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Stationary AR(2) processes with uniform marginal distribution have been intro-
duced by Ristic and Popovic in 2002, as an extension of Chernick’s model UAR(1).
In this paper we investigate the autocorrelation structure of UAR(2) time series,
both theoretical and by simulation techniques. The speed of convergence to zero
of the autocorrelation function is discussed, depending the position of the param-
eters with respect to the border of the stationarity domain.
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1. INTRODUCTION

Non-gaussian autoregressive processes present an increasing theoretical
and practical interest, due to their new and sometimes complex stochastic
properties, as well as to their wide applications. Among the stationary AR
time series with specified non-gaussian marginal distribution we mention the
EAR processes discussed in [1] and the GAR processes discussed in [8]. In
1981, [4] Chernick has introduced the UAR(1) process as the strictly station-
ary AR(1) process with uniform marginal distribution U[0,1]. This class of
time series is important in respect with the extreme value limit theorems. In
2002, [10], Ristic and Popovic have extended Chernick’s model to UAR(2)
processes, with uniform marginal distribution U[0,1], and they have estimated
the parameters of the process by means of the method of ratios [6].

In this paper we investigate the autocorrelation structure of UAR(2)
processes, both theoretical and by simulation techniques. We discuss the speed
of convergence to zero of the autocorrelation function within the stationarity
domain and near its border.

Definition. A stochastic process {Xn, n ∈ Z} is called an UAR(2) time
series if it is defined by the following expression

Xn =

{
αXn−1 + εnw.p. α

α−β

βXn−2 + εnw.p.− β
α−β

,
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where α and β are parameters α ∈ [0, 1) and β ∈ (−1, 0] such that α− β > 0,
{εn} is a sequence of independent, identical distributed random variables with
the distribution P {εn = s (α− β)− β} = α− β, s = 0, 1, . . . , k − 1, k = 1

α−β

and the random variables Xm and εn are independent iff m <n.

2. AUTOCORRELATION STRUCTURE

Property 1. If {Xn, n ∈ Z} is a strictly stationary time series UAR(2),
then the sequence of innovations {εn, n ∈ Z} observes a discrete uniform dis-
tribution εn ∼ Uniform {−β, α− 2β, . . . , 1− α}, with

E (εn) =
1− α− β

2
, V (εn) =

1− (α− β)2

12
.

The proof follows from a direct characteristic function argument.

Property 2. The autocovariance function of an UAR(2) process satisfies
the following relations

γ(0) = cov (Xn, Xn) =
1
12

γ(1) = cov (Xn, Xn−1) = γ(0) · α2

α− β + β2

γ(t) = cov (Xn, Xn−t) =
α2

α− β
· γ(t− 1)− β2

α− β
· γ (t− 2) .

Proof.

γ(0) = V (Xn) =
1
12

E
(
X2

n

)
= γ(0) +

(
1
2

)2

=
1
12

+
1
4

=
1
3

γ(1) = E (XnXn−1)−
(

1
2

)2

E (XnXn−1) = γ(1) +
1
4

E (XnXn−1) =
α

α− β
E ((αXn−1 + εn) Xn−1) +

+
(
− β

α− β

)
E ((βXn−2 + εn) Xn−1) =

=
α2

α− β
· 1
3

+
α

α− β
· 1
2
·
(

1− α− β

2

)
−
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− β2

α− β
·
(

γ(1) +
1
4

)
− β

α− β
· 1
2
·
(

1− α− β

2

)
.

So,

γ(1) ·
(

1 +
β2

α− β

)
=

α2

3 (α− β)
+

α (1− α− β)
4 (α− β)

−

−β (1− α− β)
4 (α− β)

− 1
4
− β2

4 (α− β)

γ(1) = γ(0) · α2

α− β + β2

γ (2) = E (XnXn−2)−
(

1
2

)2

E (XnXn−2) = γ (2) +
1
4

E (XnXn−2) =
α

α− β
E ((αXn−1 + εn) Xn−2) +

+
(
− β

α− β

)
E ((βXn−2 + εn) Xn−2) =

=
α2

α− β
·
(

γ(1) +
1
4

)
+

α

α− β
· 1
2
·
(

1− α− β

2

)
−

− β2

3 (α− β)
− β

α− β
· 1
2
·
(

1− α− β

2

)
γ (2) =

α2

α− β
γ(1) +

α2

4 (α− β)
+

α (1− α− β)
4 (α− β)

−

− β2

3 (α− β)
−−β (1− α− β)

4 (α− β)
− 1

4

γ (2) = cov (Xn, Xn−2) =
α2

α− β
· γ(1)− β2

α− β
· γ(0).

