PARAMETERIZED STATIONARY SOLUTION
FOR FIRST ORDER PDE

SAIMA PARVEEN and MUHAMMAD SAEED AKRAM

We analyze the existence of a parameterized stationary solution z(\,zo) =

(z(X, 20), p(A, 20), (X, 20)) € D C R*™™ X € B(0,a) C [][—as,ai], associated
i=1

with a nonlinear first order PDE, Ho(z,p(z),u(z)) = constant (p(z) = du(x))

relying on (a) first integral H € C* (B(zo,Qp) C ]R%H) and the corresponding

Lie algebra of characteristic fields is of the finite type; (b) gradient system in a Lie

algebra finitely generated over orbits (f.g.0;2z0) starting from zo € D and their
nonsingular algebraic representation.

AMS 2010 Subject Classification: 17B66, 22E66, 35R01.

Key words: gradient system in a (f.g.0; z0) Lie algebra, Lie algebra of characte-
ristic fields.

1. INTRODUCTION

Let Ho(z,p,u), z = (z,p,u) € B(z0,2p) € R?>"*1 be a second order
continuously differentiable function, Hy € C? (B (z0,2p) C ]RZ”H) and consider
the equation

(1) Hy(z) = Hy(zg) for z = (x,p,u) € D CR*™ 2 eD.

In other words, find a manifold D C B(zg,2p) C R?"*! such that the equation
(1) is satisfied for any 2 € D. In the case that manifold D C R?"*! can be
described as follows

2) D= {(zp(x),u(x) € R p(z) = Opu(x), = € B(xg, p C R™)},

we call it as the standard stationary solution associated with the nonlinear
first order PDE given in (1).

It relies on the flow {Z(t,\) € R?"*! : 2(0,\) = Zy(\), t € (—a,a), A €
A C R" !} generated by the characteristic field Zo(2) %ef (0pHo(2), Po(2), (p,
OpHo(2))), Po(z) = —[0.Ho(2) + pduHo(z)], of the smooth scalar function
Hy € C?(R?"*1). Using that Hy is a first integral for the characteristic field
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Zy, we get

(3) Ho(Z(t,\)) = Ho(Z0(N), t€ (—a,a), \e ACR"
for any parameterized Cauchy conditions

(4) 20(A) = (Zo(A), Do(A), do(N)),

fulfilling the compatibility condition

(5) O uo(A) = (po(A), 9x,Zo(N)),

i=1,....n—1, A=(\1,..., A1) EACR™ L

The standard stationary solution for (1) can be obtained imposing the follow-
ing new constraints

(6) Hy(Z0(\)) = Ho(20), A€ ACR™
and
(7)  the n vectors in R", {8,Ho(20(\)), 05, Zo(N), - .., 0, ,To(A)} C R"

are linearly independent for any A € A C R”~!. One may notice that the last
conditions need to take into consideration very special Hy € C?(R?"*!) and
Cauchy conditions {Zo(A) : A € A € R"'} such that (7) is fulfilled. Here we
propose to construct a parameterized version of Cauchy conditions such that

(8) Z(X;i20) = (Z(X; 20), P(A; 20), U(X; 20))

satisfies stationary conditions

m
(9)  Ho(E(\iz0)) = Ho(z), A€ A=]]l~aial, 2(0,20) = z.

i=1
In addition, the solution in (8) satisfying stationarity conditions (9), will be
obtained as a finite composition of flows starting from zy € R?"*! (orbit of
the origin zg € R?"1) generated by some characteristic fields including Zj.

In the case that the nonsingularity conditions (7) are fulfilled (m = n)
then the parameterized version leads us to a standard stationary solution. A
first order continuously differentiable Z(\;29) : A € R™ — R?"*! satisfying
stationarity conditions (9) will be called a parameterized stationary solution
for PDE (1).

For solving nonlinear equation (9), we use the following procedure. First,
the nonlinear equations (9) is transformed into a first order linear system of
PDE where the unknowns are the characteristic vector fields generated by
a finite set of first integrals {Hi(2),...,Hn(2) : z € B(z,2p) C R*F1}
corresponding to Zy. Then look for a solution of (9) as an orbit in the Lie al-
gebra of characteristic fields generated by {Z1(2),...,Zn(2) : z € B(20,2p) C
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R?"+1} corresponding to the first integrals { Hy(2), . .., Hy(2) : 2 € B(z0,2p) C
R2n+1}_

In the particular case when PDE (1) is determined by a function Hy(z, p),
the construction of a parameterized stationary solution is analyzed in Theo-
rem 3.1 of Section 3. For the general case, the result is given in Theorem 3.2
of Section 3.

