ON STAR PARTITION DIMENSION OF TREES

RUXANDRA MARINESCU-GHEMECI

Abstract

For a connected graph G and any two vertices u and v in G, let $d(u, v)$ denote the distance between u and v. For a subset S of $V(G)$, the distance between v and S is $d(v, S)=\min \{d(v, x) \mid x \in S\}$. Let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be an ordered k-partition of $V(G)$. The representation of v with respect to Π is the k-vector $r(v \mid \Pi)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots d\left(v, S_{k}\right)\right) . \Pi$ is a resolving partition for G if the k-vectors $r(v \mid \Pi), v \in V(G)$ are distinct. The minimum k for which there is a resolving k-partition of $V(G)$ is the partition dimension of G, and is denoted by $p d(G) . \Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ is a resolving star k-partition for G if it is a resolving partition and each subgraph induced by $S_{i}, 1 \leq i \leq k$, is a star. The minimum k for which there exists a star resolving k-partition of $V(G)$ is the star partition dimension of G, denoted by $\operatorname{spd}(G)$. In this paper star partition dimension of trees and the existence of graphs with given star partition, partition and metric dimension, respectively are studied.

AMS 2010 Subject Classification: 05C12, 05C15.
Key words: distance, metric dimension, partition dimension, star partition dimension, resolving partition, resolving star partition.

1. INTRODUCTION

As described in [2] and [7], dividing the vertex set of a graph into classes according to some prescribed rule is a fundamental process in graph theory. Perhaps the best known example of this process is graph coloring. In [3], the vertices of a connected graph are represented by other criterion, namely through partitions of vertex set and distances between each vertex and the subsets in the partition. Thus a new concept is introduced - resolving partition for a graph.

Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. For any two vertices u and v in G, let $d(u, v)$ be the distance between u and v. The diameter of G, denoted by $d(G)$ is the greatest distance between any two vertices of G. For a subset S of $V(G)$ and a vertex v of G, the distance $d(v, S)$ between v and S is defined as $d(v, S)=\min \{d(v, x) \mid x \in S\}$.

For an ordered k-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ and a vertex v of G, the representation of v with respect to Π is the k-vector

$$
r(v \mid \Pi)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots d\left(v, S_{k}\right)\right) .
$$

MATH. REPORTS 14(64), 2 (2012), 161-173
Π is called a resolving k-partition for G if the k-vectors $r(v \mid \Pi), v \in V(G)$ are distinct. The minimum k for which there is a resolving k-partition of $V(G)$ is the partition dimension of G and is denoted by $p d(G)$. A resolving partition of $V(G)$ containing $p d(G)$ classes is called a minimum resolving partition.

In [6] a particular case of resolving partitions is considered - connected resolving partitions. $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ is a connected resolving k-partition if it is a resolving partition and each subgraph induced by class S_{i}, denoted $\left\langle S_{i}\right\rangle, 1 \leq i \leq k$, is connected in G. The minimum k for which there is a connected resolving k partition of $V(G)$ is the connected partition dimension of G, denoted by $\operatorname{cpd}(G)$.

Another type of resolving partitions, mentioned in [6] as topic for study, is resolving star partitions. $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ is a resolving star k-partition if it is a resolving partition and each subgraph induced by S_{i}, for $1 \leq i \leq k$, is a star. The minimum k for which there exists a resolving star k-partition of $V(G)$ is the star partition dimension of G, denoted by $\operatorname{spd}(G)$. A resolving star partition of $V(G)$ containing $\operatorname{spd}(G)$ classes is called a minimum resolving star partition.

Partition dimension of a graph is related to an older type of dimension of a graph, introduced by Slater in [10] and later in [9], and independently by Harary and Melter in [4] - metric dimension of a graph.

For an ordered set $W=\left\{w_{1}, w_{2}, \ldots w_{k}\right\}$ of vertices of G and a vertex $v \in V(G)$, the metric representation of v with respect to W is the k-vector $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$. If all vertices of G have distinct representations W is called a resolving set for G. A resolving set containing a minimum number of vertices is called a minimum resolving set or a basis for G. The number of vertices in a basis for G is the metric dimension of G and is denoted by $\operatorname{dim}(G)$.