So,

γ(t) = cov (Xn, Xn−t) =
α2

α− β
· γ(t− 1)− β2

α− β
· γ (t− 2) .

By induction, we get

γ(t + 1) = cov (Xn, Xn−t−1) =
α2

α− β
· γ(t)− β2

α− β
· γ(t− 1)

E (XnXn−t−1) =
α

α− β
E ((αXn−1 + εn) Xn−t−1) +

+
(
− β

α− β

)
E ((βXn−2 + εn) Xn−t−1) =
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=
α2

α− β

(
γ(t) +

1
4

)
+

α

α− β
· 1
2
·
(

1− α− β

2

)
+

+
(
− β

α− β

)
· β

(
γ(t− 1) +

1
4

)
+

(
− β

α− β

)
· 1
2
·
(

1− α− β

2

)
γ(t + 1) =

α2

α− β
γ(t)− β2

α− β
γ(t− 1)+

+
α2

4 (α− β)
+

α (1− α− β)
4 (α− β)

− β2

4 (α− β)
− β (1− α− β)

4 (α− β)
− 1

4
.

So, we have

γ(t + 1) = cov (Xn, Xn−t−1) =
α2

α− β
· γ(t)− β2

α− β
· γ(t− 1). �

Property 3. The autocovariance function of an UAR(2) process satisfies
the following exponential weighted equation:

γ(t) = Gt
1A1 + Gt

2A2,

where G−1
1 and G−2

2 are the roots of the equation 1− α2

α−β G + β2

α−β G2 = 0,

γ(0) = A1 + A2

γ(1) = G1A1 + G2A2.

So, we have

γ(t) = Gt
1

γ(0)G2 − γ(1)
G2 −G1

+ Gt
2

γ(1)−G1γ(0)
G2 −G1

.

3. A SIMULATION STUDY

The stationarity domain of an UAR(2) process is:

Dj =
{

(α, β)
∣∣∣α ∈ [0, 1) , β ∈ (−1, 0] ,

1
α− β

= j ∈ N∗, j ≥ 2
}

D =
⋃

j≥2, j∈N

Dj .

a) The aim of our simulation study consists of:
– investigation of the (weak) stationarity of the process in terms of its

mean and autocovariance functions;
– the characterization of the behaviour of the autocorrelation function,

both within the same domain and near its border;
– investigation of the speed of convergence to zero of the autocovariance

function, both within the stationarity domain and near its border.
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b) The algorithms:

Algorithm S.D. (Stationarity in the Domain):

Step 1. Generate N independent trajectories of length n

Xi
t , t = 0, n− 1, i = 1, N.

Step 2. Calculate

μ̂i =
1
n

n−1∑
t=0

Xi
t , i = 1, N

γj (k) = cov (Xt, Xt+k)

ρj (k) = corr (Xt, Xt+k)

γ̂j (k) = ck

ρ̂j (k) = rk

ri
k =

ci
k

ci
0

rk =
1
n

N∑
i=1

ri
k (the “mean autocorrelation”).

Step 3. Perform descriptive statistics for
{
μ̂1, . . . , μ̂N

}
and evaluate E(μ̂)

and Std(μ̂).
Step 4. Plot (k, rk).
Step 5. Investigate the convergence speed of rk towards zero by choosing a
threshold and identify k∗such that |ck| ≤ threshold for any k ≥ k∗.
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Identify the order statistics:

min
t=0,...,(n−1)−k∗

γ̂j (t + k∗, t)

max
t=0,...,(n−1)−k∗

γ̂j (t + k∗, t) .

Algorithm GEN:

Step 1. We generate the first three values: x0, x1, x2 and a value u in (0, 1).
Step 2. Let u < α

α−β then eps = x2 − αx1, otherwise eps = x2 − βx0.
Step 3. We generate x3, x4, . . . , xn.

c) Results:

The behaviour of the UAR(2) process is investigated in the following points
from the stationarity domain:(

1
4
,−1

4

)
,

(
2
5
,− 1

10

)
,

(
1
10

,−2
5

)
for j = 2(

1
6
,−1

6

)
,

(
1
10

,− 7
30

)
,

(
7
30

,− 1
10

)
for j = 3(

1
8
,−1

8

)
,

(
1
10

,− 3
20

)
,

(
3
20

,− 1
10

)
for j = 4.

