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We set forth a simplified version of the general ∆-ergodic theory given in [14] (see
also [10–13] and [15–16]). Moreover, in the limit ∆-ergodic theory we consider four
limit equivalence relations (two of them are new and for the other ones see also
[10], [12], and [14]); thus, we have a more complete picture on the iterated limit
behaviour of the matrix product Pm,n of a finite Markov chain with transition
matrices (Pn)n≥1, where Pm,n := Pm+1Pm+2 . . . Pn, ∀m, n, 0 ≤ m < n. Also,
we give some results on the simulated annealing (chain) with transition matrices
(Pn)n≥1 in connection with R and T , the sets of recurrent and transient states of
P , respectively, where P = lim

n→∞
Pn.
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1. ∆-ERGODIC THEORY

In this section we set forth a simplified version of the ∆-ergodic theory
given in [14]. Then some results are given: a few refer to the ∆-ergodic theory
(see [7–16] and the references therein for others) and the other ones to the
simulated annealing.

In this article, a vector x is a row vector and x′ denotes its transpose.
Consider a finite Markov chain (Xn)n≥0 with state space S = {1, 2, . . . , r},

initial (probability) distribution p0, and transition matrices (Pn)n≥1. We fre-
quently shall refer to it as the (finite) Markov chain (Pn)n≥1. For all integers
m ≥ 0, n > m, define

Pm,n = Pm+1Pm+2 . . . Pn = ((Pm,n)ij)i,j∈S .

(The entries of a matrix Z will be denoted Zij .)
Set

Par(E) = {∆ | ∆ is a partition of E } ,

where E is a nonempty set. We shall agree that the partitions do not contain
the empty set.
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Definition 1.1. Let ∆1,∆2 ∈ Par (E) . We say that ∆1 is finer than ∆2

if ∀V ∈ ∆1, ∃W ∈ ∆2 such that V ⊆ W.
Write ∆1 � ∆2 when ∆1 is finer than ∆2.
Let ∅ 6= A ⊆ S and ∅ 6= B ⊆ N. Let Σ ∈ Par(A). To show how we

simplify the language of ∆-ergodic theory given in [14] consider, e.g., the next
definition.

Definition 1.2 ([14]). Let i, j ∈ S. We say that i and j are in the same
weakly ergodic class on A×B (or on A×B with respect to Σ, or on (A×B,Σ)
when confusion can arise) if ∀K ∈ Σ, ∀m ∈ B we have

lim
n→∞

∑
k∈K

[(Pm,n)ik − (Pm,n)jk] = 0.

Since the matrices are stochastic, we can use Σ ∪ {Ac} ∈ Par(S) instead
of Σ ∈ Par(A), where Ac is the complement of A. This implies that we can use
Σ ∈ Par(S) and B instead of A,B, and Σ ∈ Par(A). Further, we consider Σ ∈
Par(S) and ∅ 6= B ⊆ N. (Equivalently, we can use a σ-algebra, say F , on S and
∅ 6= B ⊆ N instead of Σ ∈ Par(S) and ∅ 6= B ⊆ N.) Thus, in the ∆-ergodic
theory the natural space becomes Par(S)×P∗ (N), called partition-time space,
in place of S×N (see [14]), where P∗ (N) := {B | ∅ 6= B ⊆ N}. Coming back
to Σ, we suppose, moreover, that it is an ordered set (this condition is necessary
for simplification when we use the operator (·)+ (see below)).

Under the above considerations Definition 1.2 becomes

Definition 1.3. Let i, j ∈ S. We say that i and j are in the same weakly
ergodic class on Σ×B if ∀K ∈ Σ, ∀m ∈ B we have

lim
n→∞

∑
k∈K

[(Pm,n)ik − (Pm,n)jk] = 0.

Write i
Σ×B∼ j when i and j are in the same weakly ergodic class on

Σ × B. Then Σ×B∼ is an equivalence relation and determines a partition ∆ =
∆ (Σ, B) = (C1, C2, . . . , Cs) of S. The sets C1, C2, . . . , Cs are called weakly
ergodic classes on Σ×B.

The two definitions below are simplified versions of Definitions 1.3–4 in
[14], respectively.

Definition 1.4. Let ∆ = (C1, C2, . . . , Cs) be the partition of weakly er-
godic classes on Σ × B of a Markov chain. We say that the chain is weakly
∆-ergodic on Σ × B. In particular, a weakly (S)-ergodic chain on Σ × B is
called weakly ergodic on Σ×B for short.
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Definition 1.5. Let (C1, C2, . . . , Cs) be the partition of weakly ergodic
classes on Σ × B of a Markov chain with state space S and ∆ ∈ Par(S). We
say that the chain is weakly [∆]-ergodic on Σ×B if ∆ � (C1, C2, . . . , Cs) .

In connection with the above notions and notation we mention some
special cases.

1. Σ × B = ({i})i∈S ×N (({i})i∈S := ({1}, {2}, . . . , {r})). In this case,

we can write ∼ instead of
({i})i∈S×N

∼ and can omit ‘on ({i})i∈S ×N’ in Defini-
tions 1.3–5.

2. Σ = ({i})i∈S . In this case, we can write B∼ instead of
({i})i∈S×B

∼ and
can replace ‘({i})i∈S × B’ by ‘(time set) B’ in Definitions 1.3–5. A special
subcase is B = {m} (m ≥ 0); in this case we can write m∼ and can replace ‘on
(time set) {m}’ by ‘at time m’ in Definitions 1.3–5.

3. B = N. In this case, we can set Σ∼ instead of Σ×N∼ and can replace
‘Σ×N’ by ‘Σ’ in Definitions 1.3–5.

Also, the special case Σ×B = (A,Ac)× {0} (A 6= ∅, S) is an important
one because it is the natural framework for the study of limit behaviour of
P (Xn ∈ A) (see, e.g., [14, Example 2.25], [16], and Theorems 1.18 and 1.25
here).

The three definitions below are simplified versions of Definitions 1.7–9 in
[14], respectively.

Definition 1.6. Let i, j ∈ S. We say that i and j are in the same uniformly
weakly ergodic class on Σ×B if ∀K ∈ Σ we have

lim
n→∞

∑
k∈K

[(Pm,n)ik − (Pm,n)jk] = 0

uniformly with respect to m ∈ B.

Write i
u,Σ×B∼ j when i and j are in the same uniformly weakly ergodic

class on Σ × B. Then
u,Σ×B∼ is an equivalence relation and determines a par-

tition ∆ = ∆ (Σ, B) = (U1, U2, . . . , Ut) of S. The sets U1, U2, . . . , Ut are called
uniformly weakly ergodic classes on Σ×B.

Definition 1.7. Let ∆ = (U1, U2, . . . , Ut) be the partition of uniformly
weakly ergodic classes on Σ×B of a Markov chain. We say that the chain is
uniformly weakly ∆-ergodic on Σ×B. In particular, a uniformly weakly (S)-
ergodic chain on Σ×B is called uniformly weakly ergodic on Σ×B for short.

Definition 1.8. Let (U1, U2, . . . , Ut) be the partition of uniformly weakly
ergodic classes on Σ × B of a Markov chain with state space S and ∆ ∈
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Par(S). We say that the chain is uniformly weakly [∆]-ergodic on Σ × B if
∆ � (U1, U2, . . . , Ut) .

A cyclic homogeneous (finite) Markov chain is a simple example of uni-
formly weakly ∆-ergodic Markov chain on ({i})i∈S ×N, where ∆ is the par-
tition of cyclic subclasses of the chain.

Σ×B∼ is called the simple equivalence relation on Σ × B while
u,Σ×B∼ is

called the uniform equivalence relation on Σ×B.

As for uniform weak ∆-ergodicity we mention some special cases.
1. Σ × B = ({i})i∈S × N. In this case, we can write u∼ instead of

u,({i})i∈S×N
∼ and can omit ‘on ({i})i∈S ×N’ in Definitions 1.6–8.

2. Σ = ({i})i∈S . In this case, we can write
u,B∼ instead of

u,({i})i∈S×B
∼ and

can replace ‘({i})i∈S ×B’ by ‘(time set) B’ in Definitions 1.6–8.

3. B = N. In this case, we can write
u,Σ∼ instead of

u,Σ×N∼ and can replace
‘Σ×N’ by ‘Σ’ in Definitions 1.6–8.

The two definitions below are simplified versions of Definitions 1.13–14
in [14], respectively.

