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We consider a Finsler manifold. Then the slit tangent bundle of it is endowed with
the Cartan nonlinear connection and with various metrics of Sasaki type. It has
also two remarkable vector fields: the Liouville vector field and the geodesic vector
field. Using these elements we deform the almost product structure defined by
the Cartan nonlinear connection to a framed f -structure that in some conditions
reduces to a 2-paracontact structure. We show that its restriction to the indicatrix
bundle is an almost paracontact structure.
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1. INTRODUCTION

A Finsler structure on a manifold M defines a Riemannian structure in
the vertical tangent bundle and a natural supplement of the vertical tangent
bundle called the horizontal vector bundle or the Cartan nonlinear connec-
tion [6], [2]. Using the horizontal tangent bundle, the Riemannian structure
from the vertical tangent bundle is prolonged to a Riemannian structure on
the whole tangent bundle TM . Such a Riemannian metric was proposed by
S. Sasaki for Riemannian manifolds and by M. Matsumoto [3], for Finsler man-
ifolds. It will be called the Sasaki-Matsumoto metric. While it is very natural
defined, the Sasaki-Matsumoto metric is very rigid, i.e., if certain usual con-
ditions are imposed on it (to be flat, to be symmetric . . .) it comes out that
the Finslerian structure reduces to a particular Riemannian one. On the other
hand, it has not a Finslerian meaning since it is not homogeneous with respect
to the variables from fibres and so it is not defined on the projectivized tangent
bundle as all the other Finslerian objects. This fact makes it inappropriate in
treating global problems in Finsler geometry as for instance the Gauss-Bonnet
theorem [2]. Moreover, its form as a sum of two terms of different physical di-
mensions produces some difficulties when it is used for applications in gauge
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theories. For these reasons, R. Miron in [5] has introduced a simple version
of it (see formula (2) below) that is homogeneous of degree zero with respect
to variables from fibres. Starting with a different point of view, M. Anastasiei
and H. Shimada [1], arrived to a more general and more flexible Riemannian
metric of Sasaki-Matsumoto type that contains two arbitrary functions (see
formula (3) below). In this paper we consider an almost product structure
that paired with G̃ given by (3) provide an almost Riemannian product struc-
ture on T̃M = TM \ {0}. Using the directions defined by the Liouville vector
field C and by the geodesic spray S we define by (14) a structure of corank 2
denoted by p̃ and we show that in certain conditions this defines a framed
f(3,−1)-structure and paired with G̃ it defines a 2-paracontact structure. In
the last Section, we show that restricting this 2-paracontact structure one gets
an almost paracontact structure on the indicatrix bundle.

2. PRELIMINARIES

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent
space at x ∈ M , and by TM =

⋃
x∈M TxM the tangent bundle of M . A

Finsler metric on M is a function F : TM → [0,∞) which has the following
properties:

(i) F is C∞ on T̃M ;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ;
(iii) for each y ∈ TxM , the symmetric bilinear form gy : TxM×TxM → R

given by gy(u, v) := gij(y)uivj where

gij(y) :=
1
2

∂2F 2

∂yi∂yj
,

and u = ui ∂
∂xi |x and v = vi ∂

∂xj |x, is positive defined.
Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of

Fx, define Cy : TxM × TxM × TxM → R by Cy(u, v, w) := Cijk(y)uivjwk

where

Cijk(y) :=
1
2

∂gij

∂yk
.

The family C := {Cy}y∈T̃M
is called the Cartan torsion. By using the notion

of Cartan torsion, for y ∈ Tx \ 0 one defines the mean Cartan torsion Iy :
TxM → R by Iy(u) := Ii(y)ui, where Ii(y) := gjkCijk(y). It is well known
that I = 0 if and only if F is Riemannian [2].
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Put Ci
jk := gisCsjk where gij = (gij)−1. The formal Christofell symbols

of the second kind are

γk
ij =

1
2
gkl

(
∂gjl

∂xi
+

∂gil

∂xj
− ∂gij

∂xl

)
.

They are functions on T̃M . We can also define some other quantities on
T̃M by

N i
j(x, y) := γi

jky
k − Ci

jkγ
k
rsy

rys,

where y ∈ T̃M . The above N i
j are called the nonlinear connection coefficients

on T̃M .