If $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ is a partition of $V(G)$ and $u_{1}, u_{2}, \ldots, u_{r}$ are r distinct vertices, we say that $u_{1}, u_{2}, \ldots, u_{r}$ are separated by classes $S_{i_{1}}, \ldots, S_{i_{q}}$ of partition Π if the q-vectors $\left(d\left(u_{p}, S_{i_{1}}\right), d\left(u_{p}, S_{i_{2}}\right), \ldots, d\left(u_{p}, S_{i_{q}}\right)\right), 1 \leq p \leq r$ are distinct.

A partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of $V(G)$ is an induced-star partition of G if each subgraph induced by $S_{i}, 1 \leq i \leq k$, is a star. Hence, a resolving star partition is an induced-star partition which is also a resolving partition. We call the minimum cardinality of an induced-star partition of G the induced-star number of G and we denote it by $\operatorname{sp}(G)$. The idea of partitioning graphs into subgraphs belonging to a given family of graphs have been studied by many authors, results on star partitions or star packing can be found in [5], [8]. Next, we will use the term star partition for a tree T instead of induced-star partition, since any subgraph of T isomorphic to a star is an induced star in T.

In this paper we will study star partition dimension of trees and the existence of graphs with given star partition dimension.

2. STAR PARTITION DIMENSION OF TREES

First we remind some notions and notations from [6].
Let G be a connected graph. A vertex of degree at least 3 of G is called major vertex of G. A vertex u of degree one of G is called a terminal vertex of a major vertex v of G if $d(u, v)<d(u, w)$, for every major vertex $w \neq v$ of $G(v$ is the closest major vertex to $u)$. The terminal degree of a major vertex v, denoted by $\operatorname{ter}_{T}(v)$ or, if T is known, by $\operatorname{ter}(v)$, is the number of terminal vertices of v. A major vertex v with $\operatorname{ter}(v)>0$ is said to be an exterior major vertex of G. We will call an exterior major vertex v with $\operatorname{ter}(v)>1$ a branched major vertex of G.

We denote by $\sigma(G)$ the sum of terminal degrees of the major vertices of G, by $\sigma_{b}(G)$ the sum of terminal degrees of the branched major vertices of G, by $\operatorname{ex}(G)$ the number of exterior major vertices of G and by $e x_{b}(G)$ the number of branched major vertices of G.

Let T be a tree.
A star S in T is called maximal star if $\langle V(S) \cup\{v\}\rangle$ is not a star in T for every $v \in V(T)-V(S)$. An n-star is a star with n vertices.

For an exterior major vertex v of T a path Q to one of its terminal vertices u is called terminal path for vertex v. The maximal induced star of Q that contains the terminal vertex u is called terminal star of the exterior major vertex v. Obviously, the terminal star is isomorphic to P_{3} if the terminal path has at least 3 vertices or is isomorphic to the terminal path otherwise.

We can extend the notion of terminal stars to paths. A terminal star of a path P_{n} is a maximal induced star in P_{n} that contains one of the extremity of the path.

Let $p=e x_{b}(T)$ be the number of branched major vertices of T. We denote by $B(T)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ the set of branched major vertices of T. For $1 \leq i \leq p$ we denote by $k_{i}=\operatorname{ter}\left(v_{i}\right)$ and by $u_{i 1}, u_{i 2}, \ldots, u_{i k_{i}}$ the terminal vertices of v_{i}, by $P_{i j}$ the path from v_{i} to $u_{i j}$, for $1 \leq j \leq k_{i}$, with $x_{i j}$ the vertex of $P_{i j}$ adjacent with v_{i} and by $Q_{i j}$ the subpath of $P_{i j}$ from $x_{i j}$ to $u_{i j}$ (i.e., $Q_{i j}=P_{i j}-v_{i}$). For a branched major vertex $v_{i}, 1 \leq i \leq p$, the paths $Q_{i j}, 1 \leq j \leq k_{i}$ are the terminal paths of vertex v_{i}.

For a branched major vertex $v_{i}, 1 \leq i \leq p$, we denote by $S_{i j}^{t}$ the terminal star from the path $Q_{i j}, 1 \leq j \leq \operatorname{ter}\left(v_{i}\right)$.

For example, the tree from Figure 1 has 3 exterior major vertices: v_{1}, u and v_{2}. Only v_{1} and v_{2} are branched major vertices: $\operatorname{ter}\left(v_{1}\right)=\operatorname{ter}\left(v_{2}\right)=2$. The terminal path for v_{1} are Q_{11} and Q_{12}, for v_{2} are x_{21}, u_{21} and x_{22} and for
u is u^{\prime}. Terminal stars for v_{1} are also illustrated. For u and v_{2} the terminal path are also terminal stars.

