ON A SUBCLASS
OF UNIVALENT FUNCTIONS DEFINED BY
A GENERALIZED DIFFERENTIAL OPERATOR
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In this paper we investigate a new subclass of univalent functions defined by a
generalized differential operator. An inclusion result, structural formula, extreme
points and other properties of this class of functions are obtained.
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1. INTRODUCTION

Let A denote the class of functions f of the form
(1) f2) =2+ an2"
n=2

which are analytic in the open unit disk U := {z € C: |z] < 1}.

By S and C we denote the subclasses of functions in A which are univa-
lent and convex in U, respectively.

Let P be the well-known Carathéodory class of normalized functions with
positive real part in U and let P(A), 0 < A < 1 be the subclass of P consisting
of functions with real part greater than .

The Hadamard product or convolution of the functions

fz)=2z+ Zanz” and g¢(z) =z+ Z bp 2"
n=2 n=2

is given by

(F59)(2) =2+ anbaz", z€U.
n=2
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Let f € A. We consider the following differential operator introduced by
Réaducanu and Orhan [13]:

Dogf(z) = f(2),
Dasf(2) = Dapf(2) = a2 (2 > (a=B)zf'(2) + (1 = a+ B)f(2),
(2) Dyjsf(2) = Dag(Dl5 ' f(2)),
where 0 < f < aand m € N:={1,2,...}.

If the function f is given by (1) then, from (2) we see that

(3) Dif(z) =2+ Y An(e, B,m)anz",
n=2

where

(4) Ap(a, 8,m) = [L+ (afn +a - B)(n - 1)|™

When o« = 1 and = 0, we get Salagean differential operator [14]. When
B = 0, we obtain the differential operator defined by Al-Oboudi [1].
From (3) it follows that Dy; f(2) can be written in terms of convolution as

(5) Daﬁf(z) = (f *g) (Z),

where

(6) 9(2) =2+ An(a, B,m)2".
n=2

We say that a function f € A is in the class R™(«, 3,A) if [Dpjsf(2)] i
in the class P(\), that is, if

(7) Re [DILf(2)] > X, z€U

for0 <A< 1,0< B <aand me Ny:={0,1,2,...}. For 8 =0, we obtain
the class of functions considered in [1].

The main object of this paper is to present a systematic investigation
for the class R™(«,3,\). In particular, for this function class, we derive
an inclusion result, structural formula, extreme points and other interesting
properties.

2. INCLUSION RESULT

In order to obtain the inclusion result for the class R™(a, 3, A), we need
the following lemma due to Miller and Mocanu [12, Theorem 1f, p. 198].
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LEMMA 2.1. Let h € C and let A > 0. Suppose that B and D are analytic
in U, with D(0) =0 and

D(z)

h'(0)
for z € U. If an analytic function p, with p(0) = h(0) satisfies

A22p"(2) + B(2)2p'(2) + p(2) + D(2) < h(z), z€U
then p(z) < h(z), z € U.

ReB(z) > A+4

Note that the symbol “<” stands for subordination.
THEOREM 2.1. Let 0 < A< 1,0< < a and m € Ng. Then
R™(a, 3,\) € R™(a, B, )).
Proof. Suppose f € R™"!(a, 3, ). Then
Re [DI f(2)]" > A

which is equivalent to

(8) (DI f(2)] < h(z), z€T,
where
(9) h(z) := H(ll__:m zeU.

From (2), we have

DI f(2) = ap2? [Disf(2)]" + (a — B)z [Disf(2)] + (1 — a + B) DIy £ ().

It follows that

(10)

(DT f(2)]" = aB2® [Disf(2)]" + 208+ a — B)z [Disf(2)]" + [Disf(2)]

Denote

(11) p(z) = [Disf(2)]", z€U.

Making use of (10) and (11), the differential subordination (8) becomes
af2p"(2) + 208 +a — B)zp'(2) + p(z) < h(z), zel.

It is easy to check that the conditions of Lemma 2.1 with h(z) given by (9),
p(z) given by (11), A = af, B(z) = 2af + a — [ and D(z) = 0 are satisfied.
Thus, we obtain p(z) < h(z) which implies that

Re [Df(2)] >\, z€U.
Therefore, f € R™(«, 3, A) and the proof of our theorem is completed. [
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COROLLARY 2.1. Let 0 <A< 1,0< < a and m € Ng. Then
R™(a, B,\) C S.
Proof. Making use of Theorem 2.1, we obtain
R™(a,3,A) € R™ Yo, B,A) C -+ C ROav, B, \).

