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We construct the matrix of fundamental solutions for the equations of theory
of asymmetric elasticity in the two dimensional case. In this context, we obtain
the analogous of simple and double layers potentials as well as those of volume
potential, as in the classical theory of singular integral equations. The system of
singular integral equations for the first and the second principal boundary value
problems are obtained. It is proved that for every system of singular integral
equations the index is equal to zero.

AMS 2010 Subject Classification: 45B05, 45F15, 45G05, 74A35, 74A60.

Key words: asymmetric elasticity, singular integral equations, simple layer poten-
tial, double layer potential, volume potential, idex of equation.

1. INTRODUCTION

There are a lot of papers dedicated to the theory of asymmetric elasticity.
Classical continuum mechanics considers material continua as simple point-
continua with points having three displacement-degrees of freedom, and the
response of a material to the displacement of its points is characterized by a
symmetric Cauchy stress tensor presupposing that the transmission of loads
through surface elements is uniquely determined by a force vector, neglecting
couples. Such a model may be insufficient for the description of certain physical
phenomena. Non-classical behaviour due to microstructural effects is observed
most in regions of high strain gradients, e.g. at notches, holes or cracks.

The model proposed by the Cosserat brothers is one of the most promi-
nent extended continuum models. Postulating the invariance of energy under
Euclidean transformations they were able to derive the equations of balance
of forces and balance of angular momentum in a geometrically exact format.
However, they never wrote down any constitutive equations.

Compared to classical linear elasticity the model features three additional,
independent degrees of freedom, related to the rotation of each particle which
need not coincide with the macroscopic rotation of the continuum at the same
point. One of the essential features of polar continua is that the stress tensor
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is not necessarily symmetric, and the balance of angular momentum equation
has to be modified accordingly. All theories in which the stress tensor is not
symmetric can be regarded as polar-continua. The non-symmetry of the stress
tensor appears also if higher order deformation gradients are included in the
free energy, instead of only the first order gradients. Both such theories typi-
cally predict a size-effect, meaning that smaller samples of the same material
behave relatively stiffer than larger samples. This is an experimental fact, but
completely neglected in the classical approach. It implies that some of the
additional parameters in the Cosserat model define a length-scale present in
the material.

A.C. Eringen (see, for instance, [1]) has complemented the theory by
introducing micro-inertia and renamed it subsequently micropolar theory. In
static elasticity, Cosserat and micropolar may be used interchangeably.

The so-called indeterminate couple stress model (Koiter-Mindlin model)
appears formally by setting the Cosserat couple modulus to infinity and is,
in fact, a special higher order gradient continuum where the higher deriva-
tives act only on the continuum rotation. In general, the higher the value
of the modulus, the closer is the Cosserat rotation to the continuum (macro-
scopic) rotation.

The mathematical analysis of linear micropolar models is fairly well es-
tablished with a wealth of analytical solutions for boundary value problems,
existence and uniqueness theorems and continuous dependence results. It is
usually based on a uniform positivity assumption on the free energy which
sets it apart from linear elasticity in that Korns inequality is traditionally not
needed. D. Iesan (see, for instance, [5]), has contributed greatly to this field.

In the paper [3] of Gorbachev, several new integral representations of
the solutions to some problems of the moment and nonmoment theories of
elasticity for heterogeneous bodies are proposed in terms of the solutions to
the same problems for homogeneous bodies. In particular, these integral re-
presentations can be used to substantiate the homogenization procedure for
composite mechanics problems.

A general solution of the homogeneous static relations of the theory of
asymmetric elasticity is constructed in the paper [9] of Olifer. The passage
to the solution of the classical (symmetric) theory of elasticity is shown and
the form of the general solution for the palne problem is derived. Certain
modifications to the general solution of the equations of equilibrium in the
theory of elasticity serve as a basis for formulating various different expressions
for the Castigliano functional in the stress functions.

In the paper [11] of Yanqi and Zhida, based on the finite deformation
decomposition theorem, the definition of the body moment is renewed as the
sum of its internal and external. The expression of the increment rate of the
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deformation energy is derived and the physical meaning is clarified. The power
variational principle and the complementary power variational principle for
finite deformation mechanics are supplemented and perfected.

In the paper [10] of Tianmin, the equations of motion and all boundary
conditions as well as the energy equation for non-local asymmetric elasticity
are derived together from the complete principles of virtual work and vir-
tual power as well as the generalized Piola theorem. Adding the boundary
conditions presented here to a previous its result, the mixed boundary-value
problem of the non-local asymmetric linear elasticity are formulated.

