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We prove the existence of a minimal boundary blow-up flow associated with the
parabolic problem ut−∆u+ f(u) = 0 in Ω× (0,∞), u(t, x) = +∞ in ∂Ω× (0,∞)
and u(0, ·) = u0 ∈ L∞(Ω), u0 ≥ 0. Here Ω is a smooth and bounded domain in RD,

D ≥ 1 and f is a non-negative C1 function satisfying
∫∞
1

[
∫ s

0
f(t)dt]−1/2ds < ∞.
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1. INTRODUCTION

Consider the following problem

(1.1)


ut −∆u + f(u) = 0 in Ω× (0,∞),
u(t, x) = +∞ in ∂Ω× (0,∞),
u(0, x) = u0(x) in Ω,

where Ω is a smooth and bounded domain in RD, D ≥ 1, u0 ∈ L∞(Ω) satisfies
u0 ≥ 0. The second condition in (1.1) means in fact that u(t, ·) blows-up on
the boundary of Ω in the sense that

lim
Ω3x→x0

u(t, x) = +∞ for all x0 ∈ ∂Ω.

Throughout this paper we assume that f ∈ C1([0,∞)) is an increasing
function such that f(0) = 0 and such that f satisfies the so-called the Keller-
Osserman condition (at infinity), that is,

(1.2)
∫ ∞

1

ds√
F (s)

< +∞ where F (s) =
∫ s

0
f(t)dt, s ≥ 0.

We are interested in the boundary blow-up flows associated with (1.1) in the
sense given by the definition bellow.

Definition 1.1. We say that a smooth function u : (0,∞) → (0,∞) is
a boundary blow up flow associated with (1.1) starting from u0 if u satisfies
(1.1)1–(1.1)2 and u(t) → u0 as t → 0.
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The boundary blow-up solutions for elliptic problems has been largely
investigated in the past decades. The study of such singular boundary value
problems goes back to the pioneering work of Bieberbach in [4] on the equation
∆u = eu in the plane. He showed that in this case there exists a unique solution
u such that u(x)− log(d(x)−2) is bounded as x → ∂Ω. Problems of this type
arise in Riemannian geometry with constant Gaussian curvature. Motivated
by a problem in mathematical physics, Rademacher [14] continued the study
of Bieberbach on smooth bounded domains in the space. Condition (1.2) was
independently introduced by Keller [11] and Osserman [13].

To stress the importance of the above Keller-Osserman condition let us
remind some interesting results from [9]. Consider first Φ : (0,∞) → (0,∞)
defined by

Φ(α) =
1√
2

∫ ∞

α

ds√
F (s)− F (α)

,

where we assume Φ(α) = ∞ if the above integral is divergent or F (s) = F (α) in
a set having positive Lebesgue measure. We say that f satisfies the Sharpened
Keller-Osserman condition if

lim inf
α→∞

Φ(α) = 0.

As observed in [9, Theorem 1.3], if f is increasing then the standard and the
Sharpened Keller-Osserman conditions are equivalent.

Furthermore, from [9, Theorem 1.1, 1.4] we have the following equiva-
lence between the Keller-Osserman conditions and the existence of boundary
blow up solutions for stationary problems associated to (1.1):

(a) f satisfies the Keller-Osserman condition if and only if the problem

(1.3)
{

∆u = f(u), in Ω,

u = +∞, as x ∈ ∂Ω,

has a solution for a certain ball Ω = BR(0) ⊂ RD, D ≥ 1;
(b) f satisfies the Sharpened Keller-Osserman condition if and only if the

problem (1.3) has a solutions for any smooth and bounded domain Ω ⊂ RD,
D ≥ 1.

Recently, problems of type (1.3) under the hypothesis f is increasing and
satisfies the Keller-Osserman condition (1.2) have been studied in [1, 2, 3, 5,
6, 7, 8, 12]. We also refer the reader to the book [10] and to the survey [15]
for an extensive account on this topic.

The main result in ths paper establishes that for any initial data u0 ∈
L∞(Ω) there exists a minimal boundary blow-up flow u(t, x) staring from u0

which is also stable. Furthermore, we are also able to derive its behavior as
t →∞. More precisely, we have:
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Theorem 1.2. Assume f satisfies the Keller-Osserman condition and
let u0 ∈ L∞(Ω).

(i) There exists a minimal boundary blow-up flow u(t, x) starting from
u0 which is stable.