Definition 1.9. Let C be a weakly ergodic class on Σ×B. Let ∅ 6= Σ0 ⊆ Σ
and ∅ 6= B0 ⊆ B. We say that C is a strongly ergodic class on Σ0 × B0 with
respect to Σ×B if ∀i ∈ C, ∀K ∈ Σ0, ∀m ∈ B0 the limit

lim
n→∞

∑
j∈K

(Pm,n)ij := σm,K = σm,K(C)

exists and does not depend on i.

Definition 1.10. Let C be a uniformly weakly ergodic class on Σ×B. Let
∅ 6= Σ0 ⊆ Σ and ∅ 6= B0 ⊆ B. We say that C is a uniformly strongly ergodic
class on Σ0 ×B0 with respect to Σ×B if ∀i ∈ C, ∀K ∈ Σ0 the limit

lim
n→∞

∑
j∈K

(Pm,n)ij := σm,K = σm,K(C)

exists uniformly with respect to m ∈ B0 and does not depend on i.

In connection with the last two definitions we mention some special cases.
1. Σ0 × B0 = Σ × B. In this case, we can say that C is a strongly

(respectively, uniformly strongly) ergodic class on Σ×B. A special subcase is
Σ0×B0 = Σ×B = ({i})i∈S×N and C = S when we can say that the Markov
chain itself is strongly (respectively, uniformly strongly) ergodic.

2. Σ0 = Σ = ({i})i∈S . In this case, we can say that C is a strongly
(respectively, uniformly strongly) ergodic class on (time set) B0 with respect
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to (time set) B. If B0 = B, then we can say that C is a strongly (respectively,
uniformly strongly) ergodic class on (time set) B. A special subcase of the
case Σ0 = Σ = ({i})i∈S and B0 = B is B0 = B = {m} when we can say that
C is a strongly (respectively, uniformly strongly) ergodic class at time m.

3. B0 = B = N. In this case, we can say that C is a strongly (respectively,
uniformly strongly) ergodic class on Σ0 with respect to Σ. If Σ0 = Σ, then we
can say that C is a strongly (respectively, uniformly strongly) ergodic class
on Σ.

The two definitions below are simplified versions of Definitions 1.16–17
in [14], respectively.

Definition 1.11. Consider a weakly (respectively, uniformly weakly) ∆-
ergodic chain on Σ × B. We say that the chain is strongly (respectively, uni-
formly strongly) ∆-ergodic on Σ × B if any C ∈ ∆ is a strongly (respec-
tively, uniformly strongly) ergodic class on Σ × B. In particular, a strongly
(respectively, uniformly strongly) (S)-ergodic chain on Σ×B is called strongly
(respectively, uniformly strongly) ergodic on Σ×B for short.

Definition 1.12. Consider a weakly (respectively, uniformly weakly) [∆]-
ergodic chain on Σ × B. We say that the chain is strongly (respectively, uni-
formly strongly) [∆]-ergodic on Σ× B if any C ∈ ∆ is included in a strongly
(respectively, uniformly strongly) ergodic class on Σ×B.

Set

Rm,n = {E | E is a real m× n matrix} ,

Sm,n = {E | E is a stochastic m× n matrix} ,
Rn = Rn,n and Sn = Sn,n.

Let E = (Eij) ∈ Rm,n, ∅ 6= U ⊆ {1, 2, . . . ,m}, ∅ 6= V ⊆ {1, 2, . . . , n},
and Σ = (K1,K2, . . . ,Kp) ∈ Par ({1, 2, . . . , n}) . Suppose that Σ is an ordered
set. Define

EU = (Eij)i∈U,j∈{1,2,...,n} , EV = (Eij)i∈{1,2,...,m},j∈V , EV
U = (Eij)i∈U,j∈V ,

|‖E‖|∞ = max
1≤i≤m

n∑
j=1

|Eij |

(the ∞-norm of E),

ᾱ(E) =
1
2

max
1≤i,j≤m

n∑
k=1

|Eik − Ejk|



176 Udrea Păun 6

(ᾱ is a well-known coefficient (see, e.g., [9] or [19, p. 82]), and

E+ =
(
E+

ij

)
, E+

ij =
∑

k∈Kj

Eik, ∀i ∈ {1, 2, . . . ,m} , ∀j ∈ {1, 2, . . . , p} .

We call E+ the column-reduced matrix of E (on Σ; E+ = E+ (Σ) , i.e.,
it depends on Σ (if confusion can arise we write E+Σ instead of E+)) (see also
[14]). In this article, when we use the operator (·)+ = (·)+ (Σ), we suppose
that Σ is an ordered set, even if we omit to precise this.

Note that if E ∈ Sm,n, then E+Σ ∈ Sm,p, ∀Σ ∈ Par ({1, 2, . . . , n}) with
|Σ| = p, where |Σ| is the cardinal of Σ. Also, note that if E ∈ Rm,n and
F ∈ Rn,q, then (EF )+ = EF+ (see [14, Proposition 2.17(v)]).

Definition 1.13 (see also [16, Definition 1.9]). Consider a strongly (re-
spectively, uniformly strongly) [∆]- or ∆-ergodic Markov chain on Σ×B. We
say that the chain has limits Πm, m ∈ B, (on Σ×B) if

lim
n→∞

(Pm,n)+ = Πm, ∀m ∈ B.

( lim
n→∞

(Pm,n)+ exists because of Definitions 1.9–12.) In particular, if there exists
a matrix Π such that Πm = Π, ∀m ∈ B, then we say that the chain has limit Π.

Set e = e (n) = (1, 1, . . . , 1) ∈ Rn (n ≥ 1). Note that the collection of
absorbing homogeneous Markov chains is included in the collection of Markov
chains (Pn)n≥1 for which ∃ (R, T ) ∈ Par(S), where S is the state space of
(Pn)n≥1, such that:

(i) the chain is strongly ergodic on (R, T ) and has limit (e′, 0);
(ii) (Pn)T

R = 0, ∀n ≥ 1;
(iii) T is the largest set with the properties (i) and (ii).

Also, in Definitions 1.11–13 we can simplify the language when referring
to Σ and B. These are left to the reader.

Definition 1.14 (see, e.g., [10] or [11]). Let ∆ ∈ Par ({1, 2, . . . ,m}) . We
say that a matrix E ∈ Rm,n is [∆]-stable if EK is a stable matrix (i.e., a real
matrix whose rows are identical), ∀K ∈ ∆.

Definition 1.15 (see, e.g., [10] or [11]). Let ∆ ∈ Par ({1, 2, . . . ,m}) . We
say that a matrix E ∈ Rm,n is ∆-stable if ∆ is the least fine partition for
which E is a [∆]-stable matrix. In particular, a ({1, 2, . . . ,m})-stable matrix
is called stable for short.

Concerning the behaviour of P (Xn ∈ A) (∅ 6= A ⊂ S) of a finite Markov
chain (Xn)n≥0 we distinguish two types: 1) finite-time behaviour (see among
other things the ∆-ergodic theory); 2) limit behaviour (see the ∆-ergodic theo-
ry and, also, its connections with the limit ∆-ergodic theory) while concerning
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the behaviour of matrix product Pm,n we distinguish three types: 1) finite-time
behaviour (see among other things the ∆-ergodic theory); 2) limit behaviour
(see the ∆-ergodic theory and, also, its connections with the limit ∆-ergodic
theory); 3) iterated limit behaviour (see the limit ∆-ergodic theory and, also,
its connections with the ∆-ergodic theory).

The result below is about the limit behaviour of matrix product Pm,n of
a Markov chain and is a generalization of Theorem 2.9, (i)⇔(iii), in [11]. (The
generalization, if any, of Theorems 2.9, 2.11–12, and 2.17–18 in [11] is left to
the reader (an important special case is Σ = ({i})i∈S).)

Theorem 1.16. Let (Pn)n≥1 be a Markov chain. Let Σ=(K1,K2, . . . ,Kp)
∈ Par(S) (Σ is an ordered set). Then the chain is weakly [∆]-ergodic on Σ×B
if and only if ∀m ∈ B there exist [∆]-stable r × p matrices Πm,n, m < n,
such that

lim
n→∞

[
(Pm,n)+ −Πm,n

]
= 0.