In Section 2 are included all definitions and some auxiliary results nec-
essary for the main results given in Section 3.

The method of using finite composition of flows (orbit) and the corre-
sponding gradient system in a Lie algebra of vector fields has much in common
with the references included here (see [1], [2] and [3]) where both parabolic
equations with stochastic perturbations and overdetermined system of first
order PDE are studied.

This paper is intended to be a new application of the geometric-algebraic
methods presented in [3].

2. DEFINITIONS, FORMULATION OF PROBLEMS
AND SOME AUXILIARY RESULTS

Denote H = C®(R?*"*! R) the space consisting of the scalar functions
H(z,p,u) : R" x R" x R — R which are continuously differentiable of any
order. For each pair Hi, Hy € 'H, define the Poisson bracket

(10) {Hy, Hy}(2) = (0.Ha(2), Z1(2)), 2= (z,p,u) € R*F1,

where 0,Hy(z) stands for the gradient of a scalar function Hy € H and
Z1(z) = (X1(2), P1(2),U1(2)) € R?"TL 2z € R*"*! is the characteristic field
corresponding to H; € H. We recall that Z; is obtained from H; € H such
that the following equation

(1) X(2) = 0pH1(2), P1(2) = =[0:H1(2) + pduH1(2)], Ui(2) = (p, H1(2))

is satisfied. The linear mapping connecting an arbitrary H € H and its char-
acteristic field can be represented by

(12) Zu(z) =T(p)(0.H)(2), =R
Here, the real (2n + 1) x (2n + 1) matrix T'(p) is defined by
o I, 6
(13) Tp)=| -I, O —p
g p* O

considering O = zero matrix of M,, ,,, I, — unity matrix of M, ,, and 6 € R"
is the null column vector.
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We notice that T'(p) is a skew symmetric
(14) [T()]" = -T(p)
and as a consequence, the Poisson bracket satisfies a skew symmetric property
(15)  {Hy, Ha}(2) = (0-Ha(2), Z1(2)) = (0-Ha(2), T(p)(0-H1)(2))
= ([T(p)]"(9:H2)(2), 0:H1(2)) = —{H2, H1}(2).

In addition, the linear space of characteristic fields K CC>(R?"+1; R?n+1)
is the image of a linear mapping S : DH — K, where DH = {0.H = H € H}.
Using (12), we define

(16) S(0:H)(2) = T(p)(8:H)(2), =€ R,

where the matrix T'(p) is given in (13).

The linear space of characteristic fields K = S(DH) is extended to a
Lie algebra L;, C C®°(R?**!; R?"*1) using the standard Lie bracket of vector
fields

(17) [Zl, ZQ] = [@Zg}Zl — [aZZl]ZQ, Z;e K, 1=1,2.

On the other hand, each H € H is associated with a linear mapping
—

(18)  H@)) = {H,0}(=) = (0:0(2), Zu(2)), = € R¥HL,

for each ¢ € H, where Zy € K is the characteristic vector field corresponding
to H € 'H obtained from 0,H by Zy(z) = T(p)(0.H)(z) see (12).
Define a linear space consisting of linear mappings

(19) H={H :HeH)

and extend ﬁ to a Lie algebra Ly using the Lie bracket of linear mappings
- = — — — —

(20) [H17H2}2H10H2—H10H1.

The link between the two lie algebras Li (extending K) and Ly (extending
=
H) is given by a homomorphism of Lie algebras

(21) A:Ly— Lg, A(H)=K
satisfying
- = —

(22) A([Hl, HQ]) = [Zl,ZQ] S LK, where Z; = A(HZ), 1= 1,2.

Remark 2.1. In general, the Lie algebra Ly O ﬁ does not coincide with

.
the linear space H and as a consequence, we get K C Ly, Lig # K. It relies
—_—

upon the fact that the linear mapping {Hi, Ha} generated by the Poisson

bracket {H;, Ha} € H does not coincide with the Lie bracket [ﬁl, ﬁg] defined
in (20).
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Remark 2.2. In the particular case when Hy in (1) is replaced by a second
order continuous differentiable function Hy(z,p) : R?® — R then the above
given analysis will be restricted to the space H = C*°(R?" R). If it is the
case then the corresponding linear mapping S : DH — K is determined by a
simplectic matrix

