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We analyze the existence of a parameterized stationary solution z(λ, z0) =(
x(λ, z0), p(λ, z0), u(λ, z0)

) ∈ D ⊆ R
2n+1, λ ∈ B(0, a) ⊆

m∏
i=1

[−ai, ai], associated

with a nonlinear first order PDE, H0(x, p(x), u(x)) = constant (p(x) = ∂xu(x))
relying on (a) first integral H ∈ C∞(

B(z0, 2ρ) ⊆ R
2n+1

)
and the corresponding

Lie algebra of characteristic fields is of the finite type; (b) gradient system in a Lie
algebra finitely generated over orbits (f.g.o; z0) starting from z0 ∈ D and their
nonsingular algebraic representation.
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1. INTRODUCTION

Let H0(x, p, u), z = (x, p, u) ∈ B(z0, 2ρ) ⊆ R
2n+1, be a second order

continuously differentiable function, H0 ∈ C2
(
B(z0, 2ρ) ⊆ R

2n+1
)

and consider
the equation

(1) H0(z) = H0(z0) for z = (x, p, u) ∈ D ⊆ R
2n+1, z0 ∈ D .

In other words, find a manifold D ⊆ B(z0, 2ρ) ⊆ R
2n+1 such that the equation

(1) is satisfied for any z ∈ D. In the case that manifold D ⊆ R
2n+1 can be

described as follows

(2) D =
{(

x, p(x), u(x)
) ∈ R

2n+1 : p(x) = ∂xu(x), x ∈ B(x0, ρ ⊆ R
n)
}
,

we call it as the standard stationary solution associated with the nonlinear
first order PDE given in (1).

It relies on the flow {ẑ(t, λ) ∈ R
2n+1 : ẑ(0, λ) = ẑ0(λ), t ∈ (−a, a), λ ∈

Λ ⊆ R
n−1} generated by the characteristic field Z0(z) def=

(
∂pH0(z), P0(z), 〈p,

∂pH0(z)〉), P0(z) = −[∂xH0(z) + p∂uH0(z)], of the smooth scalar function
H0 ∈ C2(R2n+1). Using that H0 is a first integral for the characteristic field
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Z0, we get

(3) H0

(
ẑ(t, λ)

)
= H0

(
ẑ0(λ)

)
, t ∈ (−a, a), λ ∈ Λ ⊆ R

n−1,

for any parameterized Cauchy conditions

(4) ẑ0(λ) =
(
x̂0(λ), p̂0(λ), û0(λ)

)
,

fulfilling the compatibility condition

∂λi
û0(λ) = 〈p0(λ), ∂λi

x̂0(λ)〉,(5)

i = 1, . . . , n− 1, λ = (λ1, . . . , λn−1) ∈ Λ ⊆ R
n−1.

The standard stationary solution for (1) can be obtained imposing the follow-
ing new constraints

(6) H0

(
ẑ0(λ)

)
= H0(z0), λ ∈ Λ ⊆ R

n−1,

and

(7) the n vectors in R
n, {∂pH0

(
ẑ0(λ)

)
, ∂λ1 x̂0(λ), . . . , ∂λn−1 x̂0(λ)} ⊆ R

n

are linearly independent for any λ ∈ Λ ⊆ R
n−1. One may notice that the last

conditions need to take into consideration very special H0 ∈ C2(R2n+1) and
Cauchy conditions {ẑ0(λ) : λ ∈ Λ ⊆ R

n−1} such that (7) is fulfilled. Here we
propose to construct a parameterized version of Cauchy conditions such that

(8) ẑ(λ; z0) =
(
x̂(λ; z0), p̂(λ; z0), û(λ; z0)

)
satisfies stationary conditions

(9) H0

(
ẑ(λ; z0)

)
= H0(z0), λ ∈ Λ =

m∏
i=1

[−ai, ai], ẑ(0, z0) = z0.

In addition, the solution in (8) satisfying stationarity conditions (9), will be
obtained as a finite composition of flows starting from z0 ∈ R

2n+1 (orbit of
the origin z0 ∈ R

2n+1) generated by some characteristic fields including Z0.
In the case that the nonsingularity conditions (7) are fulfilled (m = n)

then the parameterized version leads us to a standard stationary solution. A
first order continuously differentiable ẑ(λ; z0) : Λ ⊆ R

m → R
2n+1 satisfying

stationarity conditions (9) will be called a parameterized stationary solution
for PDE (1).

For solving nonlinear equation (9), we use the following procedure. First,
the nonlinear equations (9) is transformed into a first order linear system of
PDE where the unknowns are the characteristic vector fields generated by
a finite set of first integrals {H1(z), . . . , Hm(z) : z ∈ B(z0, 2ρ) ⊆ R

2n+1}
corresponding to Z0. Then look for a solution of (9) as an orbit in the Lie al-
gebra of characteristic fields generated by {Z1(z), . . . , Zm(z) : z ∈ B(z0, 2ρ) ⊆
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R
2n+1} corresponding to the first integrals {H1(z), . . . , Hm(z) : z ∈ B(z0, 2ρ) ⊆

R
2n+1}.

In the particular case when PDE (1) is determined by a function H0(x, p),
the construction of a parameterized stationary solution is analyzed in Theo-
rem 3.1 of Section 3. For the general case, the result is given in Theorem 3.2
of Section 3.

In Section 2 are included all definitions and some auxiliary results nec-
essary for the main results given in Section 3.

The method of using finite composition of flows (orbit) and the corre-
sponding gradient system in a Lie algebra of vector fields has much in common
with the references included here (see [1], [2] and [3]) where both parabolic
equations with stochastic perturbations and overdetermined system of first
order PDE are studied.

This paper is intended to be a new application of the geometric-algebraic
methods presented in [3].

2. DEFINITIONS, FORMULATION OF PROBLEMS
AND SOME AUXILIARY RESULTS

Denote H = C∞(R2n+1, R) the space consisting of the scalar functions
H(x, p, u) : R

n × R
n × R → R which are continuously differentiable of any

order. For each pair H1,H2 ∈ H, define the Poisson bracket

(10) {H1,H2}(z) = 〈∂zH2(z), Z1(z)〉, z = (x, p, u) ∈ R
2n+1,

where ∂zH2(z) stands for the gradient of a scalar function H2 ∈ H and
Z1(z) =

(
X1(z), P1(z), U1(z)

) ