PARABOLIC FLOW ASSOCIATED TO
BLOW-UP BOUNDARY SOLUTIONS
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We prove the existence of a minimal boundary blow-up flow associated with the
parabolic problem u; — Au+ f(u) = 0 in Q X (0, 00), u(t, x) = +oo in 90 x (0, o)
and u(0,-) = ug € L*°(Q), uo > 0. Here Q is a smooth and bounded domain in R”,
D >1 and f is a non-negative C' function satisfying [ s F(®)dt]72ds < .
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1. INTRODUCTION

Consider the following problem
ug— Au+ f(u) =0 in Q x (0, 00),
(1.1) u(t,z) = +00 in 092 x (0, c0),
(0, z) = up(x) in Q,
where ) is a smooth and bounded domain in R”, D > 1, ug € L>() satisfies

ug > 0. The second condition in (1.1) means in fact that u(¢,-) blows-up on
the boundary of €2 in the sense that

lim w(t,z) =400 for all zg € 0.
Q3x—x0

Throughout this paper we assume that f € C*(]0,00)) is an increasing
function such that f(0) = 0 and such that f satisfies the so-called the Keller-
Osserman condition (at infinity), that is,

oo ds S
(1.2) /1 o) < 400 where F(s) :/0 f(t)dt, s >0.

We are interested in the boundary blow-up flows associated with (1.1) in the
sense given by the definition bellow.

Definition 1.1. We say that a smooth function u : (0,00) — (0,00) is
a boundary blow up flow associated with (1.1) starting from wug if u satisfies
(1.1)1-(1.1)2 and u(t) — up as t — 0.
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The boundary blow-up solutions for elliptic problems has been largely
investigated in the past decades. The study of such singular boundary value
problems goes back to the pioneering work of Bieberbach in [4] on the equation
Au = e" in the plane. He showed that in this case there exists a unique solution
u such that u(x) — log(d(z)~2) is bounded as x — dQ. Problems of this type
arise in Riemannian geometry with constant Gaussian curvature. Motivated
by a problem in mathematical physics, Rademacher [14] continued the study
of Bieberbach on smooth bounded domains in the space. Condition (1.2) was
independently introduced by Keller [11] and Osserman [13].

To stress the importance of the above Keller-Osserman condition let us
remind some interesting results from [9]. Consider first ® : (0,00) — (0, c0)
defined by

1 [ d

BT
V2 Jo F(s) - Fla)

where we assume ®(a) = oo if the above integral is divergent or F'(s) = F(«) in
a set having positive Lebesgue measure. We say that f satisfies the Sharpened
Keller-Osserman condition if

lim inf ®(a) = 0.

a— 00
As observed in [9, Theorem 1.3], if f is increasing then the standard and the
Sharpened Keller-Osserman conditions are equivalent.

Furthermore, from [9, Theorem 1.1, 1.4] we have the following equiva-
lence between the Keller-Osserman conditions and the existence of boundary
blow up solutions for stationary problems associated to (1.1):

(a) f satisfies the Keller-Osserman condition if and only if the problem
{ Au = f(u), in Q,

1.3
(13) U = 400, as x € 01,

has a solution for a certain ball = Bg(0) c RP, D > 1;

(b) f satisfies the Sharpened Keller-Osserman condition if and only if the
problem (1.3) has a solutions for any smooth and bounded domain  C R,
D >1.

Recently, problems of type (1.3) under the hypothesis f is increasing and
satisfies the Keller-Osserman condition (1.2) have been studied in [1, 2, 3, 5,
6, 7, 8, 12]. We also refer the reader to the book [10] and to the survey [15]
for an extensive account on this topic.

The main result in ths paper establishes that for any initial data ug €
L>(Q) there exists a minimal boundary blow-up flow u(¢,z) staring from wug
which is also stable. Furthermore, we are also able to derive its behavior as
t — oco. More precisely, we have:
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THEOREM 1.2. Assume [ satisfies the Keller-Osserman condition and
let ug € L*>®(Q).

(i) There exists a minimal boundary blow-up flow u(t,x) starting from
ug which is stable.

(ii) For any x € Q we have

(1.4) tlim u(t,) =u* pointwise in Q,
—00

where u* is the unique stationary boundary blow-up solution associated with
(1.1), that is, u* satisfies

(15) { Au* = f(u*) in Q,

u* = +o0 on 0.

2. PROOF OF THEOREM 1.2

(i) We shall divide the proof of Theorem 1.2(i) into two steps.

Step 1 : An approximated problem
Let N > 1 be a positive integer such that N > ||uo|| (). We prove that

there exists !V a solution of the following approximated problem
u — AulN + f(uV) =0 in Q x (0,00),

(2.1) uN(t,z) = N in 9Q x (0, 00),
u™N(0,-) = ug in Q.

In order to prove the above claim, we shall use the monotone iterations
combined with the fact that f is a C'! increasing function. We first let Ay > 0
be such that u — Ayu — f(u) is increasing on [0, N]. Next, starting from
v? =0, let {v*} be defined as

’Uf—H — AP 4 ANvRtE = Apo? — f(0F)  in Q x (0, 00),
(2.2) vt = N in 99 x (0, 00),
v*10, ) = uo in Q.
For k = 1 we have that v! satisfies
vf — Avl + Ayvl =0 in Q x (0, 00),
vi=N in 09 x (0, c0),
vH(0,-) = up >0 in Q.