Some basic results regarding microstretch thermoelastic bodies are de-
duced in our paper [6], by using the Lagrange Identity method.

2. BASIC EQUATIONS

The equations of assymetrical Elasticity, written in displacements and
couple, in two-dimensional space, have the following form (see [8], [4]):

(μ+ α)Δu1 + (λ+ μ− α) ∂

∂x1

(
∂u1
∂x1

+
∂u2
∂x2

)
+ 2α

∂u3
∂x2

= 0 (f1)(1)

A

(
∂

∂x

)
U≡(μ+ α)Δu2+(λ+ μ− α) ∂

∂x2

(
∂u1
∂x1

+
∂u2
∂x2

)
− 2α

∂u3
∂x1

= 0 (f2)

(μ+ ε)Δu3 + 2α
(
∂u2
∂x1

− ∂u1
∂x2

)
− 4 α u3 = 0 (f3)

Here A
(

∂
∂x

)
U contains all three lines of the formula (1). By U(u1, u2, u3)

we denote the displacement (u1, u2) and the rotation ω = u3. Also, f(f1, f2, f3)
represents the force (f1, f2) and the moment f3.

Consider the operator of the efforts, defined by means of the matrix
3× 3-dimensional matrix

T

(
∂

∂x
, n

)
≡(2)

≡

⎛
⎜⎜⎝
(λ+2μ)n1 ∂

∂x1
+(μ+ α)n2 ∂

∂x2
(μ−α)n2 ∂

∂x1
+λ n1 ∂

∂x2
2αn2

(μ−α)n1 ∂
∂x2

+λ n2 ∂
∂x1

(λ+2μ)n2 ∂
∂x2

+(μ+ α)n1 ∂
∂x1

−2αn1
0 0 (γ + ε) ∂

∂n

⎞
⎟⎟⎠.

The corresponding determinant of the matrix

A

(
∂

∂x

)
=

[
Aij

(
∂

∂x

)]
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can be rewritten in the form

detA
(
∂

∂x

)
= (λ+ 2μ)Δ2[(α+ μ)(γ + ε)Δ− 4αμ].

The matrix

E(x) = (Eij(x)) = (∗Aij(x))F

is the matrix of the fundamental solutions of the equation (1) if F satisfies the
equation

(3) (λ+ 2μ)Δ2[(α+ μ)(γ + ε)Δ− 4αμ]F = δ(x),

where δ is the well known Dirac distribution.

3. BASIC RESULTS

From the equation (3) we can write

Δ2F = − 1
2π(λ+ 2μ)(λ+ μ)(γ + ε)

K0(l
)

ΔF = − 1
8π μ α (λ+ 2μ)

[K0(l
) + ln 
]

F = − (α+ μ)(γ + ε)
32μ2α2π(λ+ 2μ)

[K0(l
) + ln 
]− 1
32π μ α (λ+ 2μ)


2(ln 
− 1).

In the above relations K0(l
) represents the modified Bessel’s functions
of order zero (see [7]). Also, we used the following notations

l2 =
4αμ

(α+ μ)(γ + ε)
, 
2 = x21 + x22.

Taking into account the matrix (∗Aij(x)), we have

∗Aij

(
∂

∂x

)
= (λ+ 2μ)

[
(γ + ε)Δ2 − 4αΔ

]
δij−

− ∂2

∂xi ∂xj
[(λ+ μ− α)(γ + ε)Δ− 4α(λ+ μ)]

∗Aij

(
∂

∂x

)
= 2α(λ+ 2μ)εijk

∂Δ
∂xk

∗A33
(
∂

∂x

)
= (λ+ 2μ)(γ + ε)Δ2, i, j, k = 1, 2.
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As a consequence, for the matrix of fundamental solutions Eij we obtain

Eij(x) =
[

α

2πμ(α+ μ)
K0 +

λ+ 3μ
4πμ(α+ 2μ)

ln 

]
δij−

− λ+ μ

4πμ(α+ 2μ)
xixj


2
− γ + ε

8πμ2
[K0 + ln 
]xixj , i, j = 1, 2

Eij(x) = − 1
4πμ

εijk (K0 + ln 
)xk, k = 1, 2

E33(x) = − 1
2π(γ + ε)

K0,

where δij and εijk represent the Kronecker symbol and the Ricci’s tensor,
respectivelly. The above relations can be rewritten in the following form

Eij(x) =
[

α

2πμ(α+ μ)
K0 +

λ+ 3μ
4πμ(α+ 2μ)

ln 
− γ + ε

8πμ2
1− l
K1


2

]
δij−

− λ+ μ

4πμ(α+ 2μ)
xixj


2
− γ + ε

8πμ2
l2
2K0 + 2l
K1 − 2


2
xixj


2
, i, j = 1, 2

Eij(x) = − 1
4πμ

εijk
1− l
K1


2
xk, k = 1, 2

E33(x) = − 1
2π(γ + ε)

K0.