(ii) For any x ∈ Ω we have

(1.4) lim
t→∞

u(t, ·) = u∗ pointwise in Ω,

where u∗ is the unique stationary boundary blow-up solution associated with
(1.1), that is, u∗ satisfies

(1.5)

{
∆u∗ = f(u∗) in Ω,

u∗ = +∞ on ∂Ω.

2. PROOF OF THEOREM 1.2

(i) We shall divide the proof of Theorem 1.2(i) into two steps.

Step 1 : An approximated problem
Let N ≥ 1 be a positive integer such that N ≥ ‖u0‖L∞(Ω). We prove that

there exists uN a solution of the following approximated problem

(2.1)


uN

t −∆uN + f(uN ) = 0 in Ω× (0,∞),
uN (t, x) = N in ∂Ω× (0,∞),
uN (0, ·) = u0 in Ω.

In order to prove the above claim, we shall use the monotone iterations
combined with the fact that f is a C1 increasing function. We first let ΛN > 0
be such that u → ΛNu − f(u) is increasing on [0, N ]. Next, starting from
v0 = 0, let {vk} be defined as

(2.2)


vk+1
t −∆vk+1 + ΛNvk+1 = ΛNvk − f(vk) in Ω× (0,∞),

vk+1 = N in ∂Ω× (0,∞),
vk+1(0, ·) = u0 in Ω.

For k = 1 we have that v1 satisfies
v1
t −∆v1 + ΛNv1 = 0 in Ω× (0,∞),

v1 = N in ∂Ω× (0,∞),
v1(0, ·) = u0 ≥ 0 in Ω.

Since 0 is a subsolution and N is a supersolution, by the standard Maximum
Principle for parabolic equations we find 0 ≤ v1(x) ≤ N in Ω × (0,∞). An
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induction argument yields

0 ≤ vk(t, x) ≤ vk+1(t, x) ≤ N in Ω× (0,∞).

Thus, the sequence {vk} converges increasingly to a certain uN which is a
solution of (2.1). Furthermore, using the boundary condition satisfied by uN

we find that {uN} is increasing with respect to N .

Step 2 : Interior a-priori estimates
Fix x0 ∈ Ω and let r > 0 be such that B(x0, ρ) ⊂ Ω. Since f satisfies

the Keller-Osserman condition, by [9, Theorem 1.3] there exists a solution uρ

of the problem {
∆(uρ) = f(uρ) in B(x0, ρ),
uρ = +∞ on ∂B(x0, ρ).

Furthermore, from the results in [9], uρ can be chosen to be radially symmetric
with respect to x0, that is, uρ satisfies{

(rN−1u′ρ)
′ = rN−1f(uρ) for all 0 ≤ r < ρ,

uρ(ρ) = +∞.

We next multiply the first equality in the above system by rN−1u′ρ and inte-
grate over [0, r]. We obtain

[rN−1u′ρ(r)]
2 = 2

∫ r

0
s2N−2f(uρ(s))u′ρ(s)ds

≤ 2r2N−2

∫ r

0
s2N−2f(uρ(s))u′ρ(s)ds

= 2r2N−2F (uρ(r)),

for all 0 ≤ r < ρ. This yields
u′ρ(r)√

2F (uρ(r))
≤ 1 for all 0 ≤ r < ρ.

Integrating in the above inequality and changing the variable we find∫ ∞

uρ(0)

ds√
2F (s)

≤ ρ.

Now, by taking ρ small enough, we may assume that

inf uρ = uρ(0) ≥ ‖ u0 ‖L∞(Ω).

Also remark that ρ is independent of the point x0. Hence, for such a value of
ρ, uρ is a supersolution of{

ut −∆u + f(u) = 0 in B(x0, ρ)× (0,∞),
u(0, ·) = u0 in B(x0, ρ).
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By Maximum Principle we now obtain

uN (t, x) ≤ uρ(x) in B(x0, ρ).

If K is a compact subset of Ω, we cover K by a finite number of balls of radius
ρ and deduce an uniform a-priori estimate on K for uN . Hence, the sequence
{uN} is bounded in L∞(R+

t , L∞(K)) for any compact subset K ⊂ Ω. We can
now pass to the limit in (2.1) to deduce the existence of a boundary blow up
flow u associated to (1.1) that starts from u0. By virtue of our construction
and Maximum Principle, if v is another boundary blow-up flow associated
with (1.1) and u0, we easily find v ≤ uN for all large values of N , so v ≥ u,
that is, u is the minimal boundary blow-up flow associated (1.1) that starts
from u0. This completes the proof of (i) in our Theorem.

(ii) The stability follows from the Proposition below.