Fig. 1. T
Next we assume that terminal paths of a branched major vertex v_{i} are indexed such that

$$
\left|S_{i 1}^{t}\right| \leq\left|S_{i 2}^{t}\right| \leq \ldots \leq\left|S_{i k_{i}}^{t}\right|
$$

Lemma 2.1. For a tree T and a terminal vertex x of T we have

$$
s p(T-x) \leq s p(T)
$$

Proof. Let y be the only vertex adjacent to x in T. Let $\Pi=\left(S_{1}, \ldots, S_{q}\right)$ be a minimum star partition of T such that $x \in S_{1}$, where $q=s p(T)$ is the induced star number of T.

If $S_{1}=\{x\}$ then partition $\Pi^{\prime}=\left(S_{2}, \ldots, S_{q}\right)$ is a star partition in $T-x$ with $q-1$ classes. Otherwise partition $\Pi^{\prime}=\left(S_{1}-\{x\}, S_{2}, \ldots, S_{q}\right)$ is a star partition in $T-x$ with q classes.

Hence $s p(T-x) \leq s p(T)$.
Lemma 2.2. Let T be a tree and v a vertex of T adjacent with terminal vertices $u_{1}, u_{2}, \ldots, u_{t}, t \geq 1$. Then there exists a minimum star partition of T such that vertices $v, u_{1}, u_{2}, \ldots, u_{t}$ belong to the same class of the partition.

Proof. Let Π be a minimum star partition of T. Denote by S_{1} the class to which vertex v belongs. A terminal vertex $u_{i}, 1 \leq i \leq t$ either forms a separate class in Π or belongs to class S_{1}.

If $\left|S_{1}\right| \leq 2$ or v is center of star $\left\langle S_{1}\right\rangle$, since Π has minimum number of classes, it follows that $u_{1}, u_{2}, \ldots, u_{t} \in S_{1}$.

If $\left|S_{1}\right|>2$ and v is terminal vertex in $\left\langle S_{1}\right\rangle$, then each vertex $u_{i}, 1 \leq i \leq t$, forms a separate class in Π. Then partition

$$
\Pi^{\prime}=\Pi-\left\{S_{1}\right\}-\bigcup_{i=1}^{t}\left\{\left\{u_{i}\right\}\right\} \cup\left\{S_{1}-\{v\}\right\} \cup\left\{\left\{v, u_{1}, \ldots, u_{t}\right\}\right\}
$$

is a star partition of T with $|\Pi|-t+1$ classes. Since Π is a minimum star partition of T, it follows that $t=1$ and Π^{\prime} is a minimum star partition of T such that vertices of $v, u_{1}, u_{2}, \ldots, u_{t}$ belong to the same class of the partition.

Lemma 2.3. Let T be a tree and S a star in T with center v and terminal vertices u_{1}, \ldots, u_{t}, such that $\operatorname{deg}_{T}\left(u_{i}\right)=1$, for every $1 \leq i \leq t-1$ and $\operatorname{deg}_{T}\left(u_{t}\right)=2$. Then there exists a minimum star partition of T such that vertices of S are in the same class.

Proof. By Lemma 2.2, there exists a minimum star partition Π of T such that vertices $v, u_{1}, \ldots, u_{t-1}$ are in the same class, denoted by S_{1}. If $u_{t} \in S_{1}$ then in partition Π vertices of S belong to the same class. Otherwise, let S_{2} be the class of Π to which u_{t} belongs. Since $\operatorname{deg}_{T}\left(u_{t}\right)=2$, u_{t} is terminal in $\left\langle S_{2}\right\rangle$. Then partition

$$
\Pi^{\prime}=\Pi-\left\{S_{1}, S_{2}\right\} \cup\left\{S_{1} \cup\left\{u_{t}\right\}, S_{2}-\left\{u_{t}\right\}\right\}
$$

is also a minimum star partition in T, and vertices of S belong to the same class of Π^{\prime}.

Lemma 2.4. Let T be a tree and v a vertex of T. Denote by C_{1}, \ldots, C_{t} the components of the forest $T-v$. If $\left|V\left(C_{i}\right)\right| \geq 2$ and vertices $V\left(C_{i}\right) \cup\{v\}$ induce a star in T for every $1 \leq i \leq t-1$, then there exists a minimum star partition of T such that vertex set $V\left(C_{1}\right) \cup\{v\}$ is a class of the partition.