Proof. “⇒” Let C ∈ ∆. Set

πm,n,C(k) =
1
|C|

∑
i∈C

(Pm,n)+ik, ∀m ∈ B, ∀n > m, ∀k ∈ {1, 2, . . . , p} ,

and
(Πm,n)C = e′πm,n,C , ∀m ∈ B, ∀n > m

(e = (1, 1, . . . , 1) ∈ R|C| and e′ is the transpose of e). Further,

(Pm,n)+jk − (Πm,n)jk = (Pm,n)+jk − πm,n,C(k) = (Pm,n)+jk −
1
|C|

∑
i∈C

(Pm,n)+ik =

=
1
|C|

∑
i∈C

[
(Pm,n)+jk − (Pm,n)+ik

]
→ 0

as n →∞, ∀m ∈ B, ∀j ∈ C, ∀k ∈ {1, 2, . . . , p} .
“⇐” Let C ∈ ∆. Since (Πm,n)ik = (Πm,n)jk, ∀m ∈ B, ∀n > m, ∀i, j ∈ C,

∀k ∈ {1, 2, . . . , p} , we have

(Pm,n)+ik − (Pm,n)+jk =
[
(Pm,n)+ik − (Πm,n)ik

]
+

[
(Πm,n)jk − (Pm,n)+jk

]
→ 0

as n →∞, ∀m ∈ B, ∀i, j ∈ C, ∀k ∈ {1, 2, . . . , p} . �

Definition 1.17 ([13]). Let ∅ 6= K ⊆ S. Let p be a probability distribution
on S. Set p∅ = 0. We say that p is concentrated on K if pKc

= 0.

Set Pm,m = Ir, ∀m ≥ 0 (r = |S|).
The result below is about the limit behaviour of P (Xn ∈ A).



178 Udrea Păun 8

Theorem 1.18. Consider a weakly [∆]-ergodic Markov chain (Xn)n≥0

on (A,Ac) at time 0. Let K ∈ ∆. Suppose that the initial distribution p0

of chain is concentrated on K. Then there exists a sequence (qn)n≥0 of real
numbers depending on K but not on p0 such that

lim
n→∞

[P (Xn ∈ A)− qn] = 0.

Proof. By Theorem 1.16, there exist [∆]-stable r×2 matrices Π0,n, 0 < n,
such that

lim
n→∞

[
(P0,n)+ −Π0,n

]
= 0.

We take the matrices Π0,n, 0 < n, as in the proof of Theorem 1.16, “⇒”; it
follows that these do not depend on p0. Suppose that

(Π0,n)K =


πn,1 πn,2

πn,1 πn,2
...

...
πn,1 πn,2

 , ∀n ≥ 1

(πn,1 + πn,2 = 1, ∀n ≥ 1). Then

p0Π0,n = (p0)
K (Π0,n)K = (πn,1, πn,2) , ∀n ≥ 1.

Therefore, p0Π0,n does not depend on p0 (on the other hand, it depend on
K), ∀n ≥ 1. Define π0,1 =

(
p+
0

)
1

(recall that (A,Ac) is an ordered set) and
qn = πn,1, ∀n ≥ 0. Finally, we have

lim
n→∞

[P (Xn ∈ A)− qn] = lim
n→∞

[P (Xn ∈ A)− πn,1] =

= lim
n→∞

[(
p0(P0,n)+

){1} − (p0Π0,n){1}
]
= lim

n→∞

[
p0((P0,n)+){1}−p0(Π0,n){1}

]
=

= p0 lim
n→∞

[(
(P0,n)+

){1} − (Π0,n){1}
]

= 0. �

Remark 1.19. (a) Weak ∆-ergodicity on Σ×B implies weak [∆]-ergodicity
on Σ × B. Strong ∆-ergodicity (respectively, [∆] -ergodicity) on Σ × B im-
plies weak ∆-ergodicity (respectively, [∆]-ergodicity) on Σ × B. Further, see
Theorem 1.18.

(b) If the chain is weakly ergodic on (A,Ac) at time 0 (∆ = (S)), then
the limit behaviour of P (Xn ∈ A) is independent on p0, where p0 is the initial
distribution of chain.

Theorem 1.20. Let (Pn)n≥1 be a strongly (respectively, uniformly strong-
ly) ergodic Markov chain on Σ (∆ = (S) and B = N) with limits Πm, m ≥ 0.
Then there exists a stable (stochastic) matrix Π such that Πm = Π, ∀m ≥ 0
(therefore, the chain has limit Π).
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Proof. We have

Πm−1 = lim
n→∞

(Pm−1,n)+ = lim
n→∞

Pm(Pm,n)+ =

= Pm lim
n→∞

(Pm,n)+ = PmΠm = Πm, ∀m ≥ 1

(the last equation follows from the fact that Πm is a stable stochastic ma-
trix, ∀m ≥ 0). Therefore, there exists a stable matrix Π such that Πm = Π,
∀m ≥ 0. �

Theorem 1.21. Let (Pn)n≥1 be a Markov chain. Let Π ∈ Sr be a stable
matrix. Then the chain is uniformly weakly ergodic and strongly ergodic with
limit Π if and only if

lim sup
l→∞

lim sup
n→∞

|‖Pn,n+l −Π‖|∞ = 0.

Proof. See the proof of Theorem 2.6, (i)⇔(iii), in [12]. �

Theorem 1.22 ([8]). Let (Pn)n≥1 be a Markov chain. Then the chain
is uniformly strongly ergodic if and only if it is uniformly weakly ergodic and
strongly ergodic (in all cases ∆ = (S), Σ = ({i})i∈S , and B = N).

Proof. We give a full proof of this result here because in [8] was given an
incorrect proof.

“⇒” Obvious.
“⇐” By Theorem 1.21 we have

lim sup
l→∞

lim sup
n→∞

|‖Pn,n+l −Π‖|∞ = 0,

where Π := lim
n→∞

Pm,n, ∀m ≥ 0. Let ε > 0. Then ∃lε ≥ 1 such that

lim sup
n→∞

|‖Pn,n+l −Π‖|∞ < ε, ∀l ≥ lε.

This implies
lim sup

n→∞
|‖Pn,n+lε −Π‖|∞ < ε.

Further, ∃nε ≥ 1 such that

|‖Pn,n+lε −Π‖|∞ < ε, ∀n ≥ nε.

Let m ≥ 0. Then

|‖Pm,m+n+nε+lε −Π‖|∞ = |‖Pm,m+n+nεPm+n+nε,m+n+nε+lε −Π‖|∞ ≤

(by [12, Proposition 2.4(ii)])

≤ |‖Pm+n+nε,m+n+nε+lε −Π‖|∞ < ε, ∀n ≥ 0.

Therefore, the chain is uniformly strongly ergodic. �
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Note that Theorem 1.22 suggests the next problem. Let (Pn)n≥1 be a
Markov chain. Is the chain uniformly strongly ergodic on Σ if and only if
is it uniformly weakly ergodic on Σ and strongly ergodic on Σ? Also, note
that the proof of Theorem 1.22, “⇐”, gives another proof of Theorem 2.6,
(iii)⇒(i), in [12].

Theorem 2.7 in [13] suggests the next result (e = e (|S|)).

Theorem 1.23. Consider a Markov chain (Pn)n≥1 with Pn → P as n →
∞. Let R and T be the sets of recurrent and transient states of P , respectively.
Suppose that T 6= ∅. Then the chain is uniformly strongly ergodic on (R, T )
and has limit (e′, 0) (i.e., lim

n→∞
(Pm,n)+ exists, ∀m ≥ 0, and lim

n→∞
(Pm,n)+ =

(e′, 0) uniformly with respect to m ≥ 0).

Proof. It is known that (Pn)T → 0 as n → ∞ (see, e.g., [1, p. 91]). It
follows that (Pn)+ → (e′, 0) as n →∞. Let ε > 0. As |S| < ∞, ∃n0 ≥ 1 such
that (Pn0)+i2 < ε, ∀i ∈ S (see the definition of the operator (·)+; (R, T ) is an
ordered set). Further, since |S| < ∞ and

lim
n→∞

(Pn,n+n0)
+ = (Pn0)+ ,

∃n1 ≥ 0 such that

(Pn,n+n0)
+
i2 < ε, ∀n ≥ n1, ∀i ∈ S.

From

(Pm,m+n+n1+n0)
+ = Pm,m+n+n1 (Pm+n+n1,m+n+n1+n0)

+ , ∀m,n ≥ 0,

we have
(Pm,m+n+n1+n0)

+
i2 < ε, ∀m, n ≥ 0, ∀i ∈ S,

because Pm,m+n+n1 is a stochastic matrix, ∀m,n ≥ 0. Therefore, lim
n→∞

(Pm,n)+i2
= 0 uniformly with respect to m ≥ 0, ∀i ∈ S. Hence, the chain is uniformly
strongly ergodic on (R, T ) and has limit (e′, 0) . �

Remark 1.24. Another proof of Theorem 1.23 is as follows. Theorem 2.7
in [13] says, in other words, that the chain is uniformly strongly ergodic on(
R, ({i})i∈T

)
and has limit (e′, 0, . . . , 0). But this implies, obviously, that the

chain is uniformly strongly ergodic on (R, T ) and has limit (e′, 0) because
|S| < ∞.

