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For a connected graph G and any two vertices u and v in G, let d(u, v) denote
the distance between u and v. For a subset S of V (G), the distance between v
and S is d(v, S) = min{d(v, x) | x ∈ S}. Let Π = {S1, S2, . . . , Sk} be an ordered
k-partition of V (G). The representation of v with respect to Π is the k-vector
r(v | Π) = (d(v, S1), d(v, S2), . . . d(v, Sk)). Π is a resolving partition for G if the
k-vectors r(v | Π), v ∈ V (G) are distinct. The minimum k for which there is a
resolving k-partition of V (G) is the partition dimension of G, and is denoted by
pd(G). Π = {S1, S2, . . . , Sk} is a resolving star k-partition for G if it is a resolving
partition and each subgraph induced by Si, 1 ≤ i ≤ k, is a star. The minimum
k for which there exists a star resolving k-partition of V (G) is the star partition
dimension of G, denoted by spd(G). In this paper star partition dimension of
trees and the existence of graphs with given star partition, partition and metric
dimension, respectively are studied.
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1. INTRODUCTION

As described in [2] and [7], dividing the vertex set of a graph into classes
according to some prescribed rule is a fundamental process in graph theory.
Perhaps the best known example of this process is graph coloring. In [3],
the vertices of a connected graph are represented by other criterion, namely
through partitions of vertex set and distances between each vertex and the
subsets in the partition. Thus a new concept is introduced – resolving partition
for a graph.

Let G be a connected graph with vertex set V (G) and edge set E(G).
For any two vertices u and v in G, let d(u, v) be the distance between u and
v. The diameter of G, denoted by d(G) is the greatest distance between any
two vertices of G. For a subset S of V (G) and a vertex v of G, the distance
d(v, S) between v and S is defined as d(v, S) = min{d(v, x) | x ∈ S}.

For an ordered k-partition Π = {S1, S2, . . . , Sk} and a vertex v of G, the
representation of v with respect to Π is the k-vector

r(v | Π) = (d(v, S1), d(v, S2), . . . d(v, Sk)).
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Π is called a resolving k-partition for G if the k-vectors r(v | Π), v ∈ V (G) are
distinct. The minimum k for which there is a resolving k-partition of V (G) is
the partition dimension of G and is denoted by pd(G). A resolving partition
of V (G) containing pd(G) classes is called a minimum resolving partition.

In [6] a particular case of resolving partitions is considered – connected
resolving partitions. Π = {S1, S2, . . . , Sk} is a connected resolving k-partition
if it is a resolving partition and each subgraph induced by class Si, denoted
〈Si〉, 1 ≤ i ≤ k, is connected in G. The minimum k for which there is a
connected resolving k partition of V (G) is the connected partition dimension
of G, denoted by cpd(G).

Another type of resolving partitions, mentioned in [6] as topic for study,
is resolving star partitions. Π = {S1, S2, . . . , Sk} is a resolving star k-partition
if it is a resolving partition and each subgraph induced by Si, for 1 ≤ i ≤ k,
is a star. The minimum k for which there exists a resolving star k-partition
of V (G) is the star partition dimension of G, denoted by spd(G). A resolving
star partition of V (G) containing spd(G) classes is called a minimum resolving
star partition.

Partition dimension of a graph is related to an older type of dimension
of a graph, introduced by Slater in [10] and later in [9], and independently by
Harary and Melter in [4] – metric dimension of a graph.

For an ordered set W = {w1, w2, . . . wk} of vertices of G and a vertex
v ∈ V (G), the metric representation of v with respect to W is the k-vector
r(v | W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)). If all vertices of G have distinct
representations W is called a resolving set for G. A resolving set containing a
minimum number of vertices is called a minimum resolving set or a basis for
G. The number of vertices in a basis for G is the metric dimension of G and
is denoted by dim(G).

If Π = {S1, S2, . . . , Sk} is a partition of V (G) and u1, u2, . . . , ur are r
distinct vertices, we say that u1, u2, . . . , ur are separated by classes Si1 , . . . , Siq

of partition Π if the q-vectors (d(up, Si1), d(up, Si2), . . . , d(up, Siq)), 1 ≤ p ≤ r
are distinct.