3. METRICS OF SASAKI-MATSUMOTO TYPE ON T̃M

Let Fn = (M,F ) be a Finsler manifold and let (x, y) = (xi, yi) be the lo-
cal coordinates on T̃M . It is well known that the tangent space to T̃M at (x, y)
splits into the direct sum of the vertical subspace V T̃M (x,y) = span(∂̇i) := ∂

∂yi

and the horizontal subspace HT̃M (x,y) = span δi := ∂
∂xi −N j

i (x, y)∂̇j :

T(x,y)T̃M = V T̃M (x,y) ⊕HT̃M (x,y),

M. Matsumoto [3], extended to Finsler spaces Fn the notion of Sasaki metric,
considering the tensor field

(1) G̃SM (x, y) = gij(x, y)dxi ⊗ dxj + gij(x, y)δyi ⊗ δyj ∀(x, y) ∈ T̃M,

where δyi = dyi + N i
j(x, y)dxj . It easily follows that G̃SM is a Riemannian

metric globally defined on T̃M and depending only on the fundamental func-
tion F of the Finsler space Fn. Also, we see that the Sasaki-Matsumoto metric
G̃SM is not homogeneous on the fibers of the tangent bundle TM .

The Miron metric is defined as follows:

(2) G̃M (x, y) = gij(x, y)dxi ⊗ dxj +
c2

F 2
gij(x, y)δyi ⊗ δyj ,

for each (x, y) ∈ T̃M , where c > 0 is a constant. It is easy to check that G̃M

is 0-homogeneous on the fibers of TM . It is clear that it depends only on the
fundamental function F of the Finsler space Fn. A more general metric of
this type is the Riemannian metric

(3) G̃(x, y) = gij(x, y)dxi ⊗ dxj + (a(F 2)gij(x, y) + b(F 2)yiyj)δyi ⊗ δyj ,

for all (x, y) ∈ T̃M , where a, b : [0,∞] → [0,∞], a > 0 and a + bF 2 > 0.
This is in fact a family of metrics depending on two parameters. The Sasaki-
Matsumoto metric and the Miron metric are clearly entering in this family.
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Now, we consider the F(T̃M)-linear mapping P̃ : χ(T̃M) → χ(T̃M),
defined by

(4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P̃ (δi) =

[
− 1√

a
δk
i +

1
F 2

(
1√
a

+ ε
1√

a + bF 2

)
yiy

k

]
∂̇k,

P̃ (∂̇i) =
[
−√aδk

i +
1

F 2

(√
a + ε

√
a + bF 2

)
yiy

k

]
δk,

where ε = +1 or −1. By a direct calculation one verifies that P̃ is an almost
product structure on T̃M which paired with G̃ provide a Riemannian almost
product structure. Thus (T̃M, G̃, P̃ ) is a Riemannian almost product manifold.

4. A FRAMED f(3,−1)-STRUCTURE ON T̃M

On T̃M there exist two remarkable vector fields: C = yi∂̇i, called the
Liouville vector field and S = yiδi, which is the geodesic spray of Fn. Let
us put

(5) ξ̃1 := AS = Ayiδi, ξ̃2 := BC = Byi∂̇i,

where A and B are no-zero functions on T̃M . In fact we take into consideration
the directions defined by C and S. On using (4) and (5) we obtain

(6) P̃ (ξ̃1) =
Aε

B
√

a + bF 2
ξ̃2, P̃ (ξ̃2) =

Bε
√

a + bF 2

A
ξ̃1.

Then we consider the following 1-forms

(7) η̃1 = Cyidxi, η̃2 = Dyiδy
i,

where C and D are no-zero functions on T̃M .
From (4) and (7) we get

(η̃1 ◦ P̃ )(∂̇i) =
[
−√aδk

i +
1

F 2

(√
a + ε

√
a + bF 2

)
yiyk

]
Cyk(8)

= C

[
−√a +

1
F 2

(√
a + ε

√
a + bF 2

)
F 2

]
yi

=
Cε
√

a + bF 2

D
η̃2(∂̇i),
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(η̃2 ◦ P̃ )(δi) =
[
− 1√

a
δk
i +

1
F 2

(
1√
a

+
ε√

a + bF 2

)
yiy

k

]
Dyk(9)

= D

[
− 1√

a
+
(

1√
a

+
ε√

a + bF 2

)]
yi

=
Dε

C
√

a + bF 2
η̃1(δi),

and

(10) (η̃1 ◦ P̃ )(δi) = 0 = η̃2(δi),

(11) (η̃2 ◦ P̃ )(∂̇i) = 0 = η̃1(∂̇i).

From (8)–(11), it follows

(12) η̃1 ◦ P̃ =
Cε
√

a + bF 2

D
η̃2, η̃2 ◦ P̃ =

Dε

C
√

a + bF 2
η̃1.