Theorem 1.23 and its proof lead to the next result.

Theorem 1.25. We have
(i) P (Xn ∈ R) > 1− ε and P (Xn ∈ T ) < ε, ∀n ≥ n0 + n1;
(ii) lim

n→∞
P (Xn ∈ R) = 1 and lim

n→∞
P (Xn ∈ T ) = 0 and do not depend

on the initial distribution p0 of chain.
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Proof. (i) Let n ≥ n0 + n1. By Theorem 1.23 and its proof,

P (Xn ∈ T ) = p0

(
(P0,n)+

){2} =
∑
i∈S

(p0)i (P0,n)+i2 <
∑
i∈S

(p0)i ε = ε.

(ii)

lim
n→∞

P (Xn ∈ T )= lim
n→∞

p0

(
(P0,n)+

){2}= p0 lim
n→∞

(
(P0,n)+

){2}= p0 · 0 = 0. �

Set

a+ =
{

a if a > 0,

0 if a ≤ 0,
where a ∈ R.

Let H : S → R be a nonconstant function. We want to find min
y∈S

H(y). A

stochastic optimization technique for solving this problem approximately when
S is very large is the simulated annealing (see, e.g., [2–3], [5–6], [13], and [16–
19]). Consider a sequence (βn)n≥1 of positive real numbers with βn → ∞
as n → ∞ ((βn)n≥1 is called the cooling schedule), an irreducible stochastic
matrix G = (Gij)i,j∈S (G is called the generation matrix ) and a Markov chain
(Xn)n≥0 with state space S and transition matrices (Pn)n≥1, where

(Pn)ij =

 Gije
−βn(H(j)−H(i))+ if i 6= j

1−
∑
k 6=i

(Pn)ik if i = j,

∀i, j ∈ S. (Xn)n≥0 (or, by convention, (Pn)n≥1) is called the (classical) simu-
lated annealing chain (the (classical) simulated annealing for short).

We have

lim
n→∞

(Pn)ij =


0 if i 6= j, H(j) > H(i),
Gij if i 6= j, H(j) ≤ H(i),
1−

∑
k 6=i,H(k)≤H(i)

Gik if i = j,

∀i, j ∈ S.
Set

P = lim
n→∞

Pn,

where (Pn)n≥1 is the simulated annealing,

T1 = {i | i ∈ S and ∃p ≥ 2,∃ {i1, i2, . . . , ip} ⊆ S such that i1 = i,

Gi1i2 , Gi2i3 , . . . , Gip−1ip > 0, and H (i1) ≥ H (i2) ≥ · · · ≥ H (ip−1) > H (ip)
}

(the condition {i1, i2, . . . , ip} ⊆ S implies i1, i2, . . . , ip ∈ S and ik 6= il, ∀k, l ∈
{1, 2, . . . , p}, k 6= l), and

T2 ={i | i ∈ S − T1 and ∃j ∈ S, j 6= i, for which ∃p ≥ 2, ∃ {i1, i2, . . . , ip} ⊆ S
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such that i1 = i, ip = j, Gi1i2 , Gi2i3 , . . . , Gip−1ip > 0, and H (i1) = H (i2) =
· · · = H (ip) and ∀q ≥ 2, ∀ {j1, j2, . . . , jq} ⊆ S such that j1 = j, jq = i, and
H (j1) = H (j2) = · · · = H(jq), ∃u ∈ {1, 2, . . . , q − 1} with Gjuju+1 = 0

}
.

Let R and T be the sets of recurrent and transient states of P , respec-
tively.

Theorem 1.26 (see also [13]). Consider the simulated annealing (chain)
above. Then we have

T = T1 ∪ T2.

Proof. “⊆” Let i ∈ T (T 6= ∅ because H is a nonconstant function and G
is an irreducible matrix). We show that either i ∈ T1 or i ∈ T2 (T1 ∩ T2 = ∅).
As i ∈ T , ∃j ∈ S, j 6= i, for which

(c1) ∃p ≥ 2, ∃ {i1, i2, . . . , ip} ⊆ S such that i1 = i, ip = j, and Pi1i2 ,
Pi2i3 , . . . , Pip−1ip > 0
and

(c2) ∀q ≥ 2, ∀ {j1, j2, . . . , jq} ⊆ S such that j1 = j, jq = i, ∃u ∈
{1, 2, . . . , q − 1} for which Pjuju+1 = 0.

The definition of P and (c1) imply H(i) ≥ H(j).

Case 1. H(i) > H(j). The definition of P , (c1), and H(i) > H(j) imply
Gi1i2 , Gi2i3 , . . . , Gip−1ip > 0 and H (i1) ≥ H (i2) ≥ · · · ≥ H (iu−1) > H (iu) ≥
· · · ≥ H (ip) . Therefore, i ∈ T1.

Case 2. H(i) = H(j). The definition of P , (c1), and H(i) = H(j) imply
Gi1i2 , Gi2i3 , . . . , Gip−1ip > 0 and H (i1) = H (i2) = · · · = H (ip) while the
definition of P and (c2) when H (j1) = H (j2) = · · · = H(jq) imply that
∃u ∈ {1, 2, . . . , q − 1} for which Gjuju+1 = 0. Therefore, i ∈ T2.

“⊇” Let i ∈ T1 ∪ T2. We show that i ∈ T .

Case 1. i ∈ T1. Then ∃p ≥ 2, ∃ {i1, i2, . . . , ip} ⊆ S such that i1 =
i, Gi1i2 , Gi2i3 , . . . , Gip−1ip > 0, and H (i1) ≥ H (i2) ≥ · · · ≥ H (ip−1) >
H (ip). Further, it follows that Pi1i2 , Pi2i3 , . . . , Pip−1ip > 0. Let q ≥ 2 and
{j1, j2, . . . , jq} ⊆ S such that j1 = ip, jq = i, and Gj1j2 , Gj2j3 , . . . , Gjq−1jq > 0.
Since H (ip−1) > H (ip) , ∃u ∈ {1, 2, . . . , q − 1} such that H (ju+1) > H (ju) .
Consequently, Pjuju+1 = 0. Therefore, i ∈ T .

Case 2. i ∈ T2. Then ∃j ∈ S, j 6= i, for which ∃p ≥ 2, ∃ {i1, i2, . . . , ip} ⊆
S such that i1 = i, ip = j, Gi1i2 , Gi2i3 , . . . , Gip−1ip > 0, and H (i1) = H (i2) =
· · · = H (ip) and ∀q ≥ 2, ∀ {j1, j2, . . . , jq} ⊆ S such that j1 = j, jq = i, and
H (j1) = H (j2) = · · · = H(jq), ∃u ∈ {1, 2, . . . , q − 1} with Gjuju+1 = 0. Fur-
ther, it follows that Pi1i2 , Pi2i3 , . . . , Pip−1ip > 0. Let q ≥ 2 and {j1, j2, . . . , jq} ⊆
S such that j1 = j and jq = i. If H (j1) = H (j2) = · · · = H (jq), then, by
i ∈ T2, ∃u∈{1, 2, . . . , q − 1} such that Gjuju+1 = 0. Consequently, Pjuju+1 = 0.
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If ∃v ∈ {2, 3, . . . , q − 1} such that H (jv) 6= H (j1) = H(jq), then ∃w ∈
{1, 2, . . . , q − 1} such that H (jw) < H (jw+1). Consequently, Pjwjw+1 = 0.
So that i ∈ T because there always exists t ∈ {1, 2, . . . , q − 1} such that
Pjtjt+1 = 0. �

The irreducible matrix G determines a directed graph G′. Further, the
graph G′ determines an undirected graph G′′ if we define

[u, v] is an edge of G′′ if and only if (u, v) or (v, u) is an edge of G′.

Now, the undirected graph G′′ determines a neighbourhood system N =
{N(i) | i ∈ S } on S, where

N(i) :=
{
j
∣∣ j ∈ S, j 6= i, and [i, j] is an edge of G′′} .

This neighbourhood system N is symmetric, i.e., j ∈ N(i) if and only if i ∈
N(j). Thus, the irreducible matrix G determines a symmetric neighbourhood
system N on S.

Definition 1.27. Let i ∈ S. We say that i is a local minimum of H (with
respect to a neighbourhood system N ) if ∀j ∈ N(i) we have H(i) ≤ H (j).

Set
S∗ = S∗ (H) =

{
i | i ∈ S and H(i) = min

y∈S
H(y)

}
,

i.e., S∗ is the set of global minima of H (it only depends on H) and

S∗∗ = S∗∗ (H,G) = {i | i ∈ S and i is a local minimum of H } ,

i.e., S∗∗ is the set of local minima of H (it only depends on H and G).