A partition Π = {S1, S2, . . . , Sk} of V (G) is an induced-star partition of
G if each subgraph induced by Si, 1 ≤ i ≤ k, is a star. Hence, a resolving star
partition is an induced-star partition which is also a resolving partition. We
call the minimum cardinality of an induced-star partition of G the induced-star
number of G and we denote it by sp(G). The idea of partitioning graphs into
subgraphs belonging to a given family of graphs have been studied by many
authors, results on star partitions or star packing can be found in [5], [8].
Next, we will use the term star partition for a tree T instead of induced-star
partition, since any subgraph of T isomorphic to a star is an induced star in T .
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In this paper we will study star partition dimension of trees and the
existence of graphs with given star partition dimension.

2. STAR PARTITION DIMENSION OF TREES

First we remind some notions and notations from [6].
Let G be a connected graph. A vertex of degree at least 3 of G is called

major vertex of G. A vertex u of degree one of G is called a terminal vertex
of a major vertex v of G if d(u, v) < d(u, w), for every major vertex w �= v of
G (v is the closest major vertex to u). The terminal degree of a major vertex
v, denoted by terT (v) or, if T is known, by ter(v), is the number of terminal
vertices of v. A major vertex v with ter(v) > 0 is said to be an exterior major
vertex of G. We will call an exterior major vertex v with ter(v) > 1 a branched
major vertex of G.

We denote by σ(G) the sum of terminal degrees of the major vertices
of G, by σb(G) the sum of terminal degrees of the branched major vertices of
G, by ex(G) the number of exterior major vertices of G and by exb(G) the
number of branched major vertices of G.

Let T be a tree.
A star S in T is called maximal star if 〈V (S) ∪ {v}〉 is not a star in T

for every v ∈ V (T )− V (S). An n-star is a star with n vertices.
For an exterior major vertex v of T a path Q to one of its terminal

vertices u is called terminal path for vertex v. The maximal induced star of Q
that contains the terminal vertex u is called terminal star of the exterior major
vertex v. Obviously, the terminal star is isomorphic to P3 if the terminal path
has at least 3 vertices or is isomorphic to the terminal path otherwise.

We can extend the notion of terminal stars to paths. A terminal star of
a path Pn is a maximal induced star in Pn that contains one of the extremity
of the path.

Let p = exb(T ) be the number of branched major vertices of T . We
denote by B(T ) = {v1, v2, . . . , vp} the set of branched major vertices of T .
For 1 ≤ i ≤ p we denote by ki = ter(vi) and by ui1, ui2, . . . , uiki

the terminal
vertices of vi, by Pij the path from vi to uij , for 1 ≤ j ≤ ki, with xij the
vertex of Pij adjacent with vi and by Qij the subpath of Pij from xij to uij

(i.e., Qij = Pij − vi). For a branched major vertex vi, 1 ≤ i ≤ p, the paths
Qij , 1 ≤ j ≤ ki are the terminal paths of vertex vi.

For a branched major vertex vi, 1 ≤ i ≤ p, we denote by St
ij the terminal

star from the path Qij , 1 ≤ j ≤ ter(vi).
For example, the tree from Figure 1 has 3 exterior major vertices: v1, u

and v2. Only v1 and v2 are branched major vertices: ter(v1) = ter(v2) = 2.
The terminal path for v1 are Q11 and Q12, for v2 are x21, u21 and x22 and for
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u is u′. Terminal stars for v1 are also illustrated. For u and v2 the terminal
path are also terminal stars.

Fig. 1. T

Next we assume that terminal paths of a branched major vertex vi are
indexed such that

|St
i1| ≤ |St

i2| ≤ . . . ≤ |St
iki
|.

Lemma 2.1. For a tree T and a terminal vertex x of T we have

sp(T − x) ≤ sp(T ).

Proof. Let y be the only vertex adjacent to x in T . Let Π = (S1, . . . , Sq)
be a minimum star partition of T such that x ∈ S1, where q = sp(T ) is the
induced star number of T .

If S1 = {x} then partition Π′ = (S2, . . . , Sq) is a star partition in T − x
with q − 1 classes. Otherwise partition Π′ = (S1 − {x}, S2, . . . , Sq) is a star
partition in T − x with q classes.

Hence sp(T − x) ≤ sp(T ). �

Lemma 2.2. Let T be a tree and v a vertex of T adjacent with terminal
vertices u1, u2, . . . , ut, t ≥ 1. Then there exists a minimum star partition of T
such that vertices v, u1, u2, . . . , ut belong to the same class of the partition.

Proof. Let Π be a minimum star partition of T . Denote by S1 the class
to which vertex v belongs. A terminal vertex ui, 1 ≤ i ≤ t either forms a
separate class in Π or belongs to class S1.

If |S1| ≤ 2 or v is center of star 〈S1〉, since Π has minimum number of
classes, it follows that u1, u2, . . . , ut ∈ S1.

If |S1| > 2 and v is terminal vertex in 〈S1〉, then each vertex ui, 1 ≤ i ≤ t,
forms a separate class in Π. Then partition

Π′ = Π− {S1} −
t⋃

i=1

{{ui}} ∪ {S1 − {v}} ∪ {{v, u1, . . . , ut}}
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is a star partition of T with |Π| − t +1 classes. Since Π is a minimum star
partition of T , it follows that t=1 and Π′ is a minimum star partition of T such
that vertices of v, u1, u2, . . . , ut belong to the same class of the partition. �

Lemma 2.3. Let T be a tree and S a star in T with center v and terminal
vertices u1, . . . , ut, such that degT (ui) = 1, for every 1 ≤ i ≤ t − 1 and
degT (ut) = 2. Then there exists a minimum star partition of T such that
vertices of S are in the same class.

Proof. By Lemma 2.2, there exists a minimum star partition Π of T such
that vertices v, u1, . . . , ut−1 are in the same class, denoted by S1. If ut ∈ S1

then in partition Π vertices of S belong to the same class. Otherwise, let S2

be the class of Π to which ut belongs. Since degT (ut) = 2, ut is terminal in
〈S2〉. Then partition

Π′ = Π− {S1, S2} ∪ {S1 ∪ {ut}, S2 − {ut}}
is also a minimum star partition in T , and vertices of S belong to the same
class of Π′. �

Lemma 2.4. Let T be a tree and v a vertex of T . Denote by C1, . . . , Ct

the components of the forest T − v. If |V (Ci)| ≥ 2 and vertices V (Ci) ∪ {v}
induce a star in T for every 1 ≤ i ≤ t − 1, then there exists a minimum star
partition of T such that vertex set V (C1) ∪ {v} is a class of the partition.

Proof. Since |V (Ci)| ≥ 2, 〈V (Ci)∪{v}〉 is a maximal star in T , for every
1 ≤ i ≤ t− 1.

By Lemma 2.3, there exists a minimum star partition Π of T such that
vertices from V (Ci) belong to the same class of the partition, for every 1 ≤
i ≤ t− 1.

Let S1 be the class of Π to which v belongs.
If there exists a component Ci, 1 ≤ i ≤ t−1 such that V (Ci) ⊆ S1, then,

since 〈V (Ci) ∪ {v}〉 is a maximal star, S1 = V (Ci) ∪ {v} and each set V (Ck),
1 ≤ k ≤ t − 1, k �= i is a class in Π. We can assume i = 1 and the result
follows.

If S1−{v} ⊆ V (Ct), then v is a terminal vertex of the induced star 〈S1〉
and each set V (Ci), 1 ≤ 1 ≤ t− 1 is a class in Π. Since V (C1) ∪ {v} induces
a star in T , the partition

Π′ = Π− {S1, V (C1)} ∪ {S1 − {v}, V (C1) ∪ {v}}
is a minimum star partition having as class V (C1) ∪ {v}. �

Lemma 2.5. Let T be a tree which is not isomorphic to a path and v a
branched major vertex of T . If St

1 and St
2 are terminal stars for v such that
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|St
1| ≥ |St

2|, then
sp(T − St

1) ≤ sp(T − St
2).

Proof. If |St
1| = |St

2| then T − St
1 is isomorphic to T − St

2, hence sp(T −
St

1) = sp(T − St
2).

Assume |St
1| > |St

2|. By Lemma 2.3, there exists a minimum star par-
tition of T such that vertices of the star St

2 belong to the same class of the
partition. It follows that

sp(T − St
2) ≥ sp(T )− 1.

If |St
1| = 3, by Lemma 2.4, there exists a minimum star partition of T

such that V (St
1) is a class of the partition, hence in this case

sp(T − St
1) = sp(T )− 1 ≤ sp(T − St

2).

If |St
1| = 2, then |St

2| = 1 and by Lemma 2.3 there exists a minimum star
partition Π of T such that the only vertex of the star St

2 and vertex v are in
the same class. Since Π has a minimum number of classes and star St

1 can be
extended only through vertex v, it follows that the set V (St

1) is a class of Π,
hence in this case we also have

sp(T − St
1) = sp(T )− 1 ≤ sp(T − St

2). �

We denote by Tj1...jp , where 1 ≤ ji ≤ ki, for every 1 ≤ i ≤ p the tree
obtained from T by removing all its terminal stars excepting St

iji
, 1 ≤ i ≤ p.

