

a(z)

= a

(
z

f(z)

)2

f ′(z) ∗ Lλ
a(z).

Hence

(2.6) p(z) +
1
a
zp′(z) =

(
z

f(z)

)2

f ′(z) ∗ Lλ
a(z).

Since Re(Lλ
a(z)) ≥ 1

2 , by Herglotz theorem we can write

Lλ
a(z) =

∫
|x|=1

1
1− xz

dµ(x),

where µ(x) is a probability measure on the unit disc |x| = 1, that is,∫
|x|=1

dµ(x) = 1.

From f(z) ∈ V (m) we have(
z

f(z)

)2

f ′(z) ≺ 1 +mz2 := h(z).

Since h(z) is convex in U , from the well known result [3] and (2.6) we obtain

p(z) +
1
a
zp′(z) ≺

∫
|x|=1

h(tz)dµ(t) ≺ h(z).
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It now follows by Lemma 1.1 that

p(z) ≺ ψ(z) =
a

za

∫ z

0
ta−1(1 +mt2)dt.

Therefore,
p(z) ≺ 1 +

ma

a+ 2
z2.

Also, it is easy to see that the second part is a consequence of Lemma 1.5. �

We note that by considering more restrictions on a, λ we can improve
the above result. It is well-known that for a > 0 and λ ∈ {0, 1, 2, 3, . . .} the
function Lλ

a(z) is convex. So, we can get the following result.

Theorem 2.2. Let a > 0, λ ∈ {0, 1, 2, 3, . . .} and f ∈ V (m) satisfy the
condition (

z

f(z)

)
∗ Lλ+1

a (z) 6= 0, ∀z ∈ U,

and G be the transform defined by

G(z) =
z

(z/f(z)) ∗ Lλ+1
a (z)

, z ∈ U.

Further, let c be a nonnegative real number such that c=
∣∣∣ (

a
a+1

)λ+1
f ′′(0)

2

∣∣∣ ≤ 1.
Then we have the following

(1) G ∈ V
(
m

(
a

a+2

)λ+1 )
. The result is sharp especially when |f ′′(0)/2| ≤

1−m.
(2) G ∈ S∗, whenever 0 < m ≤

(
a+2

a

)λ+1
(√

2−c2−c
2

)
.

Proof. Let us define

p(z) =
(

z

G(z)

)2

G′(z),

then p(z) is analytic in U , with p(0) = 1 and p′(0) = 0. Using the same method
as on Theorem 2.1 we get

(2.7) p(z) +
1
a
zp′(z) =

(
z

f(z)

)2

f ′(z) ∗ Lλ
a(z).

But 1 +mz2 and Lλ
a(z) are convex, and(

z

f(z)

)2

f ′(z) ≺ 1 +mz2.

Using Lemma 1.2, (2.7) yields

p(z) +
1
a
zp′(z) ≺ 1 +m

(
a

a+ 2

)λ

z2.
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It follows from Lemma 1.1 that

p(z) ≺ 1 +m

(
a

a+ 2

)λ+1

z2.

Therefore,

(2.8) |p(z)− 1| ≤
(

a

a+ 2

)λ+1

|z|2.

To prove the sharpness we follow the same way as in [6]. Let the function
f ∈ V (m) be defined by

f(z) =
z

1− a2z +mz2
, z ∈ U,

where a2 = f ′′(0)/2 and |a2| ≤ 1−m, so that 1− a2z+mz2 6= 0 for all z ∈ U .
Moreover, since λ ≥ 0, a > 0, it follows that (a+ 2)λ+1 > (a+ 1)λ+1 > (a)λ+1

and, therefore

1− a2

(
a

a+ 2

)λ+1

z +m

(
a

a+ 2

)λ+1

z2| 6= 0,

for all z ∈ U , provided |a2| ≤ 1−m. Now, from the definition of G(z) we obtain

G(z) =
z

1− a2

(
a

a+2

)λ+1
z +m

(
a

a+2

)λ+1
z2

,

which is analytic on U , z
G(z) 6= 0 on U and

(
z

G(z)

)2
G′(z)− 1−m

(
a

a+2

)λ+1
.

This means that G ∈ V
(
m

(
a

a+2

)λ+1 )
. Also, the second part is a easy conse-

quence of Lemma 1.5. Hence the proof is ended. �

Using Lemma 1.6, Theorem 2.1 can be generalized as follows.

Theorem 2.3. Let n ≥ 2, f(z) = z + an+1z
n+1 + · · · ∈ V (m). Suppose

a > 0, λ ≥ 0 and (
z

f(z)

)
∗ Lλ+1

a (z) 6= 0, ∀z ∈ U,

and G be the transform defined by

G(z) =
z

(z/f(z)) ∗ Lλ+1
a (z)

, z ∈ U.

Then we have the following
(1) G ∈ V

(
am
a+n

)
.

(2) G ∈ S∗, whenever 0 < m ≤ (a+n)(n−1)

a
√

(n−1)2+1
.
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Proof. Let us define

p(z) =
(

z

G(z)

)2

G′(z) = 1− an+1

(
a

a+ 2

)λ

zn + · · · .

Then p(z) is analytic in U , with p(0) = 1 and p′(0) = · · · = p(n−1)(0) = 0.
Using the same method as on Theorem 2.1 we get

(2.9) p(z) +
1
a
zp′(z) =

(
z

f(z)

)2

f ′(z) ∗ Lλ
a(z).

Hence the result follows as Theorem 2.1. �

Finally, using the similar methods as in Theorems 2.2 and 2.3 we get the
following result and we omit the details.

Theorem 2.4. Let n ≥ 2, f(z) = z + an+1z
n+1 + · · · ∈ V (m). Also

suppose a > 0, λ ≥ 0 and(
z

f(z)

)
∗ Lλ+1

a (z) 6= 0, ∀z ∈ U,

and G be the transform defined by

G(z) =
z

(z/f(z)) ∗ Lλ+1
a (z)

, z ∈ U.

Then we have the following

(1) G ∈ V
(
m

(
a

a+n

)λ+1 )
;

(2) G ∈ S∗, whenever 0 < m ≤
(

(a+n)
a

)λ+1
(n−1)√

(n−1)2+1
.
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