Remark 1.28. (a) We have T1 ∩ S∗ = ∅.
(b) If

Gij > 0 if and only if Gji > 0, ∀i, j ∈ S,

then R ⊆ S∗∗.
(c) It is possible as T2 ∩ S∗ 6= ∅ (therefore, it is possible as T ∩ S∗ 6= ∅;

note that T ∩ S∗ 6= ∅ if and only if S∗ * R), or R * S∗, or T1 ∩ S∗∗ 6= ∅, or
T2 ∩ S∗∗ 6= ∅ (therefore, it is possible as T ∩ S∗∗ 6= ∅; note that T ∩ S∗∗ 6= ∅ if
and only if S∗∗ * R), or R * S∗∗.

Let ε > 0. By Theorem 1.25(i) applied to the simulated annealing
we have

P (Xn ∈ R) > 1− ε and P (Xn ∈ T ) < ε, ∀n ≥ n0 + n1 := n̄,

i.e., the chain stick in a subset of the recurrent states (R is a union of recurrent
classes) with a very large probability if ε is very small and n ≥ n̄. Clearly, this
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result is interesting from a practical point of view if the threshold n̄ is small
(?) in comparison with |S|. (Warning! n̄ depends on ε, H,G, and (βn)n≥1 .)

Remark 1.29. Since the analysis of simulated annealing is very intricate
(even when S is small), one way to understand it is to find as many thresholds
as possible which characterizes it. A threshold is given in [16] (see Remark
2.27(b) there) and another one is n̄ above (at present we do not know hardly
anything about the latter threshold).

Theorem 1.30. Consider the simulated annealing above (H is a non-
constant function, G is an (aperiodic or cyclic) irreducible stochastic matrix,
and βn → ∞ and Pn → P as n → ∞). Then each recurrent class of P is
aperiodic.

Proof. Let K be a recurrent class of P . Since H is a nonconstant function,
we have K 6= S. Now, ∃i ∈ K, ∃j /∈ K such that Gij > 0 because K 6= S and
G is irreducible. We show that H(i) < H(j). Suppose that H (i) ≥ H(j).

Case 1. H(i) = H(j). By definition of P , Pij = Gij . It follows that
Pij > 0, and we reached a contradiction.

Case 2. H(i)>H(j). This implies i∈T1, and we reached a contradiction.
Now, since H(i) < H(j), G is a stochastic matrix, and Gij > 0, we have

Pii > 0 (see the definition of P ). Consequently, K is an aperiodic class. �

Theorem 1.30 says that the (classical) simulated annealing (chain) be-
longs to the collection of (finite) Markov chains (Pn)n≥1 for which there exists
a (stochastic) matrix P such that Pn → P as n → ∞ and P has each recur-
rent class aperiodic. Hence, it raises the next problem related, in particular,
to the convergence of simulated annealing (see also [5] for the convergence of
simulated annealing).

Problem 1.31. Consider a Markov chain (Pn)n≥1 with Pn → P as n →∞.
Let R and T (T 6= ∅ or T = ∅) be the sets of recurrent and transient states
of P , respectively. Suppose that each recurrent class is aperiodic. Is there
∆ ∈ Par(S) such that (Pn)n≥1 is strongly ∆-ergodic?

Related to the above open problem we note.

Remark 1.32. (a) If R itself is a recurrent class, then is well-known that
the answer to Problem 1.31 is in the affirmative with ∆ = (S), i.e., the chain
is strongly ergodic (see [4] and, in a more general setting [1, Proposition 7.13,
p. 226]). Moreover, the chain is even uniformly strongly ergodic (see, e.g., [8]).
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(b) We do not expect to obtain a stronger result than that from Prob-
lem 1.31, i.e., uniform strong ∆-ergodicity (see also (a)) instead of strong
∆-ergodicity. Indeed, let, e.g.,

Pn =


1
3

2
3 0 0

1
2

1
2 0 0

0 0 1 0
0 0 1

n 1− 1
n

 , ∀n ≥ 1.

Then

Pn →


1
3

2
3 0 0

1
2

1
2 0 0

0 0 1 0
0 0 0 1

 := P as n →∞,

so that P satisfies the conditions of Problem 1.31. Note that the chain (Pn)n≥1

is strongly ({1, 2} , {3, 4})-ergodic, but @∆ ∈ Par ({1, 2, 3, 4}) such that it is
uniformly strongly ∆-ergodic. To prove this, we see that the chain (Pn)n≥1 is
uniformly weakly ({1, 2} , {3} , {4})-ergodic (the states 3 and 4 are not in the
same uniformly weakly ergodic class because

Qn :=
(

1 0
1
n 1− 1

n

)
→

(
1 0
0 1

)
:= Q as n →∞,

and Q is not a mixing matrix (see [8, Theorem 2.7 and Example 2.9]; P ∈ Sr is
a mixing matrix if ∃n ≥ 1 such that ᾱ (Pn) < 1)). However, the chain (Pn)n≥1

has a limit behaviour which is partly uniform because the classes {1, 2} and
{3} are even uniformly strongly ergodic. Coming back to simulated annealing
we can also expect such a limit behaviour in some cases; obviously, we need
at least an example. This is an open problem.

(c) If the answer to Problem 1.31 is in the affirmative, then the answer
to Problem 3.7 in [13] is also in the affirmative, so that we would have a
strong ergodicity criterion for the case Pn → P as n →∞ with P having each
recurrent class aperiodic.

2. LIMIT ∆-ERGODIC THEORY

In this section we set forth a simplified version of the limit ∆-ergodic
theory given in [14]. But not only that; here we consider four limit equivalence
relations (two of them are new and for the other ones see also [10], [12], and
[14]). Also, we give some results (see [10–12] and [14] for others).

We shall agree that when writing

lim
u→∞

lim
v→∞

auv,
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where auv ∈ R, ∀u, v ∈ N with u ≥ u1, v ≥ v1 (u) , we assume that ∃u0 ≥ u1

such that
lim

v→∞
auv exists, ∀u ≥ u0.

As in Section 1, we consider that Σ ∈ Par(S) and is, moreover, an ordered
set. (Equivalently, we can use a σ-algebra, say F , on S instead of Σ ∈ Par(S).)
The three definitions below are simplified versions of Definitions 2.1–3 in [14],
respectively.

Definition 2.1. Let i, j ∈ S. We say that i and j are in the same limit
weakly ergodic class on Σ if ∀K ∈ Σ we have

lim
m→∞

lim
n→∞

∑
k∈K

[(Pm,n)ik − (Pm,n)jk] = 0.

Write i
l,Σ∼ j when i and j are in the same limit weakly ergodic class on

Σ. Then
l,Σ∼ is an equivalence relation and determines a partition ∆̄ = ∆̄ (Σ) =

(L1, L2, . . . , Lu) of S. The sets L1, L2, . . . , Lu are called limit weakly ergodic
classes on Σ.

Definition 2.2. Let ∆̄ = (L1, L2, . . . , Lu) be the partition of limit weakly
ergodic classes on Σ. We say that the chain is limit weakly ∆̄-ergodic on Σ. In
particular, a limit weakly (S)-ergodic chain on Σ is called limit weakly ergodic
on Σ for short.

Definition 2.3. Let (L1, L2, . . . , Lu) be the partition of limit weakly er-
godic classes on Σ of a Markov chain with state space S and ∆̄ ∈ Par(S). We
say that the chain is limit weakly

[
∆̄

]
-ergodic on Σ if ∆̄ � (L1, L2, . . . , Lu) .

In the above definitions we have used ∆̄ only for differing from Section 1,
where we have used ∆. This section is called ‘Limit ∆-ergodic theory’, but
not ‘Limit ∆̄-ergodic theory’ because the former is simply a generic name.

The next definition is a generalization of one given in [12] (see below of
Remark 1.29 there).

Definition 2.4. Let i, j ∈ S. We say that i and j are in the same limit
weakly ergodic class on Σ in a generalized sense if ∀K ∈ Σ we have

lim sup
m→∞

lim sup
n→∞

∣∣∣∣ ∑
k∈K

[(Pm,n)ik − (Pm,n)jk]
∣∣∣∣ = 0.

Write i
l,Σ,g∼ j when i and j are in the same limit weakly ergodic class on

Σ in a generalized sense. Then
l,Σ,g∼ is an equivalence relation and determines

a partition ∆̄ = ∆̄ (Σ) = (M1,M2, . . . ,Mv) of S. The sets M1,M2, . . . ,Mv are
called limit weakly ergodic classes on Σ in a generalized sense.
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Definition 2.5. Let ∆̄ = (M1,M2, . . . ,Mv) be the partition of limit weakly
ergodic classes on Σ in a generalized sense. We say that the chain is limit
weakly ∆̄-ergodic on Σ in a generalized sense. In particular, a limit weakly
(S)-ergodic chain on Σ in a generalized sense is called limit weakly ergodic on
Σ in a generalized sense for short.