Theorem 2.6. For n ≥ 1 we have

sp(Pn) = spd(Pn) =
⌈n

3

⌉
.

Proof. Since an induced-star of a path can have at most 3 vertices, the
result follows. �

Theorem 2.7. For a tree T which is not isomorphic to a path we have

spd(T ) = σb(T )− exb(T ) + sp(T1 . . . 1︸ ︷︷ ︸
p

).

Proof. Let T be a tree which is not isomorphic to a path.
Since a terminal path Qij can be extended only through vertex vi, vertices

from a set V (Qij), 1 ≤ i ≤ p, 1 ≤ j ≤ ki have distinct distances to any other
fixed vertex of T . Moreover, with the above notation, any two distinct vertices
xij1 and xij2 , adjacent to vertex vi have equal distances to any fixed vertex
from V (T )− (V (Qij1) ∪ V (Qij2)).

Hence, if Π is a minimum resolving star partition, there exists an induced
star Sij in each terminal path Qij such that V (Sij) is a class of Π, with at
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most one exception for every branched major vertex vi, 1 ≤ i ≤ p. Since uij is
a terminal vertex, we can assume the induced star Sij contains uij . We have

spd(T ) ≥
∑

v∈B(T )

(ter(v)− 1) + min
{

sp

(
T −

p⋃
i=1

ki⋃
j=1
j �=ji

Sij

)
|

for every 1 ≤ i ≤ p, ji ∈ {1, . . . , ki}, Sij is an induced star

in Qij such that uij ∈ Sij , for 1 ≤ j ≤ ki, j �= ji

}
.

Denote by m the minimum from the above formula.
By Lemmas 2.1 and 2.5, it follows that the minimum m is obtained by

removing terminal stars with maximum cardinalities, and since

|St
i1| ≤ |St

i1| . . . ≤ |St
iki
|, for every 1 ≤ i ≤ p

we have

m = min
{

sp

(
T −

p⋃
i=1

ki⋃
j=1
j �=ji

St
ij

)
| ji ∈ {1, . . . , ki}, 1 ≤ i ≤ p

}
=

= sp

(
T −

p⋃
i=1

ki⋃
j=2

St
ij

)
= sp(T1 . . . 1︸ ︷︷ ︸

p

).

Hence

spd(T ) ≥
∑

v∈B(T )

(ter(v)− 1) + sp(T1 . . . 1︸ ︷︷ ︸
p

) = σb(T )− exb(T ) + sp(T1 . . . 1︸ ︷︷ ︸
p

).

Let Π1 be a minimum star partition in T1 . . . 1︸ ︷︷ ︸
p

and

(1) Π =
p⋃

i=1

ki⋃
j=2

{V (St
ij)} ∪Π1

a star partition in T . Π has σb(T ) − exb(T ) + sp(T1 . . . 1︸ ︷︷ ︸
p

) classes. We will

prove that Π is a resolving partition.
Indeed, vertices from a class V (St

ij), 1 ≤ i ≤ p, 1 ≤ j ≤ ki have distinct
distances to all other vertices.

Let S be an induced star in T1 . . . 1︸ ︷︷ ︸
p

, |V (S)| ≥ 2.

If V (S) = {x, y} then, since T is not a path, at least one of vertices x and
y, assume x, is not terminal in T . Then there exists a unique path P from x to
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u12. If y ∈ V (P ) then d(y, V (St
12)) = d(x, V (St

12))−1, otherwise d(y, V (St
12)) =

d(x, V (St
12)) + 1, hence x and y are separated by the class V (St

12).
If |V (S)| ≥ 3, denote by c the center of the star S. Let x, y be two

terminal vertices of S.
If both vertices x and y belong to terminal paths in T , then c is a branched

major vertex. Assume c = vi0 , 1 ≤ i0 ≤ p and x ∈ V (Qi0j0), 2 ≤ j0 ≤
ter(vi0). Vertices x, c, y are separated by the class V (St

i0j0
), since d(y, St

i0j0
) =

d(c, St
i0j0

) + 1 and d(c, St
i0j0

) = d(x, St
i0j0

) + 1.
If x does not belong to a terminal path of T , then there exists a path

P from x to a branched major vertex vi1 , 1 ≤ i1 ≤ p, such that y /∈ V (P ).
Vertices x, c, y are separated by the class V (St

i12).
Hence all vertices of a star S in T1 . . . 1︸ ︷︷ ︸

p

are separated by classes of Π.