Let us remark that

lim
�→0

1− l
K1


2
=
l2

2
lim
�→0

K0(l
), lim
�→0

2− 2l
K1 − l2
2K0


2
= 0,

and, for 
→ 0 we have the approximation

Eij ≈ Aδij ln 
+O(
).
Let D be the domain having the boundary ∂D = Γ. Consider two vector

fields U and V which satisfy the properties:
– the partial derivative of these functions of order I are continuous on

D̄ = D ∪ Γ;
– the partial derivative of these functions of second order are continuous

on D.
According to the Green’s formula, we have∫

D

[
V.A

(
∂

∂x

)
U − U.A

(
∂

∂x

)
V

]
dω =(4)

=
∫
Γ

[
U.T

(
∂

∂x
, n

)
V − V.T

(
∂

∂x
, n

)
U

]
ds.



154 Marin Marin 6

We shall substitute, in (4) the vector field V by

V ≡ Ei (E1i(x− y), E2i(x− y), E3i(x− y)) ,
such that we deduce

ui(y) =
∫

D
Ei(x− y)A

(
∂

∂x

)
U(x)dωx−

−
∫
Γ

[
U(x)T

(
∂

∂x
, n

)
Ei(x− y)− Ei(x− y)T

(
∂

∂x
, n

)
U(x)

]
dxS.

If we take into account the fact that

E∗(y − x) = E(x− y),
we obtain

U(x) =
∫

D
E(x− y)A

(
∂

∂y

)
U(y)dωy−(5)

−
∫
Γ

[
T

(
∂

∂y
, n

)
E(y − x)

]∗
U(y)dyS +

∫
Γ
E(x− y)T

(
∂

∂y
, n

)
U(y)dyS.

If we use the notation

E(x, y) =
[
T

(
∂

∂y
, n(y)

)
E(y − x)

]∗

then we deduce

A

(
∂

∂x

)
E(x, y) = T

(
∂

∂y
, n

)[
A

(
∂

∂y

)
E(x− y)

]∗
= 0.

The result from formula (5) is applicable for x ∈ D. If x ∈ Γ then the
left part of (5) becomes 1/2U(x). If x �∈ D̄, where D̄ = D ∪ Γ, then the left
part of (5) becomes zero. In the particular case when in (5) we take U ≡ u0 =
constant, then

(6)
∫
Γ
E(x, y)u0dyS =

⎧⎪⎨
⎪⎩
−u0 + a continuous function, for x ∈ D,
−u0/2 + a continuous function, for x ∈ Γ,
a continuous function, for x �∈ D̄.

The formula (6) suggests us to introduce the following potentials

(7) H(x) =
∫

D
E(x− y)f(y)dyω,

(8) V (x) =
∫
Γ
E(x− y)ϕ(y)dyS,

(9) W (x) =
∫
Γ
E(x, y)h(y)dyS,
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in which we have the following three quantities:
– H(x) is the volume potential and satisfies the following equation

A

(
∂

∂x

)
H(x) = f(x);

– V (x) is the surface potential of a simple layer;
– W (x) is the surface potential of a double layer.

Regarding the surface potential of a double layer, W (x), we have the following
result.

Theorem 1. If the boundary Γ is a Lyapunov closed curve and h is a
function that satifies the Hőlder’s condition on Γ, then we have

Wi(x0) = −h(x0)2
+

∫
Γ
E(x0, y)h(y)dyS,(10)

We(x0) =
h(x0)
2

+
∫
Γ
E(x0, y)h(y)dyS,

where the indices i and e designate the limit value of the potential W by means
of points from inside of the domain D and the limit value of the potential W
by means of points from outside of the domain D, respectively.

The values Wi(x0) and We(x0) are calculated by passing to the limit in
x0 ∈ Γ. Using (10)1 and (10)2 we can write

(11) W (x) =
∫
Γ
E(x, y) [h(y)− h(x0)] dyS +

∫
Γ
E(x, y)h(x0)dyS.

First integral in the right side of (11) is a continuous function when x → x0.
As regards the second integral in the right side of (11), its signification can be
determined form formula (6).