Proposition 2.1. Let u, v be two minimal boundary blow-up flows as-
sociated with (1.1) starting from u0 and v0 respectively, with u0, v0 ∈ L∞(Ω).
Then, for any compact set K ⊂ Ω we have

‖u(t, ·)− v(t, ·)‖L∞(K) ≤ ‖u0 − v0‖L∞(Ω) for all t > 0.

Proof. Let uN and vN be the approximations obtained at Step 1 in the
proof of (i) above and let ωN = vN − uN . Then

ωN
t −∆ωN + f(vN )−f(uN )

vN−uN ωN = 0 in Ω,

ωN = 0 on ∂Ω,

ω(0) = v(0)− u(0).

Therefore, using that fact that f is increasing and the Maximum Principle,
we obtain

‖ωN (t)‖L∞(Ω ≤ ‖v(0)− u(0)‖L∞(Ω)

and so
‖ωN (t)‖L∞(K) ≤ ‖v(0)− u(0)‖L∞(Ω).

Letting now N → +∞ we obtain the conclusion. This ends the proof of Propo-
sition. �

(iii) Let u0 ∈ L∞(Ω) and u be the minimal boundary blow-up flow asso-
ciated with (1.1) and starting from u0. Define vN (t, x) = uN (t+h, x)−uN (t, x),
where h > 0. Then, vN satisfies

vN
t −∆vN + f(uN (t+h))−f(uN (t))

uN (t+h)−uN (t)
vN = 0 in Ω,

vN (t) = 0 on ∂Ω,

vN = uN (h) ≥ 0 at t = 0.
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By Maximum Principle we deduce that vN is positive, so uN is increasing
in t. Hence, u is also increasing in the time variable. Let

u(x) := lim
t→+∞

u(t, x) = sup
t>0

u(t, x).

Since the blow-up solution u∗(x) is a super-solution of the parabolic problem,
it follows that u(x) ≤ u∗(x) in Ω.

To prove the converse inequality, let now ϕ ∈ C∞
0 (Ω). From (1.1) we find

lim
T→∞

1
T

∫
Ω

∫ T

0
[ut(t, x)ϕ(x)−∆u(t, x)ϕ(x) + f(u(t, x))ϕ(x)] dtdx = 0.

We next analyze separately the limits of the three quantities arising under the
above integrals. We have

lim
T→∞

1
T

∫
Ω

∫ T

0
ut(t, x)ϕ(x)dtdx =

∫
Ω

ϕ(x)
[

lim
T→+∞

1
T

∫ T

0
ut(t, x)dt

]
dx

=
∫

Ω
ϕ(x)

[
lim

T→∞

1
T

(u(t, x)− u0)
]

dx

= 0,

lim
T→∞

1
T

∫
Ω

∫ T

0
∆u(t, x)ϕ(x)dtdx = lim

T→+∞

1
T

∫ T

0

∫
Ω

u(t, x)∆ϕ(x)dxdt

=
∫

Ω
∆ϕ(x)

[
lim

T→+∞

1
T

∫ T

0
u(t, x)dt

]
dx

=
∫

Ω
∆ϕ(x)u(x)dx,

and finally,

lim
T→∞

1
T

∫
Ω

∫ T

0
f(u(t, x))ϕ(x)dtdx =

∫
Ω

ϕ(x)
[

lim
T→+∞

1
T

∫ T

0
f(u(t, x))dt

]
dx

=
∫

Ω
ϕ(x)f(u(x))dx.

Combining the last three limits we find∫
Ω

u(x)∆ϕ(x)dx =
∫

Ω
f(u(x))ϕ(x)dx,

that is, u(x) is a weak solution of the problem (1.5). Hence u(x) = u∗(x)
which concludes the proof of our Theorem.



7 Parabolic flow associated to blow-up boundary solutions 93

REFERENCES

[1] C. Bandle and M. Essen, On the solutions of quasilinear elliptic problems with bound-
ary blow-up, In: Partial differential equations of elliptic type (Cortona, 1992). Sympos.
Math. 35, Cambridge Univ. Press, Cambridge, 1994, 93–111.

[2] C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence,
uniqueness, and asymptotic behaviour. J. Anal. Math. 58 (1992), 9–24.

[3] C. Bandle, Asymptotic behaviour of large solutions of quasilinear elliptic problems.
Z. Angew. Math. Phys. 54 (2003), 731–738.

[4] L. Bieberbach, ∆u = eu und die Automorphen Funktionen. Math. Ann. 77 (1916),
173–212.
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