T ) I 00 (T 2n
(23) T = 7 0 ) DH ={0.H : H € C*(R“™";R)}.
n
In addition, the linear spaces H and K C C*°(R?";R?") coincide with their

Lie algebras Ly and correspondingly Lx. It follows from a direct computation
and we get

(24) [Z1, Z5)(z) = TO.Hy5, z€R",
where Z; = T0,H;, i = 1,2 and
(25) Hip = (2) = {H1, H2}(2) = (9:H2(2), Z1(2))

in the Poisson bracket associated with two scalar functions Hy, Hy € H. Com-
pute

(26)  THip(2) = T[02Hy(2)) Z1(2) + T[0.27 (2)|0- Ha(2)
= [0-25(2)121(2) + T((9-H1)* (2)T*)0- Ha (=)
= 0,72(2)Z1(2) — T(8?Hy)(T0, Ha(2))
= [0:22(2)]Z1(2) — [0:21(2)| Z2(2) = [Z1, Z2(2)

and the conclusion {Ly = ﬁ, K = K} is proved. For the general case,
the conclusion of Remark 2.2 is not any more true and the manifold struc-
ture involved in the solution of PDE (1) will be obtained, using first integrals
{Hi(2),...,Hn(z) : z € B(20,2p)} (m > 1) corresponding to the fixed char-
acteristic field Z.

Denote by Ko C C®(B(z0,2p); R?"T1) the linear space consisting of all
characteristic fields Z € C*°(B(zg, 2p); R?**1)
(27) Z(z) = T(p)d,H(z), where {H(2) : z € B(z,2p) C R}

is a first integral for the fixed characteristic vector field {Zy(z) : z € B(z0,2p)}.
Let Ly C C*®(B(z0,2p); R?*"!) be the Lie algebra determined by the linear
space Ko C Ly.

Definition 2.3. We say that Ly is of the finite type over C*°(B (zo, 2p) (or
R) with respect to Ky if there exists a system of vector fields {Zl( )soeos Zm(2)

z € B(z0,2p)} C Ko such that any Lie bracket [7Z;, Z;](z) = Z ( ) k(2),

z € B(z0,2p), where akj € C*(B(zp,2p)) (or ozkj € R), i,j,k € {l,...,m};
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{Z1, ..., Zm} C C®(B(20,2p); R2"*1) will be called a system of generators
for Ly.

Remark 2.4. In the case that PDE (1) is determined by a scalar function
Ho(z,p) : B(z0,2p) € R?™ — R then the linear space Ko C C(B(zg,2p) C
R27; R?") is consisting of all characteristic fields

(28) Z(z) = TO.H(z),

where H(z), z € B(z,2p), is first integral of Zy(z) = T8.Ho(z) (see Re-
mark 2.2). We get that the Lie algebra Ly determined by K coincides with
Ky, Lo = Ky (see Remark 2.2).

Definition 2.5. We say that L is of the finite type over C>(B(z0,2p)) (or
R) if there exists a system of vector fields {Z1(2), ..., Zmn(2) : z € B(z0,2p) C

~ m

R?"} C Ky such that any Lie bracket [Z;, Z;](z) = afj(z)Zk(z), for afj €
C*>(B(z0,2p)) (or afj eR), i, 5, ke{l,.... m};{Z1,...,Z,} is called a sys-

tem of generators for L.

Remark 2.6. The simplest case in our analysis is obtained when PDE (1)
is determined by a linear function with respect to p € R", i.e.,

(29) H0($?p) = <p7 fo(ﬂ:)), pE Rna T c Rn? z = (:L’,p), 20 = (x07p0)7

where fo € C?(R™,R"). In this case the linear space Ko (see Remark 2.4)

coincides with the Lie algebra Zo generated by I?o where
(30)
Ko =A{T0.H(z) : H(z) = (p, f(x)), [f, fol(x) =0, = € B(z0,2p) S R"}.

LEMMA 2.7. Assume that PDE (1) is determined by Ho(x,p) = (p, f(x)),
x € B(z0,2p) CR", fo € C*(B(z0,2p); R"). Assume that there exists {f1,...,
fm} C C®(B(20,2p); R") satisfying

(31) [fis fil(x) = Y adi fix), = € Blz0,20),
k=1

where afj CR, kyi,je{l,...,m}
(32) [anfl](x):Q .%'GB(Z(),QP), (&S {17"-7m}'
Then the lie algebra Ly generated by Ko (see (30)) fulfils

(33) Eo = IA(O and Eo is finite dimensional with dim Eo <m.
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Proof. Define H;(z) = (p, fi(z)) and the corresponding characteristic
field

34)  Zi(z) = ( /{?((;U))p >  Ay(@) = —[0ufi(2)])", 1< i<m.