Regarding the surface potential of a simple layer, V (x), we have the
following result.

Theorem 2. Suppose the conditions of Theorem 1 are satisfied. Then,
we have[

T

(
∂

∂x
, n

)
V (x0)

]
i

=
ϕ(x0)
2

+
∫
Γ

[
T

(
∂

∂x
, n

)
E(x0 − y)

]
ϕ(y)dyS,(12)

[
T

(
∂

∂x
, n

)
V (x0)

]
e

= −ϕ(x0)
2

+
∫
Γ

[
T

(
∂

∂x
, n

)
E(x0 − y)

]
ϕ(y)dyS.

The relations (10) and (12) give us the possibility to assert/express first
and second boundary value problems by means of singular integral equations.

We shall find the solution of first boundary value problem under the form
of a surface potential of a double layer and the solution of second boundary
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value problem under the form of a surface potential of a simple layer. The
boundary conditions are taken in the following form

Ui(x0) = g(x0), x0 ∈ Γ
in the case of first inside problem;

Ue(x0) = g(x0), x0 ∈ Γ
in the case of first outside problem;[

T

(
∂

∂x
, n

)
V (x0)

]
i

= p(x0), x0 ∈ Γ

in the case of second inside problem;[
T

(
∂

∂x
, n

)
V (x0)

]
e

= p(x0), x0 ∈ Γ

in the case of second outside problem.
By virtue of Theorem 1 and Theorem 2, in order to determine the un-

known density h, we obtain the following singular integral equations

(13) h(x0)− 2
∫
Γ
E(x, y)h(y) dyS = −2g(x0),

for the first inside problem, and,

(14) h(x0) + 2
∫
Γ
E(x, y)h(y) dyS = 2g(x0),

for the first outside problem. For the second inside problem, we obtain the
following integral equation, having as unknown density the function ϕ

(15) ϕ(x0) + 2
∫
Γ
E∗(x, y)ϕ(y) dyS = 2p(x0),

and, for the second outside problem,

(16) ϕ(x0)− 2
∫
Γ
E∗(x, y)ϕ(y) dyS = −2p(x0).

Each of the above equation represents, in fact, a system of three equations.
In what follows we wish to study the index of these systems. Let us

consider, for instance, the system

h(x0) + 2
∫
Γ
E(x, y)h(y) dyS = 2g(x0).
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We have

2E(x0, y) =(17)

=
1
π

⎡
⎢⎣

−an1ξ1/
2 −bn2ξ1/
2 + cn1ξ2/

2 0

−bn1ξ2/
2 + cn2ξ1/

2 −an2ξ2/
2 0

0 0 0

⎤
⎥⎦+ K̄(x0, y),

where we use the notation
– ξ = yi − xi;
– n (n1, n2) is the outward unit normal in the point y;

(18) −a = α(λ+ 2μ)
3μ(α+ μ)

, b =
3μ3 + αλ2 − αμ2
3μ(α+ μ)(λ+ 2μ)

, c =
3μ3 − 4αλμ− 10αμ2

3μ(α+ μ)(λ+ 2μ)
.

Also, in (17) K̄(x0, y) represents a fixed regular kernel which is a negligible
quatity. If we take

t− t0 = ξ1 + i ξ2 = 
ei(θ−θ0)

then we have

dξ1 = cos (θ − θ0) d
− 
 sin (θ − θ0) dθ,
dξ2 = sin (θ − θ0) d
+ 
 cos (θ − θ0) dθ.

Also, by direct calculations we obtain

n1 = − dξ2
dyS

, n2 =
dξ1
dyS

,

ξ1n2 − ξ2n1

2

dyS =
d



=

dt
t− t0 − idθ,

n2ξ1

2

dyS = − cos2 (θ − θ0) d



+ sin (θ + θ0) cos (θ − θ0) dθ,

n1ξ2

2

dyS = sin2 (θ − θ0) d



+ sin (θ − θ0) cos (θ − θ0) dθ,

n1ξ1

2

dyS = sin (θ − θ0) cos (θ − θ0) d



+ cos2 (θ − θ0) dθ,

n2ξ2

2

dyS = − sin (θ − θ0) cos (θ − θ0) d



+ sin2 (θ − θ0) dθ.

We can transform the equation (14) such that it receives the following form

(19) h(t0) +
1
π

[
0 b
c 0

] ∫
Γ

ϕ(t)
t− t0dt+

∫
Γ
K (x0, y)ϕ(y)dyS = 2g(x0),

where K (x0, y) is the regularized kernel.
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Following [2] and [7], the index can be determined by means of formula

χ =
1
2π

[
arg

det(A−B)
det(A+B)

]
Γ

.