Since 0 is a subsolution and N is a supersolution, by the standard Maximum
Principle for parabolic equations we find 0 < v!(z) < N in Q x (0,00). An
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induction argument yields
0<o*(t,z) <o* Tt z) <N in Qx (0,00).

Thus, the sequence {v*} converges increasingly to a certain v’V which is a
solution of (2.1). Furthermore, using the boundary condition satisfied by 1"
we find that {u"} is increasing with respect to N.

Step 2 : Interior a-priori estimates
Fix o € ©Q and let » > 0 be such that B(zg,p) C Q. Since f satisfies
the Keller-Osserman condition, by [9, Theorem 1.3] there exists a solution u,
of the problem
{ Alup) = fluy) in Blro,p),
up = 400 on 0B(xg, p).

Furthermore, from the results in [9], u, can be chosen to be radially symmetric
with respect to xg, that is, u, satisfies
(rN ) = PNt () forall 0 < r < p,
up(p) = +o0.
We next multiply the first equality in the above system by rN—1
grate over [0, 7]. We obtain

P ()] = 2 /0 VR ()t (5)ds

< 2p2N-2 / SQN_2f(up(s))u;)(s)ds
0
= 2r2V 2 F (uy(r)),
for all 0 < r < p. This yields

(1)
— P~ <1 forall0<r<op.
2F (uy(r))

Integrating in the above inequality and changing the variable we find

& ds
——<p
/upm) V2 (s)

Now, by taking p small enough, we may assume that

u’p and inte-

infu, = uy(0) > || uo [ (-

Also remark that p is independent of the point xg. Hence, for such a value of
p, U, is a supersolution of

{ ut —Au+ f(u) =0  in B(xg,p) x (0,00),
u(0,-) = ug in B(xg,p).
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By Maximum Principle we now obtain
uN(t,2) < uplx) in Blao,p).

If K is a compact subset of €2, we cover K by a finite number of balls of radius
p and deduce an uniform a-priori estimate on K for V. Hence, the sequence
{uV} is bounded in L®(R}", L>°(K)) for any compact subset K C §2. We can
now pass to the limit in (2.1) to deduce the existence of a boundary blow up
flow u associated to (1.1) that starts from ug. By virtue of our construction
and Maximum Principle, if v is another boundary blow-up flow associated
with (1.1) and wug, we easily find v < u” for all large values of N, so v > u,
that is, w is the minimal boundary blow-up flow associated (1.1) that starts
from ug. This completes the proof of (i) in our Theorem.
(ii) The stability follows from the Proposition below.

PROPOSITION 2.1. Let u, v be two minimal boundary blow-up flows as-
sociated with (1.1) starting from ug and vg respectively, with ug, vy € L°(£2).
Then, for any compact set K C Q we have

lu(t,-) — v(t, ')HLOO(K) < Jup — UOHLOO(Q) for all t > 0.

Proof. Let vV and vV be the approximations obtained at Step 1 in the
proof of (i) above and let w® = v — 4. Then

wfV—AwN—F%wN:O in 2,
wV'=0 on 012,
w(0) = v(0) — u(0).

Therefore, using that fact that f is increasing and the Maximum Principle,
we obtain

™ ()]l oo < 10(0) = w(0)]| oo )
and so

™ ()]l Lo (x6) < [0(0) = w(0)]] oo (2)-
Letting now N — 400 we obtain the conclusion. This ends the proof of Propo-
sition. [

(iii) Let up € L*°(€2) and u be the minimal boundary blow-up flow asso-

ciated with (1.1) and starting from ug. Define v (¢, z) = u™ (t+h, z)—u™ (¢, z),
where h > 0. Then, vV satisfies

vy — AvN + f(ujjéijfz;:i%‘g)(t))v]v =0 in £,

vV (t) =0 on 01},
vV =uN(h) >0 at t = 0.



92 Dumitru Felician Preda 6

By Maximum Principle we deduce that v'V is positive, so u! is increasing

in t. Hence, u is also increasing in the time variable. Let

u(x) := lim wu(t,z) = supu(t,x).
t—+o0 >0

Since the blow-up solution u*(x) is a super-solution of the parabolic problem,
it follows that u(z) < u*(z) in .
To prove the converse inequality, let now ¢ € C§°(£2). From (1.1) we find

.1 T
Jin 2 [ [t a)ela) - Su(t.)pla) + Fult.0)pl@)] dede = 0.

We next analyze separately the limits of the three quantities arising under the
above integrals. We have

Tnj&;/g/;ut(t,x)@(x)dtdx:/¢(x) [TETOO;/OTut(t,x)dt] dz
/ [hm —(u(t,x) — ’U,()):| dz
0,

lim // Au(t, z)p(x)dtde = lim / / (t,z)Ap(x)dzdt
T—oo T T—>+oo
/ A lim = / u(t, 2)dt| d
SO T—1>I-|I'IOOT 0 71" .

— [ Aoy,
Q
and finally,
T ) T
Jin [ st e = [ o [ im 3 [ o] i

Combining the last three limits we find

/Q () Ap(z)dz = /Q f (@) p(z)da

that is, u(x) is a weak solution of the problem (1.5). Hence u(z) = u*(z)
which concludes the proof of our Theorem.
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