Proof. Since $\left|V\left(C_{i}\right)\right| \geq 2,\left\langle V\left(C_{i}\right) \cup\{v\}\right\rangle$ is a maximal star in T, for every $1 \leq i \leq t-1$.

By Lemma 2.3, there exists a minimum star partition Π of T such that vertices from $V\left(C_{i}\right)$ belong to the same class of the partition, for every $1 \leq$ $i \leq t-1$.

Let S_{1} be the class of Π to which v belongs.
If there exists a component $C_{i}, 1 \leq i \leq t-1$ such that $V\left(C_{i}\right) \subseteq S_{1}$, then, since $\left\langle V\left(C_{i}\right) \cup\{v\}\right\rangle$ is a maximal star, $S_{1}=V\left(C_{i}\right) \cup\{v\}$ and each set $V\left(C_{k}\right)$, $1 \leq k \leq t-1, k \neq i$ is a class in Π. We can assume $i=1$ and the result follows.

If $S_{1}-\{v\} \subseteq V\left(C_{t}\right)$, then v is a terminal vertex of the induced star $\left\langle S_{1}\right\rangle$ and each set $V\left(C_{i}\right), 1 \leq 1 \leq t-1$ is a class in Π. Since $V\left(C_{1}\right) \cup\{v\}$ induces a star in T, the partition

$$
\Pi^{\prime}=\Pi-\left\{S_{1}, V\left(C_{1}\right)\right\} \cup\left\{S_{1}-\{v\}, V\left(C_{1}\right) \cup\{v\}\right\}
$$

is a minimum star partition having as class $V\left(C_{1}\right) \cup\{v\}$.
Lemma 2.5. Let T be a tree which is not isomorphic to a path and v a branched major vertex of T. If S_{1}^{t} and S_{2}^{t} are terminal stars for v such that
$\left|S_{1}^{t}\right| \geq\left|S_{2}^{t}\right|$, then

$$
s p\left(T-S_{1}^{t}\right) \leq s p\left(T-S_{2}^{t}\right) .
$$

Proof. If $\left|S_{1}^{t}\right|=\left|S_{2}^{t}\right|$ then $T-S_{1}^{t}$ is isomorphic to $T-S_{2}^{t}$, hence $\operatorname{sp}(T-$ $\left.S_{1}^{t}\right)=s p\left(T-S_{2}^{t}\right)$.

Assume $\left|S_{1}^{t}\right|>\left|S_{2}^{t}\right|$. By Lemma 2.3, there exists a minimum star partition of T such that vertices of the star S_{2}^{t} belong to the same class of the partition. It follows that

$$
s p\left(T-S_{2}^{t}\right) \geq s p(T)-1
$$

If $\left|S_{1}^{t}\right|=3$, by Lemma 2.4, there exists a minimum star partition of T such that $V\left(S_{1}^{t}\right)$ is a class of the partition, hence in this case

$$
s p\left(T-S_{1}^{t}\right)=s p(T)-1 \leq s p\left(T-S_{2}^{t}\right) .
$$

If $\left|S_{1}^{t}\right|=2$, then $\left|S_{2}^{t}\right|=1$ and by Lemma 2.3 there exists a minimum star partition Π of T such that the only vertex of the star S_{2}^{t} and vertex v are in the same class. Since Π has a minimum number of classes and star S_{1}^{t} can be extended only through vertex v, it follows that the set $V\left(S_{1}^{t}\right)$ is a class of Π, hence in this case we also have

$$
s p\left(T-S_{1}^{t}\right)=s p(T)-1 \leq s p\left(T-S_{2}^{t}\right) .
$$

We denote by $T_{j_{1} \ldots j_{p}}$, where $1 \leq j_{i} \leq k_{i}$, for every $1 \leq i \leq p$ the tree obtained from T by removing all its terminal stars excepting $S_{i j_{i}}^{t}, 1 \leq i \leq p$.

Theorem 2.6. For $n \geq 1$ we have

$$
\operatorname{sp}\left(P_{n}\right)=\operatorname{spd}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil .
$$

Proof. Since an induced-star of a path can have at most 3 vertices, the result follows.

