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In this paper we investigate a new subclass of univalent functions defined by a
generalized differential operator. An inclusion result, structural formula, extreme
points and other properties of this class of functions are obtained.
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1. INTRODUCTION

Let A denote the class of functions f of the form

(1) f(z) = z +
∞∑

n=2

anzn

which are analytic in the open unit disk U := {z ∈ C : |z| < 1}.
By S and C we denote the subclasses of functions in A which are univa-

lent and convex in U, respectively.
Let P be the well-known Carathéodory class of normalized functions with

positive real part in U and let P(λ), 0 ≤ λ < 1 be the subclass of P consisting
of functions with real part greater than λ.

The Hadamard product or convolution of the functions

f(z) = z +
∞∑

n=2

anzn and g(z) = z +
∞∑

n=2

bnzn

is given by

(f ∗ g) (z) = z +
∞∑

n=2

anbnzn, z ∈ U.
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Let f ∈ A. We consider the following differential operator introduced by
Răducanu and Orhan [13]:

D0
αβf(z) = f(z),

D1
αβf(z) = Dαβf(z) = αβz2f ′′(z) + (α− β)zf ′(z) + (1− α + β)f(z),

Dm
αβf(z) = Dαβ

(
Dm−1

αβ f(z)
)
,(2)

where 0 ≤ β ≤ α and m ∈ N := {1, 2, . . .}.
If the function f is given by (1) then, from (2) we see that

(3) Dm
αβf(z) = z +

∞∑
n=2

An(α, β, m)anzn,

where

(4) An(α, β, m) = [1 + (αβn + α− β)(n− 1)]m .

When α = 1 and β = 0, we get Sălăgean differential operator [14]. When
β = 0, we obtain the differential operator defined by Al-Oboudi [1].

From (3) it follows that Dm
αβf(z) can be written in terms of convolution as

(5) Dm
αβf(z) = (f ∗ g) (z),

where

(6) g(z) = z +
∞∑

n=2

An(α, β, m)zn.

We say that a function f ∈ A is in the class Rm(α, β, λ) if [Dm
αβf(z)]′ is

in the class P(λ), that is, if

(7) Re
[
Dm

αβf(z)
]′

> λ, z ∈ U

for 0 ≤ λ < 1, 0 ≤ β ≤ α and m ∈ N0 := {0, 1, 2, . . .}. For β = 0, we obtain
the class of functions considered in [1].

The main object of this paper is to present a systematic investigation
for the class Rm(α, β, λ). In particular, for this function class, we derive
an inclusion result, structural formula, extreme points and other interesting
properties.

2. INCLUSION RESULT

In order to obtain the inclusion result for the class Rm(α, β, λ), we need
the following lemma due to Miller and Mocanu [12, Theorem 1f, p. 198].
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Lemma 2.1. Let h ∈ C and let A ≥ 0. Suppose that B and D are analytic
in U, with D(0) = 0 and

Re B(z) ≥ A + 4
∣∣∣∣D(z)
h′(0)

∣∣∣∣
for z ∈ U. If an analytic function p, with p(0) = h(0) satisfies

Az2p′′(z) + B(z)zp′(z) + p(z) + D(z) ≺ h(z), z ∈ U

then p(z) ≺ h(z), z ∈ U.

Note that the symbol “≺” stands for subordination.

Theorem 2.1. Let 0 ≤ λ < 1, 0 ≤ β ≤ α and m ∈ N0. Then

Rm+1(α, β, λ) ⊂ Rm(α, β, λ).

Proof. Suppose f ∈ Rm+1(α, β, λ). Then

Re
[
Dm+1

αβ f(z)
]′

> λ

which is equivalent to

(8)
[
Dm+1

αβ f(z)
]′ ≺ h(z), z ∈ U,

where

(9) h(z) :=
1 + (1− 2λ)z

1− z
, z ∈ U.

From (2), we have

Dm+1
αβ f(z) = αβz2

[
Dm

αβf(z)
]′′ + (α− β)z

[
Dm

αβf(z)
]′ + (1− α + β)Dm

αβf(z).

It follows that
(10)[
Dm+1

αβ f(z)
]′ = αβz2

[
Dm

αβf(z)
]′′′ + (2αβ + α− β)z

[
Dm

αβf(z)
]′′ + [

Dm
αβf(z)

]′
.

Denote

(11) p(z) :=
[
Dm

αβf(z)
]′

, z ∈ U.

Making use of (10) and (11), the differential subordination (8) becomes

αβz2p′′(z) + (2αβ + α− β)zp′(z) + p(z) ≺ h(z), z ∈ U.

It is easy to check that the conditions of Lemma 2.1 with h(z) given by (9),
p(z) given by (11), A = αβ, B(z) ≡ 2αβ + α − β and D(z) ≡ 0 are satisfied.
Thus, we obtain p(z) ≺ h(z) which implies that

Re
[
Dm

αβf(z)
]′

> λ, z ∈ U.

Therefore, f ∈ Rm(α, β, λ) and the proof of our theorem is completed. �
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Corollary 2.1. Let 0 ≤ λ < 1, 0 ≤ β ≤ α and m ∈ N0. Then

Rm(α, β, λ) ⊂ S.

Proof. Making use of Theorem 2.1, we obtain

Rm(α, β, λ) ⊂ Rm−1(α, β, λ) ⊂ · · · ⊂ R0(α, β, λ).