Definition 2.6. Let (M1,M2, . . . ,Mv) be the partition of limit weakly
ergodic classes on Σ in a generalized sense of a Markov chain with state space
S and ∆̄ ∈ Par(S). We say that the chain is limit weakly

[
∆̄

]
-ergodic on Σ in

a generalized sense if ∆̄ � (M1,M2, . . . ,Mv) .

The two limit equivalence relations below are new.

Definition 2.7. Let i, j ∈ S. We say that i and j are in the same limit
uniformly weakly ergodic class on Σ if ∀K ∈ Σ we have

lim
l→∞

lim
n→∞

∑
k∈K

[(Pn,n+l)ik − (Pn,n+l)jk] = 0.

Write i
l,u,Σ∼ j when i and j are in the same limit uniformly weakly

ergodic class on Σ. Then
l,u,Σ∼ is an equivalence relation and determines a

partition ∆̄ = ∆̄ (Σ) = (V1, V2, . . . , Vs) of S. The sets V1, V2, . . . , Vs are called
limit uniformly weakly ergodic classes on Σ.

Definition 2.8. Let ∆̄ = (V1, V2, . . . , Vs) be the partition of limit uniformly
weakly ergodic classes on Σ. We say that the chain is limit uniformly weakly
∆̄-ergodic on Σ. In particular, a limit uniformly weakly (S)-ergodic chain on
Σ is called limit uniformly weakly ergodic on Σ for short.

Definition 2.9. Let (V1, V2, . . . , Vs) be the partition of limit uniformly
weakly ergodic classes on Σ of a Markov chain with state space S and ∆̄ ∈
Par (S) . We say that the chain is limit uniformly weakly

[
∆̄

]
-ergodic on Σ if

∆̄ � (V1, V2, . . . , Vs) .

Definition 2.10. Let i, j ∈ S. We say that i and j are in the same limit
uniformly weakly ergodic class on Σ in a generalized sense if ∀K ∈ Σ we have

lim sup
l→∞

lim sup
n→∞

∣∣∣∣ ∑
k∈K

[
(Pn,n+l)ik − (Pn,n+l)jk

] ∣∣∣∣ = 0.

Write i
l,u,Σ,g∼ j when i and j are in the same limit uniformly weakly

ergodic class on Σ in a generalized sense. Then
l,u,Σ,g∼ is an equivalence relation

and determines a partition ∆̄ = ∆̄ (Σ) = (W1,W2, . . . ,Wt) of S. The sets
W1,W2, . . . ,Wt are called limit uniformly weakly ergodic classes on Σ in a
generalized sense.
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Definition 2.11. Let ∆̄ = (W1,W2, . . . ,Wt) be the partition of limit uni-
formly weakly ergodic classes on Σ in a generalized sense. We say that the chain
is limit uniformly weakly ∆̄-ergodic on Σ in a generalized sense. In particu-
lar, a limit uniformly weakly (S)-ergodic chain on Σ is called limit uniformly
weakly ergodic on Σ in a generalized sense for short.

Definition 2.12. Let (W1,W2, . . . ,Wt) be the partition of limit uniformly
weakly ergodic classes on Σ in a generalized sense of a Markov chain with
state space S and ∆̄ ∈ Par(S). We say that the chain is limit uniformly weakly[
∆̄

]
-ergodic on Σ in a generalized sense if ∆̄ � (W1,W2, . . . ,Wt) .

l,Σ∼ ,
l,Σ,g∼ ,

l,u,Σ∼ , and
l,u,Σ,g∼ are called the limit equivalence relations on Σ;

l,Σ∼ and
l,Σ,g∼ are called the simple limit equivalence relations on Σ while

l,u,Σ∼
and

l,u,Σ,g∼ are called the uniform limit equivalence relations on Σ.

If Σ = ({i})i∈S , then in the above definitions we can omit ‘on Σ’ and

can write l∼,
l,g∼,

l,u∼, and
l,u,g∼ instead of

l,({i})i∈S∼ ,
l,({i})i∈S ,g

∼ ,
l,u,({i})i∈S∼ , and

l,u,({i})i∈S ,g
∼ , respectively.

The definition below is a simplified version of Definition 2.5 in [14].

Definition 2.13. Let L be a limit weakly ergodic class on Σ. Let ∅ 6= Σ0 ⊆
Σ. We say that L is a limit strongly ergodic class on Σ0 with respect to Σ if
∀i ∈ L, ∀K ∈ Σ0 the limit

lim
m→∞

lim
n→∞

∑
j∈K

(Pm,n)ij := σK = σK (L)

exists and does not depend on i.

Definition 2.14. Let L be a limit weakly ergodic class on Σ in a gene-
ralized sense. Let ∅ 6= Σ0 ⊆ Σ. We say that L is a limit strongly ergodic class
on Σ0 with respect to Σ in a generalized sense if ∀i ∈ L, ∀K ∈ Σ0,∃πK =
πK (L) ∈ [0, 1] depending on K (and L) but not on i such that

lim sup
m→∞

lim sup
n→∞

∣∣∣∣ ∑
j∈K

(Pm,n)ij − πK

∣∣∣∣ = 0.

Definition 2.15. Let L be a limit uniformly weakly ergodic class on Σ.
Let ∅ 6= Σ0 ⊆ Σ. We say that L is a limit uniformly strongly ergodic class on
Σ0 with respect to Σ if ∀i ∈ L, ∀K ∈ Σ0 the limit

lim
l→∞

lim
n→∞

∑
j∈K

(Pn,n+l)ij := τK = τK (L)

exists and does not depend on i.
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Definition 2.16. Let L be a limit uniformly weakly ergodic class on Σ
in a generalized sense. Let ∅ 6= Σ0 ⊆ Σ. We say that L is a limit uniformly
strongly ergodic class on Σ0 with respect to Σ in a generalized sense if ∀i ∈ L,
∀K ∈ Σ0,∃πK = πK (L) ∈ [0, 1] depending on K (and L) but not on i such that

lim sup
l→∞

lim sup
n→∞

∣∣∣∣ ∑
j∈K

(Pn,n+l)ij − πK

∣∣∣∣ = 0.

For simplification, in Definitions 2.13–16 we can replace ‘on Σ0 with
respect to Σ’ with ‘on Σ’ when Σ0 = Σ and can omit ‘on Σ’ when Σ0 = Σ =
({i})i∈S .

Definition 2.17 (see also [14, Definition 2.6]). Let (Pn)n≥1 be a limit
weakly (respectively, uniformly weakly) ∆̄-ergodic Markov chain on Σ. We say
that the chain is limit strongly (respectively, uniformly strongly) ∆̄-ergodic on
Σ if any L ∈ ∆̄ is a limit strongly (respectively, uniformly strongly) ergodic
class on Σ. In particular, a limit strongly (respectively, uniformly strongly) (S)-
ergodic chain on Σ is called limit strongly (respectively, uniformly strongly)
ergodic on Σ for short.

Definition 2.18 (see also [14, Definition 2.7]). Let (Pn)n≥1 be a limit
weakly (respectively, uniformly weakly)

[
∆̄

]
-ergodic Markov chain on Σ. We

say that the chain is limit strongly (respectively, uniformly strongly)
[
∆̄

]
-

ergodic on Σ if any L ∈ ∆̄ is included in a limit strongly (respectively, uni-
formly strongly) ergodic class on Σ.

Definition 2.19. Let (Pn)n≥1 be a limit weakly (respectively, uniformly
weakly) ∆̄-ergodic Markov chain on Σ in a generalized sense. We say that
the chain is limit strongly (respectively, uniformly strongly) ∆̄-ergodic on Σ
in a generalized sense if any L ∈ ∆̄ is a limit strongly (respectively, uni-
formly strongly) ergodic class on Σ in a generalized sense. In particular, a
limit strongly (respectively, uniformly strongly) (S)-ergodic chain on Σ in a
generalized sense is called limit strongly (respectively, uniformly strongly) er-
godic on Σ in a generalized sense for short.

Definition 2.20. Let (Pn)n≥1 be a limit weakly (respectively, uniformly
weakly)

[
∆̄

]
-ergodic Markov chain on Σ in a generalized sense. We say that

the chain is limit strongly (respectively, uniformly strongly)
[
∆̄

]
-ergodic on Σ

in a generalized sense if any L ∈ ∆̄ is included in a limit strongly (respectively,
uniformly strongly) ergodic class on Σ in a generalized sense.