The simulation study is based on N = 1000 trajectories of length n = 1000
generated for each case considered above.

1. The behaviour of the mean function:

Fig. 1
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Fig. 2

In the following tables we present the descriptive statistics for the estimator μ̂:

α β E(μ̂) Std(μ̂)

1/4 -1/4 0.5000686 0.2915992

2/5 -1/10 0.5087181 0.2848133

1/10 -2/5 0.5083805 0.2849858

α β E(μ̂) Std(μ̂)

1/6 -1/6 0.5035765 0.2907252

1/10 -7/30 0.4948670 0.2924257

7/30 -1/10 0.4967081 0.2888967

α β E(μ̂) Std(μ̂)

1/8 -1/8 0.499516 0.290832

1/10 -3/20 0.5005123 0.286903

3/20 -1/10 0.5139405 0.2841330

We notice that the estimator μ̂ based on trajectories of length n = 1000 has
good properties in all considered points, either within the stationarity domain,
or near the border.

2. The behaviour of the autocovariance function:

For j = 2, the stationarity domain is

D2 =
{

(α, β)
∣∣∣α ∈ [0, 1) , β ∈ (−1, 0] ,

1
α− β

= 2
}

.
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In the point
(

1
4 ,−1

4

)
, the process becomes stationary relatively quickly, lag

greater than 50.

Fig. 3

At the border point
(

2
5 ,− 1

10

)
, the process becomes stationary lag greater

than 220.

Fig. 4

At the border point
(

1
10 ,−2

5

)
, the process becomes stationary lag greater

than 230.
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Fig. 5

For j = 3, the stationarity domain is

D3 =
{

(α, β)
∣∣∣α ∈ [0, 1) , β ∈ (−1, 0] ,

1
α− β

= 3
}

.

At the point
(

1
6 ,−1

6

)
, the process becomes stationary lag greater than 47.

At the border point
(

1
10 ,− 7

30

)
, the process becomes stationary lag greater

than 215.
At the border point

(
7
30 ,− 1

10

)
, the process becomes stationary lag greater

than 219.

For j = 4, the stationarity domain is

D4 =
{

(α, β)
∣∣∣α ∈ [0, 1) , β ∈ (−1, 0] ,

1
α− β

= 4
}

.

At the point
(

1
8 ,−1

8

)
, the process becomes stationary lag greater than 45.

At the point
(

1
10 ,− 3

20

)
, the process becomes stationary lag greater

than 208.
At the point

(
3
20 ,− 1

10

)
, the process becomes stationary lag greater

than 210.
We have recorded the estimated autocovariances:

‖γ̂j (t + k, t)‖t=0,...,(n−1); k=0,...,(n−1)

and we have considered a threshold for autocovariances equal to 10−17.
In the following tables we present the lag corresponding to this threshold

and the order statistics for the studied cases:
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j = 2

Parameter lag
k∗

min
t=0,...,(n−1)−k∗ γ̂j (t + k∗, t) max

t=0,...,(n−1)−k∗ γ̂j (t + k∗, t)(
1

4
,−1

4

)
50 3.46× 10−17 0.11(

2

5
,− 1

10

)
220 2.63× 10−17 0.09(

1

10
,−2

5

)
230 2.91× 10−17 0.13

j = 3

Parameter lag
k∗

min
t=0,...,(n−1)−k∗ γ̂j (t + k∗, t) max

t=0,...,(n−1)−k∗ γ̂j (t + k∗, t)(
1

6
,−1

6

)
47 3.17×10−17 0.16(

1

10
,− 7

30

)
215 2.97×10−17 0.08(

7

30
,− 1

10

)
219 4.13×10−17 0.1

j = 4

Parameter lag
k∗

min
t=0,...,(n−1)−k∗ γ̂j (t + k∗, t) max

t=0,...,(n−1)−k∗ γ̂j (t + k∗, t)(
1

8
,−1

8

)
45 4.56× 10−17 0.1(

1

10
,− 3

20

)
208 3.91× 10−17 0.14(

3

20
,− 1

10

)
210 4.23×10−17 0.09

The sample mean is a very good estimator of the expected value of the process.
The autocovariance or autocorrelation functions are influenced by the position
of the parameters. As expected, the “most stationary” point is the center of the
domain. The autocovariance function decreases quicker to zero as j increases.
The simulation study has been performed using the software SAS, version 8.1.
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