It follows that Π is a resolving partition and we have

spd(T ) = σb(T )− exb(T ) + sp(T1 . . . 1︸ ︷︷ ︸
p

). �

Next, we present a linear time algorithm for finding a minimum resolving
star partition for a tree.

The problem of finding a minimum resolving star partition for a tree T
is reduced by Theorem 2.7 to the problem of finding a minimum star partition
for one particular subtree of T . Therefore, we will first propose a linear time
algorithm for building a minimum star partition Π for a tree T with n vertices.
The algorithm is based on Lemmas 2.3 and 2.4.

Thus, at one step of the algorithm it suffices to consider only terminal
stars in the current tree T .

A terminal 3-star is a class in the partition Π build by the algorithm
(according to Lemma 2.3).

Moreover, if v is a branched major vertex such that all the components
C1, . . . , Ct in T −v with at most one exception, Ct, are terminal stars in T , we
can build classes of the partition according to Lemmas 2.3 and 2.4 as follows.
Let y be the vertex from Ct adjacent to v and S ∈ {C1, . . . , Ct−1} be a terminal
star. We have the following cases:

(1) If S is a 3-star, then vertices of S form a distinct class in Π.
(2) If S is a 1-star, then v is in the same class with all its terminal 1-stars.

To this class only vertex y can be eventually added, if the algorithm does not
place it in another class after partitioning degT (y)− 2 components of T − y.

(3) If S is a 2-star, then vertices from S are placed in the same class of
Π. To this class only vertex v can be added, if it has no terminal 1-stars.

Next, we will call the number of terminal stars adjacent to a branched
major vertex v the terminal star degree of v and we will denote it by ters(v).
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The algorithm will associate each vertex a color, such that vertices with
the same color are in the same class. The color of a vertex can be changed
only if a terminal 1-star of this vertex is found. Also, a vertex adjacent with
a terminal 1-star (case (2)) is marked by algorithm, since in this class all
terminal 1-stars adjacent of v should be added.

Denote by deg the vector of degrees, ters the vector of terminal star
degrees, color the vector with the colors of each vertex and mark a vector for
marking the vertices that have terminal 1-stars.

We assume the tree is represented using adjacency lists.
Then the algorithms has the following steps:
1. Initialize

ters[u] := 0, color[u] := 0, mark[u] := 0 for every u ∈ V (T );
2. Calculate the degree deg[u] for every u ∈ V (T ).
3. if |V (T )| ≤ 3 then

let c be a new color;
color vertices of T with c;
form classes of partition Π according to colors and STOP.

4. Build all terminal stars for T and update the terminal star degrees for
vertices.
5. Repeat steps 6-9 while |V (T )| ≥ 3

6. for each terminal 3-star S do
let c be a new color;
color[s] := c for every s ∈ V (S);
T := T − S;
let v be the vertex from T that was adjacent to a vertex
of S;
ters[v] := ters[v]− 1;

7. for each vertex v with deg[v] ≤ ter[v] + 1 (equvalent to deg[v] =
ters[v] + 1 or deg[v] = ters[v])

for each terminal star S of v do
if |V (S)| = 2 then

let c be a new color;
color[s] := c for every s ∈ V (S);
if color[v] = 0 then

color[v] := c;
if |V (S)| = 1 then

if mark[v] = 1 then
color[s] := color[v] for every s ∈ V (S);

else
mark[v] := 1
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let c be a new color;
color[v] := c;
color[s] := c for every s ∈ V (S);

T := T − S;
ters[v] := ters[v]− 1;

if deg[v] = 1 and color[v] �= 0 then
if mark[v] = 1 then

let y be the vertex from T adjacent to v;
if color[y] = 0 then

color[y] := color[v];
T := T − v;

8. extend the terminal stars of vertices that are no longer exterior
in the current tree T to terminal stars in T .
9. for every new terminal vertex u in T obtained at step 7 do

if color[u] �= 0 then
T := T − u;

else
build the terminal star that contains u

10. if T has uncolored vertices then
let c be a new color;
color vertices of T previous uncolored with c;
form classes of partition Π according to colors and STOP.

Obviously, the above algorithm has the complexity O(n), since the operations
of building or removing a terminal star have the complexity equal to the
number of edges of the star and the stars considered are edge-disjoint.
Then a linear time algorithm for finding a minimum resolving star partition
Π of a tree T is the following:
1. If T is a path then find a minimum star partition Π with the previous
algorithm and STOP.
2. Find all terminal stars of branched major vertices of T and form classes
according to relation (1). Remove from T the terminal stars added as classes
to the partition.
3. Find a minimum star partition Π1 for the remaining tree and add its classes
to Π. STOP.