The class R0(α, β, λ) consists of functions f ∈ A for which Re[D0
α,βf(z)]′ > λ,

that is Re f ′(z) > λ. It is known (see [9] and also [7]) that, if Re f ′(z) > λ,
0 ≤ λ < 1, then f is univalent. Thus,

Rm(α, β, λ) ⊂ R0(α, β, λ) ⊂ S. �

3. STRUCTURAL FORMULA

In this section a structural formula, extreme points and coefficient bounds
for functions in Rm(α, β, λ) are obtained.

Theorem 3.1. A function f ∈ A is in the class Rm(α, β, λ) if and only
if it can be expressed as

(12) f(z) =

[
z +

∞∑
n=2

1
An(α, β, m)

zn

]
∗

∫
|ζ|=1

[
z+2(1−λ)ζ̄

∞∑
n=2

(ζz)n

n

]
dµ(ζ),

where µ is a positive Borel probability measure defined on the unit circle T =
{ζ ∈ C : |ζ| = 1}.

Proof. From (5) it follows that, f ∈ Rm(α, β, λ) if and only if[
Dm

αβf(z)
]′ − λ

1− λ
∈ P.

Using Herglotz integral representation of functions in Carathéodory class P
(see [8] and also [10]), there exists a positive Borel probability measure µ
such that [

Dm
αβf(z)

]′ − λ

1− λ
=

∫
|ζ|=1

1 + ζz

1− ζz
dµ(ζ), z ∈ U

which is equivalent to

[
Dm

αβf(z)
]′ =

∫
|ζ|=1

1 + (1− 2λ)ζz

1− ζz
dµ(ζ).
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Integrating this last equality, we obtain

Dm
αβf(z) =

∫ z

0

[∫
|ζ|=1

1 + (1− 2λ)ζu

1− ζu
dµ(ζ)

]
du =

=
∫
|ζ|=1

[∫ z

0

1 + (1− 2λ)ζu

1− ζu
du

]
dµ(ζ)

that is

(13) Dm
αβf(z) =

∫
|ζ|=1

[
z + 2(1− λ)ζ̄

∞∑
n=2

(ζz)n

n

]
dµ(ζ).

From (5), (6) and (13) it follows that

f(z) =

[
z +

∞∑
n=2

1
An(α, β, m)

zn

]
∗

∫
|ζ|=1

[
z + 2(1− λ)ζ̄

∞∑
n=2

(ζz)n

n

]
dµ(ζ).

Since this deductive process can be converse, we have proved our theorem. �

Corollary 3.1. The extreme points of the class Rm(α, β, λ) are

(14) fζ(z) = z + 2(1− λ)ζ̄
∞∑

n=2

(ζz)n

nAn(α, β, m)
, z ∈ U, |ζ| = 1.

Proof. Consider the functions

gζ(z) = z + 2(1− λ)ζ̄
∞∑

n=2

(ζz)n

n

and

gµ(z) =
∫
|ζ|=1

gζ(z)dµ(ζ).

Since the map µ → gµ is one-to-one, making use of (5), (6) and (13), the
assertion follows from (12) (see [5]).

From Corollary 3.1 we can obtain coefficient bounds for the functions in
the class Rm(α, β, λ).

Corollary 3.2. If f ∈ Rm(α, β, λ) is given by (1) then

|an| ≤
2(1− λ)

nAn(α, β, m)
, n ≥ 2.

The result is sharp.

Proof. The coefficient bounds are maximized at an extreme point. There-
fore, the result follows from (14).
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Corollary 3.3. If f ∈ Rm(α, β, λ) then, for |z| = r < 1

r − 2(1− λ)r2
∞∑

n=2

1
nAn(α, β, m)

≤ |f(z)| ≤ r + 2(1− λ)r2
∞∑

n=2

1
nAn(α, β, m)

and

1− 2(1− λ)r
∞∑

n=2

1
An(α, β, m)

≤ |f ′(z)| ≤ 1 + 2(1− λ)r
∞∑

n=2

1
An(α, β, m)

.

4. CONVOLUTION PROPERTY

In order to prove a convolution property for the class Rm(α, β, λ), we
need the following result.

Lemma 4.1 [15]. If p(z) is analytic in U, p(0) = 1 and Re p(z) > 1
2 then,

for any function F analytic in U, the function F ∗p takes values in the convex
hull of F (U).

Theorem 4.1. The class Rm(α, β, λ) is closed under the convolution with
a convex function. That is, if f ∈Rm(α, β, λ) and g∈C then f ∗g∈Rm(α, β, λ).

Proof. Let g ∈ C. Then (see [12])

Re
g(z)
z

>
1
2
.

Suppose f ∈ Rm(α, β, λ). Making use of the convolution properties, we have

Re
[
Dm

αβ(f ∗ g)(z)
]′ = Re

[(
Dm

αβf(z)
)′ ∗ g(z)

z

]
.

By applying Lemma 4.1, the result follows.

Corollary 4.1. The class Rm(α, β, λ) is invariant under Bernardi in-
tegral operator [4]:

Fc(f)(z) =
1 + c

zc

∫ z

0
tc−1f(t)dt, Re c > 0.

Proof. Assume f ∈ Rm(α, β, λ). It is easy to check that Fc(f)(z) =
(f ∗ g)(z), where

g(z) =
∞∑

n=1

1 + c

n + c
zn =

1 + c

zc

∫ z

0

tc

1− t
dt, z ∈ U, Re c > 0.
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Since the function φ(z) = z
1−z , z ∈ U is convex, it follows (see [11]) that the

function g is also convex. From Theorem 4.1 we obtain Fc(f) ∈ Rm(α, β, λ).
Therefore, Fc [Rm(α, β, λ)] ⊂ Rm(α, β, λ).
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