Theorem 2.7. For a tree T which is not isomorphic to a path we have

$$
\operatorname{spd}(T)=\sigma_{b}(T)-e x_{b}(T)+s p(\underbrace{1 \ldots 1}_{\underbrace{}_{p}}) .
$$

Proof. Let T be a tree which is not isomorphic to a path.
Since a terminal path $Q_{i j}$ can be extended only through vertex v_{i}, vertices from a set $V\left(Q_{i j}\right), 1 \leq i \leq p, 1 \leq j \leq k_{i}$ have distinct distances to any other fixed vertex of T. Moreover, with the above notation, any two distinct vertices $x_{i j_{1}}$ and $x_{i j_{2}}$, adjacent to vertex v_{i} have equal distances to any fixed vertex from $V(T)-\left(V\left(Q_{i j_{1}}\right) \cup V\left(Q_{i j_{2}}\right)\right)$.

Hence, if Π is a minimum resolving star partition, there exists an induced star $S_{i j}$ in each terminal path $Q_{i j}$ such that $V\left(S_{i j}\right)$ is a class of Π, with at
most one exception for every branched major vertex $v_{i}, 1 \leq i \leq p$. Since $u_{i j}$ is a terminal vertex, we can assume the induced star $S_{i j}$ contains $u_{i j}$. We have

$$
\operatorname{spd}(T) \geq \sum_{v \in B(T)}(\operatorname{ter}(v)-1)+\min \left\{s p\left(T-\bigcup_{i=1}^{p} \bigcup_{\substack{j=1 \\ j \neq j_{i}}}^{k_{i}} S_{i j}\right) \mid\right.
$$

for every $1 \leq i \leq p, j_{i} \in\left\{1, \ldots, k_{i}\right\}, S_{i j}$ is an induced star in $Q_{i j}$ such that $u_{i j} \in S_{i j}$, for $\left.1 \leq j \leq k_{i}, j \neq j_{i}\right\}$.
Denote by m the minimum from the above formula.
By Lemmas 2.1 and 2.5, it follows that the minimum m is obtained by removing terminal stars with maximum cardinalities, and since

$$
\left|S_{i 1}^{t}\right| \leq\left|S_{i 1}^{t}\right| \ldots \leq\left|S_{i k_{i}}^{t}\right|, \text { for every } 1 \leq i \leq p
$$

we have

$$
\begin{aligned}
m & =\min \left\{s p\left(T-\bigcup_{i=1}^{p} \bigcup_{\substack{j=1 \\
j \neq j_{i}}}^{k_{i}} S_{i j}^{t}\right) \mid j_{i} \in\left\{1, \ldots, k_{i}\right\}, 1 \leq i \leq p\right\}= \\
& =\operatorname{sp}\left(T-\bigcup_{i=1}^{p} \bigcup_{j=2}^{k_{i}} S_{i j}^{t}\right)=s p(\underbrace{T_{p} \ldots 1}_{p}) .
\end{aligned}
$$

Hence

$$
\operatorname{spd}(T) \geq \sum_{v \in B(T)}(\operatorname{ter}(v)-1)+s p(\underbrace{T_{1} \ldots 1}_{p})=\sigma_{b}(T)-\operatorname{ex} b(T)+s p(\underbrace{T_{p} \ldots 1}_{p}) .
$$

Let Π_{1} be a minimum star partition in $\underbrace{}_{p} \underbrace{}_{p}$ and

$$
\begin{equation*}
\Pi=\bigcup_{i=1}^{p} \bigcup_{j=2}^{k_{i}}\left\{V\left(S_{i j}^{t}\right)\right\} \cup \Pi_{1} \tag{1}
\end{equation*}
$$

a star partition in $T . \Pi$ has $\sigma_{b}(T)-e x_{b}(T)+s p(\underbrace{T_{1} \ldots 1}_{p})$ classes. We will prove that Π is a resolving partition.

Indeed, vertices from a class $V\left(S_{i j}^{t}\right), 1 \leq i \leq p, 1 \leq j \leq k_{i}$ have distinct distances to all other vertices.

Let S be an induced star in $\underbrace{1 \ldots 1}_{p},|V(S)| \geq 2$.
If $V(S)=\{x, y\}$ then, since T is not a path, at least one of vertices x and y, assume x, is not terminal in T. Then there exists a unique path P from x to
u_{12}. If $y \in V(P)$ then $d\left(y, V\left(S_{12}^{t}\right)\right)=d\left(x, V\left(S_{12}^{t}\right)\right)-1$, otherwise $d\left(y, V\left(S_{12}^{t}\right)\right)=$ $d\left(x, V\left(S_{12}^{t}\right)\right)+1$, hence x and y are separated by the class $V\left(S_{12}^{t}\right)$.