We have

det(A−B) = det(A+B) = det
[

1 −ib
−ic 1

]
= 1 + bc.

But, taking into account the notations (18) we deduce

1 + bc =
9μ(α+ μ)2(λ+ 2μ)2 +

(
3μ2 + αλ2 − αμ2) (4αλ+ 5αμ− 3μ2

)
9μ(α+ μ)2(λ+ 2μ)2

.

After simple calculations on the numerator of the fraction in the right
side of the above relation, we find

9μ(α+ μ)2(λ+ 2μ)2 +
(
3μ2 + αλ2 − αμ2) (4αλ+ 5αμ− 3μ2

)
=

= 3μ5 + 42αμ4 +
34
3
μα2λ2 +

29
3
α2μ3 + 15αλ2μ2 + 9μ3λ2+

+(3λ+ 2μ)
(
24αμ3 + 12μ4 +

4
3
α2λ2 +

32
3
μ2α2

)
.

Taking into account the conditions

3λ+ 2μ > 0, α > 0, μ > 0

we obtain
det(A−B) �= 0.

4. CONCLUSION

We conclude that the index of the system (14) becomes zero. As a conse-
quence, for the system (14) the Fredholm’s Theorems is still valid. Analagous
considerations we can make with regard to the systems (13), (15) and (16).

5. ANNEX

We wish to outline some notions regarding the index of a function and
the index of a singular equation.

Let us consider Γ a closed and smooth curve and G(ξ) a continuous
function on the curve Γ.

It is called the index of the function G(ξ) on the curve Γ, the variation
of the argument of G(ξ), when the curve Γ is being covered twice in direct way.

χ =
1
π
var

ξ∈Γ argG(ξ).
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It is known that
lnG(ξ) = ln |G(ξ)|+ i argG(ξ).

If ξ goes allong the closed curve Γ, then the quantity is added to its initial
value, such that,

var
ξ∈Γ ln |G(ξ)| = 0

such that we can write the index in the form

χ =
1
π
var

ξ∈Γ lnG(ξ).

If the function G(ξ) is of the class C1 on Γ, then we can represent the
index of G(ξ) in the form

(20) χ =
1
π

∫
Γ
d [argG(ξ)] =

1
π

∫
Γ
d [lnG(ξ)] .

Taking into account the fact that G(ξ) is a continuous function, we de-
duce that the variation of the argument of G(ξ), when the curve Γ is covered
one time, must be a multiple of the number 2π. As a consequence, the index χ
of a continuous function, on a closed curve Γ (G(ξ) �= 0, ∀ξ ∈ Γ) is an integer
number or zero.

From the definition of the index, it is easy to prove that:
– the index of a product of two functions is equal to the sum of the index

of the factors
χ(f.g) = χ(f) + χ(g);

– the index of a quotient of two functions is equal to the difference of the
index of the factors

χ

(
f

g

)
= χ(f)− χ(g).

If G is a holomorphyc function on the inside domain of the path Γ, it
is continuous on Γ and G(ξ) �= 0, ∀ξ ∈ Γ, then the index of G is equal to
the difference betwen the number of zeroes and the number of poles of the
function G inside of the path Γ.

Let us consider the singular integral equation

(21) a(z)ϕ(z) +
b(z)
iπ

∫
Γ

ϕ(ξ)
ξ − z dξ = f(z), z ∈ C.

It is called the index of the singular integral equation (21), the index of
the function

a(z)− b(z)
a(z) + b(z)

.
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Taking into account the expression (20) of the index of a function, we
obtain the following expression of the index of a singular integral equation

χ =
1
2π

∫
Γ
d
[
arg

a(ξ)− b(ξ)
a(ξ) + b(ξ)

]
.

The adjunct equation of the singular integral equation (21) is

(22) a(z)ψ(z)− 1
iπ

∫
Γ

b(ξ)ψ(ξ)
ξ − z dξ = h(z), z ∈ C

and it is obtained by permutation of the variables ξ and z in the kernel of the
equation (21). It is easy to prove that the index χ∗ of the singular integral
equation (22) is

χ∗ = −χ.
It is well known that, for the singular integral equations, instead of

the Fredholm’s Theorems, are still valid Theorems of F. Noether. But, for
the singular integral equation, having a null index, the Fredholm’s Theorems
are valid.
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