Definition 2.21 (see also [14, Definition 2.19]). Let (Pn)n≥1 be a limit
strongly

[
∆̄

]
- or ∆̄-ergodic Markov chain on Σ. We say that the chain has
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(iterated) limit Π if
lim

m→∞
lim

n→∞
(Pm,n)+ = Π.

(There always exists a Π with the above property and is unique because of
Definitions 2.13 and 2.17–18. Moreover, Π is a

[
∆̄

]
- or ∆̄-stable matrix.)

Definition 2.22. Let (Pn)n≥1 be a limit strongly
[
∆̄

]
- or ∆̄-ergodic Markov

chain on Σ in a generalized sense. We say that the chain has (iterated) limit
Π if

lim sup
m→∞

lim sup
n→∞

∣∣∥∥(Pm,n)+ −Π
∥∥∣∣
∞ = 0.

(There always exists a Π with the above property and is unique because of
Definitions 2.14 and 2.19–20. Moreover, Π is a

[
∆̄

]
- or ∆̄-stable matrix.)

Definition 2.23. Let (Pn)n≥1 be a limit uniformly strongly
[
∆̄

]
- or ∆̄-

ergodic Markov chain on Σ. We say that the chain has (iterated) limit Π if

lim
l→∞

lim
n→∞

(Pn,n+l)
+ = Π.

Definition 2.24. Let (Pn)n≥1 be a limit uniformly strongly
[
∆̄

]
- or ∆̄-

ergodic Markov chain on Σ in a generalized sense. We say that the chain has
(iterated) limit Π if

lim sup
l→∞

lim sup
n→∞

∣∣∥∥(Pn,n+l)+ −Π
∥∥∣∣
∞ = 0.

An example of a limit uniformly strongly ∆̄-ergodic Markov chain on Σ
in a generalized sense is (Pn)n≥1 with Σ = (R, T ) from Theorem 1.23. It has
the iterated limit Π, where Π = lim

l→∞

(
P l

)+ (P = lim
n→∞

Pn). (The proof is

straightforward; for another proof see Theorem 2.31(iv).)

In Definitions 2.17–24 we can omit ‘on Σ’ if Σ = ({i})i∈S .

The next result makes some basic connections between ∆-ergodic theory
and limit ∆-ergodic theory.

Theorem 2.25. Let (Pn)n≥1 be a Markov chain.
(i) The next statements are equivalent (see also [10, Theorem 2.24]).

(i1) The chain is weakly ergodic on Σ.
(i2) The chain is limit weakly ergodic on Σ.
(i3) The chain is limit weakly ergodic on Σ in a generalized sense.

(ii) The chain is strongly ergodic on Σ and has limit Π if and only if it
is limit strongly ergodic on Σ and has limit Π.

(iii) The chain is uniformly weakly ergodic if and only if it is limit uni-
formly weakly ergodic in a generalized sense (see also [10, Theorem 2.29]).
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(iv) The chain is uniformly strongly ergodic and has limit Π if and only
if it is limit uniformly strongly ergodic in a generalized sense and has limit Π.

Proof. (i) (i1)⇒(i2) Obvious.
(i2)⇒(i3) Obvious.
(i3)⇒(i1) Obviously, the chain is limit weakly ergodic on Σ in a genera-

lized sense if and only if

lim sup
m→∞

lim sup
n→∞

ᾱ
(
(Pm,n)+

)
= 0.

Let ε > 0 and am = lim sup
n→∞

ᾱ ((Pm,n)+), ∀m ≥ 0. Since lim
m→∞

am = 0,

∃mε ≥ 0 such that am < ε, ∀m ≥ mε. It follows that ∃nε,m > m such that
ᾱ ((Pm,n)+) < ε, ∀m ≥ mε, ∀n ≥ nε,m.

Let l ≥ 0.
Case 1. l < mε (when mε > 0). Using the inequality

ᾱ (PQ) ≤ ᾱ (P ) ᾱ (Q) , ∀P ∈ Sm,n, ∀Q ∈ Sn,p

(see, e.g., [1, pp. 58–59] or [9]), we have

ᾱ
(
(Pl,n)+

)
≤ ᾱ (Pl,mε) ᾱ

(
(Pmε,n)+

)
≤ ᾱ

(
(Pmε,n)+

)
< ε, ∀n ≥ nε,mε .

Case 2. l ≥ mε. In this case, we have

ᾱ
(
(Pl,n)+

)
< ε, ∀n ≥ nε,l.

Consequently, from Cases 1 and 2 we have lim
n→∞

ᾱ
(
(Pl,n)+

)
= 0, ∀l ≥ 0.

Obviously, the chain is weakly ergodic on Σ if and only if lim
n→∞

ᾱ
(
(Pl,n)+

)
= 0,

∀l ≥ 0. Therefore, (i1) holds.
(ii) See [14, Theorem 2.20].
(iii) The chain is uniformly weakly ergodic if and only if

lim sup
l→∞

lim sup
n→∞

ᾱ(Pn,n+l) = 0

(see [7, Theorem 3.3]). Obviously, the chain is limit uniformly weakly ergodic
in a generalized sense if and only if

lim sup
l→∞

lim sup
n→∞

ᾱ(Pn,n+l) = 0.

Consequently, (iii) holds.
(iv) See [12, Theorem 2.6]. �

Remark 2.26. To define the uniform limit equivalence relations a starting
point was [7, Theorem 3.3] (then see also the proof of Theorem 2.25(iii) above).

The limit equivalence relations together with the notions derived from
these are good tools for the study of perturbed Markov chains. More precisely,
the simple limit equivalence relations are useful when the perturbation is of
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the first type while the uniform limit equivalence relations are useful when the
perturbation is of the second type (see mainly the looping method in [12]).
Here we only state a few basic results (see also [12] and [14] for others).

Definition 2.27 ([12]). Let (Pn)n≥1 and (P ′
n)n≥1 be two Markov chains.

We say that (P ′
n)n≥1 is a perturbation of the first type of (Pn)n≥1 if∑

n≥1

∣∣∥∥Pn − P ′
n

∥∥∣∣
∞ < ∞.

Definition 2.28 ([12]). Let (Pn)n≥1 and (P ′
n)n≥1 be two Markov chains.

We say that (P ′
n)n≥1 is a perturbation of the second type of (Pn)n≥1 if∣∣∥∥Pn − P ′

n

∥∥∣∣
∞ → 0 as n →∞

(this is equivalent to Pn − P ′
n → 0 as n →∞).

Theorem 2.29. Let (Pn)n≥1 and (P ′
n)n≥1 be two Markov chains. Then

∣∣∥∥(Pm,n)+ − (P ′
m,n)+

∥∥∣∣
∞ ≤

∣∣∥∥Pm,n − P ′
m,n

∥∥∣∣
∞ ≤

n−m∑
u=1

∣∣∥∥Pm+u − P ′
m+u

∥∥∣∣
∞ .

Proof. See [14, Proposition 2.21]. �

Theorem 2.30. Let (Pn)n≥1 be a Markov chain and (P ′
n)n≥1 a pertur-

bation of the first type of it.
(i) (Pn)n≥1 is limit weakly ∆̄-ergodic on Σ in a generalized sense if and

only if (P ′
n)n≥1 is limit weakly ∆̄-ergodic on Σ in a generalized sense.

(ii) (Pn)n≥1 is limit strongly ∆̄-ergodic on Σ in a generalized sense and
has limit Π if and only if (Pn)n≥1 is limit strongly ∆̄-ergodic on Σ in a
generalized sense and has limit Π.

Proof. By symmetry, it is sufficient to only prove an implication for both
statements.

(i) “⇒” Let i, j ∈ S. Suppose that i
l,Σ,g∼ j for (Pn)n≥1 and prove that

i
l,Σ,g∼ j for (P ′

n)n≥1. (The conclusion (i) is equivalent to i
l,Σ,g∼ j for (Pn)n≥1 if

and only if i
l,Σ,g∼ j for (P ′

n)n≥1.) From∣∣∣∣∣∑
k∈K

[
(P ′

m,n)ik − (P ′
m,n)jk

]∣∣∣∣∣ ≤
∣∣∣∣∣∑
k∈K

[
(P ′

m,n)ik − (Pm,n)ik

]∣∣∣∣∣ +

+

∣∣∣∣∣∑
k∈K

[
(Pm,n)ik − (Pm,n)jk

]∣∣∣∣∣ +

∣∣∣∣∣∑
k∈K

[
(Pm,n)jk −

(
P ′

m,n

)
jk

]∣∣∣∣∣ ≤
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≤

∣∣∣∣∣∑
k∈K

[(Pm,n)ik − (Pm,n)jk]

∣∣∣∣∣ + 2
∣∣∥∥(Pm,n)+ − (P ′

m,n)+
∥∥∣∣
∞ ,

∀m,n, 0 ≤ m < n, ∀K ∈ Σ, using the hypothesis and Theorem 2.29, we have

lim sup
m→∞

lim sup
n→∞

∣∣∣∣∣∑
k∈K

[
(P ′

m,n)ik − (P ′
m,n)jk

]∣∣∣∣∣ = 0, ∀K ∈ Σ,

i.e., i
l,Σ,g∼ j for (P ′

n)n≥1 .