If $|V(S)| \geq 3$, denote by c the center of the star S. Let x, y be two terminal vertices of S.

If both vertices x and y belong to terminal paths in T, then c is a branched major vertex. Assume $c=v_{i_{0}}, 1 \leq i_{0} \leq p$ and $x \in V\left(Q_{i_{0} j_{0}}\right), 2 \leq j_{0} \leq$ $\operatorname{ter}\left(v_{i_{0}}\right)$. Vertices x, c, y are separated by the class $V\left(S_{i_{0} j_{0}}^{t}\right)$, since $d\left(y, S_{i_{0} j_{0}}^{t}\right)=$ $d\left(c, S_{i_{0} j_{0}}^{t}\right)+1$ and $d\left(c, S_{i_{0} j_{0}}^{t}\right)=d\left(x, S_{i_{0} j_{0}}^{t}\right)+1$.

If x does not belong to a terminal path of T, then there exists a path P from x to a branched major vertex $v_{i_{1}}, 1 \leq i_{1} \leq p$, such that $y \notin V(P)$. Vertices x, c, y are separated by the class $V\left(S_{i_{1} 2}^{t}\right)$.

Hence all vertices of a star S in $\underbrace{T_{1} \ldots 1}_{p}$ are separated by classes of Π.
It follows that Π is a resolving partition and we have

$$
\operatorname{spd}(T)=\sigma_{b}(T)-e x_{b}(T)+\operatorname{sp}(\underbrace{T_{1} \ldots 1}_{p}) .
$$

Next, we present a linear time algorithm for finding a minimum resolving star partition for a tree.

The problem of finding a minimum resolving star partition for a tree T is reduced by Theorem 2.7 to the problem of finding a minimum star partition for one particular subtree of T. Therefore, we will first propose a linear time algorithm for building a minimum star partition Π for a tree T with n vertices. The algorithm is based on Lemmas 2.3 and 2.4.

Thus, at one step of the algorithm it suffices to consider only terminal stars in the current tree T.

A terminal 3 -star is a class in the partition Π build by the algorithm (according to Lemma 2.3).

Moreover, if v is a branched major vertex such that all the components C_{1}, \ldots, C_{t} in $T-v$ with at most one exception, C_{t}, are terminal stars in T, we can build classes of the partition according to Lemmas 2.3 and 2.4 as follows. Let y be the vertex from C_{t} adjacent to v and $S \in\left\{C_{1}, \ldots, C_{t-1}\right\}$ be a terminal star. We have the following cases:
(1) If S is a 3 -star, then vertices of S form a distinct class in Π.
(2) If S is a 1 -star, then v is in the same class with all its terminal 1-stars. To this class only vertex y can be eventually added, if the algorithm does not place it in another class after partitioning $\operatorname{deg}_{T}(y)-2$ components of $T-y$.
(3) If S is a 2 -star, then vertices from S are placed in the same class of Π. To this class only vertex v can be added, if it has no terminal 1-stars.

Next, we will call the number of terminal stars adjacent to a branched major vertex v the terminal star degree of v and we will denote it by ter $r_{s}(v)$.

The algorithm will associate each vertex a color, such that vertices with the same color are in the same class. The color of a vertex can be changed only if a terminal 1-star of this vertex is found. Also, a vertex adjacent with a terminal 1-star (case (2)) is marked by algorithm, since in this class all terminal 1-stars adjacent of v should be added.

Denote by deg the vector of degrees, ters the vector of terminal star degrees, color the vector with the colors of each vertex and mark a vector for marking the vertices that have terminal 1-stars.

We assume the tree is represented using adjacency lists.
Then the algorithms has the following steps:

1. Initialize
$\operatorname{ters}[u]:=0, \operatorname{color}[u]:=0, \operatorname{mark}[u]:=0$ for every $u \in V(T) ;$
2. Calculate the degree $\operatorname{deg}[u]$ for every $u \in V(T)$.
3. if $|V(T)| \leq 3$ then
let c be a new color;
color vertices of T with c;
form classes of partition Π according to colors and STOP.
4. Build all terminal stars for T and update the terminal star degrees for vertices.
5. Repeat steps 6 - 9 while $|V(T)| \geq 3$