Compute a Lie bracket

35 (Zez)e) = ( Vol e my, o e Bz, 20),
Bij(2)

where [f;, f;] is the Lie bracket using f;, f; € C*°(B(20,2p),R"). Here P;;(z)

is computed as follows

(36)  Pij(2) = [0:(Aj(2)p)fi(2) + Aj(2) Ai(x)p — [0z Ai(x)p] f(x)
= —Ai(2)Aj(2)p = 0: [(A;(x)p, fi(z)) — (Ai(2)p, f;(x))]
- ax<p7 [fu fj](x»a
where Pj;(z) e [0.(A;(2)p)]| Zi(2) — [0:(Ai(z)p)| Zj(2), € B(xo,2p), is used.

It shows (see (24)) that the Lie bracket [Z;, Z;|(2) in (35) can be written as a

characteristic vector field associated to H;; () déf(p, [fi, fil(x)), x € B(z0,2p) C

R™. As a consequence, assuming that {f1,..., fin} satisfies (31) and (32), we

get that {Z1,...,Z,} C Ky is a system of generators for Ky. The proof is
complete. [

LEMMA 2.8. Assume that PDE (1) is determined by a second order con-
tinuously differentiable Hy(x,p) : B(20,2p) — R, and the Lie algebra Lo = Ky
defined in Remark 2.4 is of the finite type over R. Then there exists a parame-
terized stationary solution of PDE (1) given by

m

(37) 5()\, Z()) = Gl(tl)o‘ . 'OGm(tm)[Zo], A= (tl, R ,tm) € H[—ai, ai] =A,
=1

where {Gi(0)[y] : 0 € [—a1,ai], y € B(zo,p)} is the local flow generated by the
vector field Z; € C®(B(z0,2p),R?™) and {Z1,..., Zm} C C*>(B(20,2p); R*")

is a system of gemerators for L.

Proof. Assuming that Eo is of the finite type over R, we notice that fixing
a system of generators {Z1(2),...,Zm(2) : z € B(z0,2p) C R*"} C K, for Lo
we may and do construct a finite dimensional Lie algebra L(Z1,...,Z,) C Lo

for which {Z1,...,Zn} C Ko is a system of generators over R. It allows (see
[3]) to define a corresponding gradient system in the finite dimensional Lie
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algebra L(Z1,. .., Zy) associated with the following composition of local flows
(38) Z(\, 20) = Gi(t1)o - -0Gm(tm)[20], A= (t1,...,tm) € H —aj,a;] =

Here {G;(0)[y] : ¢ € [—a1,ai], y € B(zo,p)} is the local ﬂow generated by
the vector field Z; € Ky and {Z1,...,Z,} is the system of generators. In

addition, there exists analytic vector fields {q1(\),...,gn(A) : A € B(0,a) C
A} C C¥(B(0,a); R™) such that each vector field Z;(Z(\, 20)), A € B(0,a),
can be recovered by taking the Lie derivative
(39)  OAZ(Nz0)ai(N) = Zi(3(\z0)), A€ B(0,a) CA i€ {l,...,m}
and
(40) {1 (M), ..., gm(X)} € R™ are linearly independent

for any A € B(0,a) C A.

The manifold defined in (38) stands for the parameterized stationary solution
of PDE (1) and by a direct computation, we get

(41) (0zHo (Z(X, 20)), qi(N)) = (0:Ho(2(X, 20)), Zi(Z(X, 20))) = 0
for any A € B(0,a) C A and i € {1,...,m}. Using (40), we notice that (41)
lead us to

(42) O\Hy (2()\, Zo)) =0, VA€ B(O, a) CA
and the proof is complete. [

3. MAIN RESULTS

With the same notations as in Section 2 and considering that Lie algebra
Lo = Ky, defined in Remark 2.4, is of the finite type over C*(B(zo, 2p), R?")
(see Definition 2.5), we get

THEOREM 3.1. Assume that PDE (1) is determined by Hy € C?(B(z0,2p)

C R?") and the Lie algebra Lo = Ky is of the finite type over C>(B(z0,2p) C
RQ”). Then there exists a parameterized stationary solution of PDE (1) given by
(43) E()\, ZO) = Gl(tl) O---0 G (t )[ZD]