(ii) “⇒” From∣∣∥∥(P ′
m,n)+ −Π

∥∥∣∣
∞ ≤

∣∣∥∥(P ′
m,n)+ − (Pm,n)+

∥∥∣∣
∞ +

∣∣∥∥(Pm,n)+ −Π
∥∥∣∣
∞ ,

∀m,n, 0 ≤ m < n, using the hypothesis and Theorem 2.29, we have

lim sup
m→∞

lim sup
n→∞

∣∣∥∥(P ′
m,n)+ −Π

∥∥∣∣
∞ = 0.

By (i), (P ′
n)n≥1 is limit weakly ∆̄-ergodic on Σ in a generalized sense.

Further, lim sup
m→∞

lim sup
n→∞

∣∣∥∥(P ′
m,n)+ −Π

∥∥∣∣
∞ = 0 and the fact that (P ′

n)n≥1 is

limit weakly ∆̄-ergodic on Σ in a generalized sense imply that (P ′
n)n≥1 is limit

strongly ∆̄-ergodic on Σ in a generalized sense and has limit Π. �

Theorem 2.31. Let (Pn)n≥1 be a Markov chain and (P ′
n)n≥1 a pertur-

bation of the second type of it.
(i) (Pn)n≥1 is limit uniformly weakly ∆̄-ergodic on Σ if and only if

(P ′
n)n≥1 is limit uniformly weakly ∆̄-ergodic on Σ.

(ii) (Pn)n≥1 is limit uniformly strongly ∆̄-ergodic on Σ and has limit Π
if and only if (P ′

n)n≥1 is limit uniformly strongly ∆̄-ergodic on Σ and has
limit Π.

(iii) (Pn)n≥1 is limit uniformly weakly ∆̄-ergodic on Σ in a generalized
sense if and only if (P ′

n)n≥1 is limit uniformly weakly ∆̄-ergodic on Σ in a
generalized sense.

(iv) (Pn)n≥1 is limit uniformly strongly ∆̄-ergodic on Σ in a generalized
sense and has limit Π if and only if (P ′

n)n≥1 is limit uniformly strongly ∆̄-
ergodic on Σ in a generalized sense and has limit Π.

Proof. By symmetry, it is sufficient to only prove an implication for all
statements.

(i) “⇒” Let i, j ∈ S. Suppose that i
l,u,Σ∼ j for (Pn)n≥1 and prove that

i
l,u,Σ∼ j for (P ′

n)n≥1. By i
l,u,Σ∼ j,

lim
l→∞

lim
n→∞

∑
k∈K

[
(Pn,n+l)ik − (Pn,n+l)jk

]
= 0, ∀K ∈ Σ.
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Further, setting P ′
n = Pn + Qn, ∀n ≥ 1, we have lim

n→∞
(P ′

n,n+l − Pn,n+l) = 0,
∀l ≥ 1, because lim

n→∞
Qn = 0.

Finally, from∑
k∈K

[
(P ′

n,n+l)ik −
(
P ′

n,n+l

)
jk

]
=

∑
k∈K

[(
P ′

n,n+l

)
ik
− (Pn,n+l)ik

]
+

+
∑
k∈K

[
(Pn,n+l)ik − (Pn,n+l)jk

]
+

∑
k∈K

[
(Pn,n+l)jk −

(
P ′

n,n+l

)
jk

]
,

∀l ≥ 1, ∀n ≥ 0, ∀K ∈ Σ, we have

lim
l→∞

lim
n→∞

∑
k∈K

[(
P ′

n,n+l

)
ik
−

(
P ′

n,n+l

)
jk

]
= 0, ∀K ∈ Σ,

i.e., i
l,u,Σ∼ j for (P ′

n)n≥1 .

(ii) “⇒” By hypothesis,

lim
l→∞

lim
n→∞

[
(Pn,n+l)+ −Π

]
= 0.

Obviously, lim
n→∞

(
P
′
n,n+l−Pn,n+l

)
=0, ∀l ≥ 1 (see the proof of (i)), implies that

lim
n→∞

[(
P ′

n,n+l

)+ − (Pn,n+l)+
]

= 0, ∀l ≥ 1.

Now, from(
P ′

n,n+l

)+−Π =
[(

P ′
n,n+l

)+−(Pn,n+l)+
]
+

[
(Pn,n+l)+ −Π

]
, ∀l ≥ 1, ∀n ≥ 0,

we have
lim
l→∞

lim
n→∞

[(
P ′

n,n+l

)+ −Π
]

= 0.

By (i), (P ′
n)n≥1 is limit uniformly weakly ∆̄-ergodic on Σ. Further,

lim
l→∞

lim
n→∞

[
(P ′

n,n+l)
+ −Π

]
= 0 and the fact that (P ′

n)n≥1 is limit uniformly

weakly ∆̄-ergodic on Σ imply that (P ′
n)n≥1 is limit uniformly strongly ∆̄-

ergodic on Σ and has limit Π.
(iii) “⇒” Let i, j ∈ S. Suppose that i

l,u,Σ,g∼ j for (Pn)n≥1 and prove that

i
l,u,Σ,g∼ j for (P ′

n)n≥1. From∣∣∣∣∣∑
k∈K

[(
P ′

n,n+l

)
ik
−

(
P ′

n,n+l

)
jk

]∣∣∣∣∣ ≤
∣∣∣∣∣∑
k∈K

[(
P ′

n,n+l

)
ik
− (Pn,n+l)ik

]∣∣∣∣∣ +

+

∣∣∣∣∣∑
k∈K

[
(Pn,n+l)ik − (Pn,n+l)jk

]∣∣∣∣∣ +

∣∣∣∣∣∑
k∈K

[
(Pn,n+l)jk −

(
P ′

n,n+l

)
jk

]∣∣∣∣∣ ,
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∀l ≥ 1, ∀n ≥ 0, ∀K ∈ Σ, we have

lim sup
l→∞

lim sup
n→∞

∣∣∣∣∣∑
k∈K

[(
P ′

n,n+l

)
ik
−

(
P ′

n,n+l

)
jk

]∣∣∣∣∣ = 0, ∀K ∈ Σ,

i.e., i
l,u,Σ,g∼ j for (P ′

n)n≥1 .

(iv) “⇒” By hypothesis,

lim sup
l→∞

lim sup
n→∞

∣∣∥∥(Pn,n+l)+ −Π
∥∥∣∣
∞ = 0.

Now, from ∣∣∥∥(P ′
n,n+l)

+ −Π
∥∥∣∣
∞ ≤

∣∣∥∥(P ′
n,n+l)

+ − (Pn,n+l)+
∥∥∣∣
∞ +

+
∣∣∥∥(Pn,n+l)+ −Π

∥∥∣∣
∞ , ∀l ≥ 1, ∀n ≥ 0,

we have
lim sup

l→∞
lim sup

n→∞

∣∣∥∥(P ′
n,n+l)

+ −Π
∥∥∣∣
∞ = 0.

By (iii), (P ′
n)n≥1 is limit uniformly weakly ∆̄-ergodic on Σ in a genera-

lized sense. Further, lim sup
l→∞

lim sup
n→∞

|‖(P ′
n,n+l)

+ − Π‖|∞ = 0 and the fact that

(P ′
n)n≥1 is limit uniformly weakly ∆̄-ergodic on Σ in a generalized sense imply

that (P ′
n)n≥1 is limit uniformly strongly ∆̄-ergodic on Σ in a generalized sense

and has limit Π. �
Theorems 2.30–31 say that under certain conditions the chains (Pn)n≥1

and (P ′
n)n≥1 have an identical iterated limit behaviour (concerning the matrix

products Pm,n and P ′
m,n, respectively (see Section 1)). This is an important

fact (see the looping method in [12], Theorem 2.25 above, a.s.o.).
We conclude this article specifying that much remains to be done both

in general ∆-ergodic theory and in simulated annealing theory (obviously, the
former is the natural framework for the latter).
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