6 . for each terminal 3 -star S do
let c be a new color;
color $[s]:=c$ for every $s \in V(S)$;
$T:=T-S$;
let v be the vertex from T that was adjacent to a vertex
of S;
$\operatorname{ters}[v]:=\operatorname{ters}[v]-1$;
7. for each vertex v with $\operatorname{deg}[v] \leq \operatorname{ter}[v]+1$ (equvalent to $\operatorname{deg}[v]=$ $\operatorname{ters}[v]+1$ or $\operatorname{deg}[v]=\operatorname{ters}[v])$
for each terminal star S of v do
if $|V(S)|=2$ then
let c be a new color;
color $[s]:=c$ for every $s \in V(S)$;
if color $[v]=0$ then
color $[v]:=c ;$
if $|V(S)|=1$ then
if $\operatorname{mark}[v]=1$ then
color $[s]:=$ color $[v]$ for every $s \in V(S) ;$ else

$$
\operatorname{mark}[v]:=1
$$

let c be a new color;

$$
\operatorname{color}[v]:=c
$$

$\operatorname{color}[s]:=c$ for every $s \in V(S) ;$
$T:=T-S ;$
$\operatorname{ters}[v]:=\operatorname{ters}[v]-1 ;$
if $\operatorname{deg}[v]=1$ and color $[v] \neq 0$ then
if $\operatorname{mark}[v]=1$ then
let y be the vertex from T adjacent to v; if color $[y]=0$ then
color $[y]:=$ color $[v] ;$
$T:=T-v ;$
8. extend the terminal stars of vertices that are no longer exterior in the current tree T to terminal stars in T.
9. for every new terminal vertex u in T obtained at step 7 do
if color $[u] \neq 0$ then
$T:=T-u ;$
else
build the terminal star that contains u
10. if T has uncolored vertices then
let c be a new color;
color vertices of T previous uncolored with c; form classes of partition Π according to colors and STOP.

Obviously, the above algorithm has the complexity $O(n)$, since the operations of building or removing a terminal star have the complexity equal to the number of edges of the star and the stars considered are edge-disjoint.
Then a linear time algorithm for finding a minimum resolving star partition Π of a tree T is the following:

1. If T is a path then find a minimum star partition Π with the previous algorithm and STOP.
2. Find all terminal stars of branched major vertices of T and form classes according to relation (1). Remove from T the terminal stars added as classes to the partition.
3. Find a minimum star partition Π_{1} for the remaining tree and add its classes to Π. STOP.

3. EXISTENCE OF GRAPHS WITH GIVEN STAR PARTITION DIMENSION

Theorem 3.1. a) For any two integers a and b such that $3 \leq a \leq b$ there exists a connected graph G such that $p d(G)=a$ and $\operatorname{spd}(G)=b$.
b) For any two integers a and b such that $3 \leq a \leq b$ there exists a connected graph G such that $\operatorname{dim}(G)=a$ and $\operatorname{spd}(G)=b$.

Proof.
Case 1. $a<b$.
a) Denote $n=3(b-a)+2$. Let G be the graph obtained from path P_{n} by attaching a new terminal vertices x_{1}, \ldots, x_{a} to one of the two terminal vertices of the path, denoted by y. Let z be the vertex from initial path P_{n} adjacent to y (Fig. 2).

Fig. 2

Vertices x_{1}, \ldots, x_{a} have equal distances to any other vertex of G, hence they belong to different classes in a resolving partition of G. It follows that

$$
p d(G) \geq a
$$

Moreover, partition with classes $\left\{x_{1}, y, z\right\},\left\{x_{2}\right\} \cup V\left(P_{n}-\{y, z\}\right),\left\{x_{i}\right\}, 3 \leq$ $i \leq a$ is a resolving partition, hence $p d(G)=a$.

By Theorems 2.7 and 2.6, since y is the only exterior major vertex in G and $\operatorname{ter}(y)=a+1$ we have

$$
\operatorname{spd}(G)=a+1-1+\operatorname{sp}\left(P_{n-3}+y x_{1}\right)=a+s p\left(P_{3(b-a)}\right)=a+b-a=b .
$$

By [1], for a tree T which is not isomorphic to a path we have

$$
\operatorname{dim}(T)=\sigma(T)-e x(T)
$$

hence

$$
\operatorname{dim}(T)=a+1-1=a
$$

Case 2. $a=b$.
a) Let G be the star S_{a}. By Theorem 2.7 and [3] we have

$$
p d(G)=\operatorname{spd}(G)=a
$$

b) Let G be the graph obtained from the cycle with 4 vertices, denoted by x, y, w, z, by attaching $a-1$ terminal vertices x_{1}, \ldots, x_{a-1} to x (Fig. 3).