The equations (5) and (7) give

η̃1(ξ̃1) = ACF 2, η̃2(ξ̃2) = BDF 2, η̃1(ξ̃2) = η̃2(ξ̃1) = 0,

or

(13) η̃1(ξ̃a) = ACF 2δ1
a, η̃2(ξ̃a) = BDF 2δ2

a,

where a = 1, 2. Also by using (3) and (7) we have

Lemma 4.1. For X ∈ χ(T̃M), we have the following

A

C
η̃1(X) = G̃(X, ξ̃1),

B(a + bF 2)
D

η̃2(X) = G̃(X, ξ̃2).

Now we define a tensor field p̃ of type (1, 1) on T̃M by

(14) p̃(X) = P̃ (X)− η̃1(X)ξ̃2 − η̃2(X)ξ̃1, X ∈ χ(T̃M).

This can be written in a more compact form as p̃ = P̃ − η̃1 ⊗ ξ̃2 − η̃2 ⊗ ξ̃1.

Proposition 4.2. The tensor field p̃ on T̃M satisfies the following pro-
perties:

(i) p̃(ξ̃1) =
(

Aε
B
√

a+bF 2
−ACF 2

)
ξ̃2, p̃(ξ̃2) =

(
Bε
√

a+bF 2

A −BDF 2
)

ξ̃1;

(ii) η̃1 ◦ p̃ =
(

Cε
√

a+bF 2

D −ACF 2
)

η̃2, η̃2 ◦ p̃ =
(

Dε
C
√

a+bF 2
−BDF 2

)
η̃1;

(iii) p̃2 = I −
(

Dε
C
√

a+bF 2
+ Bε

√
a+bF 2

A −BDF 2
)

η̃1 ⊗ ξ̃1 −
(

Cε
√

a+bF 2

D +
Aε

B
√

a+bF 2
−ACF 2

)
η̃2 ⊗ ξ̃2.

Proof. Equation (i) follows from (6) and (13), (ii) follows from (12) and
(13) and finally (iii) follows from (i) and (12). �
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Proposition 4.3. The Riemannian metric G̃ satisfies

G̃(p̃X, p̃Y ) = G̃(X, Y ) +

(
B2F 2(a + bF 2)− 2

Bε
√

a + bF 2

C

)
η̃1(X)η̃1(Y )+

+

(
A2F 2 − 2

Aε
√

a + bF 2

D

)
η̃2(X)η̃2(Y ).

Proof. By direct calculation we have

G̃(ξ̃1, ξ̃1) = G̃(Ayiδi, Ayjδj) = A2yiyjgij = A2F 2,(15)

G̃(ξ̃2, ξ̃2) = G̃(Byi∂̇i, Byj ∂̇j) = B2yiyj(agij + byiyj)

= B2F 2(a + bF 2)(16)

and

(17) G̃(ξ̃1, ξ̃2) = G̃(Ayiδi, Byj ∂̇j) = 0.

From (12), (15)–(17) and Lemma 4.1, we get

G̃(p̃X, p̃Y ) = G̃(P̃ (X), P̃ (Y ))− G̃(P̃ (X), ξ̃2)η̃1(Y )− G̃(P̃ (X), ξ̃1)η̃2(Y )

−G̃(ξ̃2, P̃ (Y ))η̃1(X) + η̃1(X)η̃1(Y )G̃(ξ̃2, ξ̃2)

−η̃2(X)G̃(ξ̃1, P̃ (Y )) + η̃2(X)η̃2(Y )G̃(ξ̃1, ξ̃1)

= G̃(X, Y )− B(a + bF 2)
D

η̃2(P̃ (X))η̃1(Y )− A

C
η̃1(P̃ (X))η̃2(Y )

−B(a + bF 2)
D

η̃2(P̃ (Y ))η̃1(X) + B2F 2(a + bF 2)η̃1(X)η̃1(Y )

−A

C
η̃2(X)η̃1(P̃ (Y )) + A2F 2η̃2(X)η̃2(Y )

= G̃(X, Y ) +

(
B2F 2(a + bF 2)− 2Bε

√
a + bF 2

C

)
η̃1(X)η̃1(Y )

+

(
A2F 2 − 2Aε

√
a + bF 2

D

)
η̃2(X)η̃2(Y ).(18)

This completes the proof. �

Theorem 4.4. The ensemble (p̃, (ξ̃a), (η̃b)), a, b = 1, 2 provides a framed
f(3,−1)-structure on T̃M if and only if

(19)

⎧⎪⎪⎨⎪⎪⎩
(i) AC = 1

F 2 ,
(ii) BD = 1

F 2 ,

(iii) A = Bε
√

a + bF 2,

(iv) D = Cε
√

a + bF 2.
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Proof. Let (p̃, (ξ̃a), (η̃b)) be a framed f(3,−1)-structure on T̃M . By defi-
nition of framed f -structures, we have p̃(ξ̃b) = 0, η̃a ◦ p̃ = 0 and η̃a(ξ̃b) = δa

b ,
where a, b = 1, 2. Thus by using part (i) of Proposition 4.2 and (13) we get
AC = 1