A= (t1,...,tm) € B(0,a) H —aj, a;] = A,

where {G;(0)[y] : o € [—a1,a;], y € B(zo, p)} is the local flow generated by the
vector field Z; € C*°(B(z0,2p); R*™) and {Z1,...,Zn} C C®(B(z0,2p); R?*")
1s the system of generators for Ly.
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Proof. By hypothesis, let {Z1, ..., Z,} C C®(B(z0,2p); R*") be a system
of generators for Ly which assumes of the finite type over C°°(B(2, 2p); R*").
Define an orbit of L starting from z.

m

(44) Z(X\, 20) = Gi(t1)or - -0Gm(tm)[20), A= (t1,. .. tm) € [[[~ai,ai] = A,
i=1

where {G;(0)ly] : 0 € [—a1,ai], y € B(z0,p)} is the local flow generated
by the vector field Z; € {Z1,...,Z,}, i € {1,...,m}. Let L(Z1,...,Zn) C
C>®(B(z0,2p); R?™) be the Lie algebra generated by {Z1,...,Z;,} and notice
that L = L(Zy,. .., Zy,) is finitely generated over orbits starting from zy, which
is abbreviated as (f.g.0; zp) in [3]. On the other hand, using the orbit starting
from zg defined in (44), we associate a gradient system in L(Z1, ..., Zp).
(45) 81/2\<)\, Zo) = Zl (2()\, Zo)), 823()\, Zo) = X2 (tl; /Z\()\, Zo)), ] (91/2:\()\, Zo)

— Xm(tlv cee )tmfl; /Z\()‘a ZO)))

A= (t1,....tm) € H[—%az’] = A,
=1

where 0;Z(], z0) def O, z(\ 20), 1 € {1,...,m}.

Using the algebraic representation of a gradient system determined by a
system of generators {Z1,...,Z,,} C L in a (f.g.0; zo) Lie algebra L (see [3]),
we get,

(46) MWZ(N, 20) ={Z1,..., Zn}(Z(N, 20))A(N), A €A, A0) = I,

where the (m x m) matrix A(\) is nonsingular for any A € B(0,a) C A
with some a > 0. It lead us to get {{gi(A),...,qm(N\)} CR™: X € B(0,a)}
such that

(47) {q1,---,qm} CC(B(0,a); R™) are linearly independent YA € B(0,a),

(48)  OxZ(A,20)¢i(N) = Z;(B(0,a);R™), A€ B(0,a) CA,ie{l,...,m}
The equation (48) allows us to get the conclusion

(49) MZ(A\ 20)qi(N) =0, A€ B(0,a) CA,ie{l,...,m}.

and using (47), we obtain 9\Hy(Z(\,20)) = 0, A € B(0,a) C A and the proof
is complete. [J

With the same notations as in Section 2 and considering that the Lie
algebra Ly is of the finite type over C*°(B(zq,2p), R?"*1) with respect to Ko C
Ly (see Definition 2.3), we get
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THEOREM 3.2. Assume that PDE (1) is determined by Hy € C*(B(zg,2p)
C R* 1) and Lo D Ky is of the finite type over C*°(B(zq,2p) C R?"T1) with
respect to K. Let {Z1,...,Zm} C C®(B(20,2p) C R¥HL R 0 Ky be
a system of generators for Lo. Then there exists a parameterized stationary
solution for PDE (1) given by

(50) Z(A, 20) = Gi(t1) o -+ 0 G (tm)[20],

A= (t1,...,tm) € B(0,a) C [[[~ai, ai] = A,
i=1
where {G;(0)]y] : 0 € [—a1,ai], y € B(zo,p)} is the local flow generated by the
vector field Z;, 1 < i < m.

Proof. By hypothesis, any Lie bracket [Z;, Z;](z2) is a linear combination
of {Z1,...,Zn}(2), z € B(z0,2p), using smooth functions from C*°(B(zp, 2p) C
R27+1) . Tt shows that the Lie algebra L = L(Z1,..., Ly) € C®(B(z0,2p) C
R27+L R27+L) generated by the fixed {Z1,..., Z,,} is finitely generated over
orbits starting from zq (see (f.g.0; z9) Lie algebra in [3]). In addition, {Z, ...,
Zpm} is a system of generators for L. Using the orbit defined in (50) we proceed
as in proof of Theorem 3.1 (see (45)—(49)) and get the conclusion. The proof
is complete. [J
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