Since vertices x_{1}, \ldots, x_{a-1} have equal distances to any other vertex of G, it follows that a basis of G must contain all these vertices with at most one exception, say x_{a-1}, and vertices x_{1}, \ldots, x_{a-1} belong to different classes in a resolving partition of G. Moreover, vertices y and z have equal distances to vertices x_{1}, \ldots, x_{a-2}, hence a basis of G must also contain at least one

Fig. 3
of vertices y, z. But vertices z and x_{a-1} have the same distances to vertices $x_{1}, \ldots, x_{a-2}, y$ and, by symmetry, vertices y and x_{a-1} have the same distances to vertices $x_{1}, \ldots, x_{a-2}, z$. It follows that

$$
\operatorname{dim}(G) \geq a
$$

It is easy to verify that $\left\{x_{1}, \ldots, x_{a-2}, z, y\right\}$ is a resolving set in G, hence

$$
\operatorname{dim}(G)=a
$$

The minimum number of stars in which $V(G)$ can be partitioned such that x_{1}, \ldots, x_{a-1} belong to different stars is a. Also, the star partition with classes $\left\{x_{1}, x, y\right\},\{w, z\},\left\{x_{i}\right\}, 2 \leq i \leq a-1$ is a resolving partition, hence

$$
\operatorname{spd}(G)=a .
$$

Theorem 3.2. For any two integers a and b such that $3 \leq a \leq b$ there exists a connected graph G such that $\operatorname{sp}(G)=a$ and $\operatorname{spd}(G)=b$.

Proof. Let G be the graph obtained from path P_{a+2} with vertices x_{1}, \ldots, x_{a+2} by attaching one new terminal vertex y_{i} to each of vertices x_{i}, $3 \leq i \leq a$, and another $b-a$ terminal vertices z_{1}, \ldots, z_{b-a} to vertex x_{a} (Fig. 4).

Fig. 4

Using the algorithm from previous section for building a minimum star partition for G, we obtain that $s p(G)=a$, a minimum star partition for G having classes $\left\{x_{a+1}, x_{a+2}\right\}$, $\left\{y_{a}, x_{a}, z_{1}, \ldots, z_{b-a}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{i}, y_{i}\right\}$, for $3 \leq$ $i \leq a-1$.

By Theorem 2.7, since $\operatorname{ter}\left(x_{3}\right)=2$ and $\operatorname{ter}\left(x_{a}\right)=b-a+2$, we have

$$
\operatorname{spd}(G)=2+b-a+\operatorname{sp}\left(G^{\prime}\right)
$$

where G^{\prime} is the graph obtained from G by removing terminal stars $\left\{x_{1}, x_{2}\right\}$, $\left\{x_{a+1}, x_{a+2}\right\},\left\{z_{i}\right\}, 1 \leq i \leq b-a . G^{\prime}$ has $a-4$ vertices of degree greater than 3 and the induced-star number $a-2$, a minimum star partition for G^{\prime} build by the algorithm form previous section being $\left(\left\{x_{i}, y_{i}\right\}, 3 \leq i \leq a\right)$. It follows that

$$
\operatorname{spd}(G)=2+b-a+a-2=b .
$$

REFERENCES

[1] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105 (2000), 1-3, 99-113.
[2] G. Chartrand, T.W. Haynes, M.A. Henning and P. Zhang, Stratification and domination in graphs. Discrete Math. 272 (2003), 2-3, 171-185.
[3] G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph. Aequationes Math. 59 (2000), 97-108.
[4] F. Harary and R.A. Melter, On the metric dimension of a graph. Ars Combin. 2 (1976), 191-195.
[5] A.K. Kelmans, Optimal packing of induced stars in a graph. Discrete Math. 173 (1997), 1-3, 97-127.
[6] V. Saenpholphat and P. Zhang, Connected partition dimensions of graphs. Discuss. Math. Graph Theory 22 (2002), 305-323.
[7] V. Saenpholphat and P. Zhang, Conditional resolvability in graphs: a survey. Int. J. Math. Math. Sci. 38 (2004), 1997-2017.
[8] A. Saito and M. Watanabe, Partitioning graphs into induced stars. Ars Combin. 36 (1995), 3-6.
[9] P.J. Slater, Dominating and reference sets in a graph. J. Math. Phys. 22 (1988), 445455.
[10] P.J. Slater, Leaves of trees. Congr. Numer. 14 (1975), 549-559.