F 2 , BD = 1
F 2 , A = Bε

√
a + bF 2 and D = Cε

√
a + bF 2. Conversely,

let (i)–(iv) be hold. Then by using (13) and Proposition 4.2 we conclude that

(20) η̃a(ξ̃b) = δa
b , p̃(ξ̃a) = 0, η̃a ◦ p̃ = 0,

and

(21) p̃2 = I − η̃1 ⊗ ξ̃1 − η̃2 ⊗ ξ̃2.

For completeness of proof, we should prove that p̃3 − p̃ = 0 and p̃ is of rank
2n − 2. From (20) and (21), we get p̃3(X) = p̃(X) for X ∈ χ(T̃M). Now,
we show that Ker p̃ = span{ξ̃1, ξ̃2}. From the second equations in (20), we
see that span{ξ̃1, ξ̃2} ⊆ Ker p̃. Now, let X belongs to Ker p̃. Then p̃(X) = 0
implies that

P̃ (X)− η̃1(X)ξ̃2 − η̃2(X)ξ̃1 = 0.

Thus,
P̃ 2(X) = η̃1(X)P̃ (ξ̃2) + η̃2(X)P̃ (ξ̃1).

Since P̃ 2 = I, it follows from (6) that

X = η̃1(X)ξ̃1 + η̃2(X)ξ̃2,

that is X ∈ span{ξ̃1, ξ̃2}. �
For the geometry of framed f -structures we refer to [8], [4]. For the

Finslerian setting one can see [7].

Theorem 4.5. The ensemble (p̃, (ξ̃a), (η̃b)), a, b = 1, 2 provides an almost
2-paracontact Riemannian structure on (T̃M, G̃) if and only if

(22) A = C = − 1
F

, B =
−1

εF
√

a + bF 2
, D =

−ε
√

a + bF 2

F
,

or

(23) A = C =
1
F

, B =
1

εF
√

a + bF 2
, D =

ε
√

a + bF 2

F
.

Proof. A framed f(3,−1)-structure is an almost 2-paracontact Riemann-
ian structure if and only if

(24) G̃(p̃X, p̃Y ) = G̃(X, Y )− η̃1(X)η̃1(Y )− η̃2(X)η̃2(Y ).

Now, if (22) or (23) hold then by using Proposition 4.3 and Theorem 4.4
it results that (p̃, (ξ̃a), (η̃b)), a, b = 1, 2, provides an almost 2-paracontact
Riemannian structure on (T̃M, G̃). Conversely, if (p̃, (ξ̃a), (η̃b)), a, b = 1, 2, is
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an almost 2-paracontact Riemannian structure on (T̃M, G̃) then by using (24)
and Proposition 4.3 we have

(25) B2F 2(a + bF 2)− 2Bε
√

a + bF 2

C
= −1.

By using (25) and parts (i), (iii) of (19) we obtain C = ± 1
F . If C = − 1

F , then
from (19) we get

A = − 1
F

, B =
−1

εF
√

a + bF 2
, D =

−ε
√

a + bF 2

F
.

Similarly, if C = 1
F , then from (19) we get

A =
1
F

, B =
1

εF
√

a + bF 2
, D =

ε
√

a + bF 2

F
. �

Now, let A,B, C, D satisfying (22) or (23). In these cases, we denote
P̃ , ξ̃1, ξ̃2, η̃

1, η̃2, p̃ with symbols P, ξ1, ξ2, η
1, η2, p, respectively. Thus we have

P = P̃ and

ξ1 = − 1
F

yiδi, ξ2 =
−1

εF
√

a + bF 2
yi∂ī,(26)

η1 =
−1
F

yidxi, η2 =
−ε
√

a + bF 2

F
yiδy

i,

or

ξ1 =
1
F

yiδi, ξ2 =
1

εF
√

a + bF 2
yi∂ī,(27)

η1 =
1
F

yidxi, η2 =
ε
√

a + bF 2

F
yiδy

i.

By using (26), (27) and Theorem 4.5, we get

Theorem 4.6. The ensemble (p, (ξa), (ηb)), a, b = 1, 2, is a an almost
2-paracontact Riemannian structure on (T̃M, G̃).

From (14), (26) and (27) the following local expression of p is obtained

(28) p(δi) = − 1√
a

(
δk
i −

1
F 2

yiy
k

)
∂̇k,

(29) p(∂̇i) = −√a

(
δk
i −

1
F 2

yiy
k

)
δk.