The class R%(a, 3, \) consists of functions f € A for which Re[Dg,Bf(z)]’ > A,
that is Re f/(z) > A. It is known (see [9] and also [7]) that, if Re f/(z) > A,
0 < A< 1, then f is univalent. Thus,

R™(a, B,)\) € R%(a, B,N) € 5. O
3. STRUCTURAL FORMULA
In this section a structural formula, extreme points and coefficient bounds

for functions in R™(«, 3, A) are obtained.

THEOREM 3.1. A function f € A is in the class R™(a, 3, \) if and only
if it can be expressed as

00 1 n
2 £6)= |5+ 2 4 e oy ] Jom

where p s a positive Borel probability measure defined on the unit circle T =
{¢eC:[¢] =1}
Proof. From (5) it follows that, f € R™(«, 3, \) if and only if

(¢

2 an(o),

2+2(1-2)¢)
n=2

(D f(2)]" = A
1— A\

eP.

Using Herglotz integral representation of functions in Carathéodory class P
(see [8] and also [10]), there exists a positive Borel probability measure
such that

D™ f(2)] = A 5
(DI f(2)] :/ 1+¢ Q). 2eU

1—A (=11 —¢2
which is equivalent to

[ngﬁf(z)]/ :/ M

P s du(C)-
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Integrating this last equality, we obtain

. s 1+ (1—2)\)Cu Y
Disf(z) = /O [ /ql o du(c)]d

“Jo U e e e

(¢2)"

n

that is

) D=

From (5), (6) and (13) it follows that

00 1 .
Z‘*'T; An(avﬂa m)z ] ’ /|§|1

Since this deductive process can be converse, we have proved our theorem. [

24+21-2)¢) ] dp(¢).
n=2

flz) =

2420120 (Cz)] an(<).
n=2

COROLLARY 3.1. The extreme points of the class R™(«a, 3, \) are

_ o (¢a)" _
(14) fc(z)—z—i—Q(l—)\)C;W, zelU, [¢]=1.
Proof. Consider the functions
(2 =20 - NS

and
gu(2) = /|<|1 4c(2)du(©).

Since the map u — g, is one-to-one, making use of (5), (6) and (13), the
assertion follows from (12) (see [5]).

From Corollary 3.1 we can obtain coefficient bounds for the functions in
the class R™ (v, 3, ).

COROLLARY 3.2. If f € R™(«, 3, \) is given by (1) then

2(1—=X)
nl < ————% > 2.
‘a ’ o nAn(aaﬁam) K
The result is sharp.

Proof. The coefficient bounds are maximized at an extreme point. There-
fore, the result follows from (14).
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COROLLARY 3.3. If f € R™(a, B, \) then, for |z| =7 < 1

2 - 1 2 3 :
r—2(1—X\r ;WS FEl<r+20=Ar nz:;n/ln(aaﬁ,m)
and

00 1 ) > 1
1=21-0r 3 g SR S 120 - Y

4. CONVOLUTION PROPERTY

In order to prove a convolution property for the class R™(«, 3, ), we
need the following result.

LEMMA 4.1 [15]. If p(2) is analytic in U, p(0) = 1 and Rep(z) > 5 then,
for any function F analytic in U, the function F xp takes values in the convex
hull of F(U).

THEOREM 4.1. The class R™(«, 3, \) is closed under the convolution with
a convez function. That is, if f € R™(a, B, \) and g€ C then fxg€ R™(«, 5, \).

Proof. Let g € C. Then (see [12])

ReM > 1
z 2

Suppose f € R™(a, 3, A). Making use of the convolution properties, we have

Re [D53(7 +0)(2)]' = Re | (D)) » 2.

By applying Lemma 4.1, the result follows.

COROLLARY 4.1. The class R™(«, 3, \) is invariant under Bernardi in-
tegral operator [4]:

_1+e
=

Fe(f)(2)

/ tLf(t)dt, Rec> 0.
0

Proof. Assume f € R™(a,f3,\). It is easy to check that F.(f)(z) =
(f *g)(2z), where

o0
1+e¢ 1+c¢ [* €
g(z):ZnJrcz": poe /0 l—tdt’ z €U, Rec>0.
n=1
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Since the function ¢(z) = %=,z € U is convex, it follows (see [11]) that the

1-2>
function g is also convex. From Theorem 4.1 we obtain F.(f) € R™(a, 3, A).
Therefore, F. [R™(a, 5,\)] C R™(«, 5, A).
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