3. EXISTENCE OF GRAPHS WITH
GIVEN STAR PARTITION DIMENSION

Theorem 3.1. a) For any two integers a and b such that 3 ≤ a ≤ b there
exists a connected graph G such that pd(G) = a and spd(G) = b.
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b) For any two integers a and b such that 3 ≤ a ≤ b there exists a
connected graph G such that dim(G) = a and spd(G) = b.

Proof.
Case 1. a < b.
a) Denote n = 3(b − a) + 2. Let G be the graph obtained from path

Pn by attaching a new terminal vertices x1, . . . , xa to one of the two terminal
vertices of the path, denoted by y. Let z be the vertex from initial path Pn

adjacent to y (Fig. 2).

Fig. 2

Vertices x1, . . . , xa have equal distances to any other vertex of G, hence
they belong to different classes in a resolving partition of G. It follows that

pd(G) ≥ a.

Moreover, partition with classes {x1, y, z}, {x2} ∪ V (Pn − {y, z}), {xi}, 3 ≤
i ≤ a is a resolving partition, hence pd(G) = a.

By Theorems 2.7 and 2.6, since y is the only exterior major vertex in G
and ter(y) = a + 1 we have

spd(G) = a + 1− 1 + sp(Pn−3 + yx1) = a + sp(P3(b−a)) = a + b− a = b.

By [1], for a tree T which is not isomorphic to a path we have

dim(T ) = σ(T )− ex(T ),

hence
dim(T ) = a + 1− 1 = a.

Case 2. a = b.
a) Let G be the star Sa. By Theorem 2.7 and [3] we have

pd(G) = spd(G) = a.

b) Let G be the graph obtained from the cycle with 4 vertices, denoted
by x, y, w, z, by attaching a− 1 terminal vertices x1, . . . , xa−1 to x (Fig. 3).

Since vertices x1, . . . , xa−1 have equal distances to any other vertex of
G, it follows that a basis of G must contain all these vertices with at most
one exception, say xa−1, and vertices x1, . . . , xa−1 belong to different classes
in a resolving partition of G. Moreover, vertices y and z have equal distances
to vertices x1, . . . , xa−2, hence a basis of G must also contain at least one
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Fig. 3

of vertices y, z. But vertices z and xa−1 have the same distances to vertices
x1, . . . , xa−2, y and, by symmetry, vertices y and xa−1 have the same distances
to vertices x1, . . . , xa−2, z. It follows that

dim(G) ≥ a.

It is easy to verify that {x1, . . . , xa−2, z, y} is a resolving set in G, hence

dim(G) = a.

The minimum number of stars in which V (G) can be partitioned such that
x1, . . . , xa−1 belong to different stars is a. Also, the star partition with classes
{x1, x, y}, {w, z}, {xi}, 2 ≤ i ≤ a− 1 is a resolving partition, hence

spd(G) = a. �
Theorem 3.2. For any two integers a and b such that 3 ≤ a ≤ b there

exists a connected graph G such that sp(G) = a and spd(G) = b.

Proof. Let G be the graph obtained from path Pa+2 with vertices
x1, . . . , xa+2 by attaching one new terminal vertex yi to each of vertices xi,
3 ≤ i ≤ a, and another b−a terminal vertices z1, . . . , zb−a to vertex xa (Fig. 4).

Fig. 4

Using the algorithm from previous section for building a minimum star
partition for G, we obtain that sp(G) = a, a minimum star partition for G
having classes {xa+1, xa+2}, {ya, xa, z1, . . . , zb−a}, {x1, x2}, {xi, yi}, for 3 ≤
i ≤ a− 1.
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By Theorem 2.7, since ter(x3) = 2 and ter(xa) = b− a + 2, we have

spd(G) = 2 + b− a + sp(G′),

where G′ is the graph obtained from G by removing terminal stars {x1, x2},
{xa+1, xa+2}, {zi}, 1 ≤ i ≤ b−a. G′ has a−4 vertices of degree greater than 3
and the induced-star number a− 2, a minimum star partition for G′ build by
the algorithm form previous section being ({xi, yi}, 3 ≤ i ≤ a). It follows that

spd(G) = 2 + b− a + a− 2 = b. �
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