Let us put

(30) h(X, Y ) = G(pX, Y ), X, Y ∈ χ(TM0).

Then we get the following
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Theorem 4.7. The map h is a bilinear and symmetric tensor field on
T̃M . Further, h is of rank(2n− 2) with the null space ker p.

Proof. By using (28), (29) and (30) we obtain

h(δi, ∂̇j) = G(p(δi), ∂j̄) = − 1√
a

(
δk
i −

1
F 2

yiy
k

)
(agkj + byjyk) =(31)

= −√a

(
gij − 1

F 2
yiyj

)
,

and

(32) h(∂̇i, δj) = −√a(gij − 1
F 2

yiyj), h(δi, δj) = h(∂̇i, ∂̇j) = 0.

Since G is bilinear, from (31) and (32), we conclude that h is symmetric and
bilinear on T̃M . The null space of h is

{X | h(X, Y ) = 0, ∀Y ∈ TM0} = {X | G(pX, Y ) = 0, ∀Y ∈ TM0}
= {X | p(X) = 0} = ker p.

Therefore, by the proof of Theorem 4.4, we get rank h = 2n− 2. �
By using (31) and (32) the tensor field h can be written as follows

h = −2
√

a

(
gij − 1

F 2
yiyj

)
dxiδyj .

Thus it is a singular pseudo-Riemannian metric on T̃M .

5. PARACONTACT STRUCTURE ON INDICATRIX BUNDLE

The set IM = {(x, y) ∈ TM0 | F (x, y) = 1} is called the indicatrix
bundle of Fn. This is a submanifold of dimension 2n − 1 of T̃M . We show
that the framed f(3,−1)-structure on T̃M , given by Theorem 4.5, induces an
almost paracontact structure on IM .

Let

(33) xi = xi(uα), yi = yi(uα), α ∈ {1, . . . , 2n− 1},

with rank
(

∂xi

∂uα , ∂yi

∂uα

)
= 2n − 1 be a parametrization of IM . The natural

frame field on IM is represented by

(34)
∂

∂uα
=

∂xi

∂uα

∂

∂xi
+

∂yi

∂uα

∂

∂yi
=

∂xi

∂uα

δ

δxi
+
(

Nk
i

∂xi

∂uα
+

∂yk

∂uα

)
∂

∂yk
.
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Since F 2 = 1 on IM , then by using (34) we obtain

(35) 0=
∂F 2

∂uα
=

∂xi

∂uα
δiF

2 +
(

Nk
i

∂xi

∂uα
+

∂yk

∂uα

)
∂̇kF

2 =2
(

Nk
i

∂xi

∂uα
+

∂yk

∂uα

)
yk,

because for a Finsler space we have δiF
2 = 0 and ∂̇iF

2 = 2yi. By using (34)
and (35) we deduce that

(36) G

(
∂

∂uα
, ξ2

)
= ±

√
a + bF 2

εF

(
Nk

i

∂xi

∂uα
+

∂yk

∂uα

)
yk = 0.

Thus the vector field ξ2 restricted to IM is normal to IM . Since G(ξ1, ξ2) = 0,
ξ1 is tangent to IM .

We restrict to IM all the objects introduced above and indicate this fact
by putting a bar over the letters denoting those objects. We have the following

Lemma 5.1. On IM , for any X ∈ χ(IM) we have

ξ̄1 = εyiδi = εS, η̄1 = εyidxi, η̄2 = 0, p̄(X) = P̄ (X)− η̄1(X)ξ̄2.

Proof. Since F = 1 on IM , by using (26) and (27), it results that ξ̄1

is equal to εS and η̄1 is equal with εyidxi. From η̄2(X) = G(X, ξ2) = 0, the
other relation of lemma will follow. �

We put ξ̄ = ξ̄1, η̄ = η̄1 and Ḡ = G̃|IM . Then Theorem 4.6 and Lem-
ma 5.1, imply the following

Theorem 5.2. (p̄, ξ̄, η̄, Ḡ) defines an almost paracontact Riemannian
structure on IM , that is,

(1) η̄(ξ̄) = 1, p̄(ξ̄) = 0, η̄ ◦ f̄ = 0,
(2) p̄2(X) = X − η̄(X)ξ̄, X ∈ χ(IM),
(3) p̄3 − p̄ = 0, rank p̄ = 2n− 2 = (2n− 1)− 1,
(4) Ḡ(p̄X, p̄Y ) = Ḡ(X, Y )− η̄(X)η̄(Y ), X, Y ∈ χ(TM).
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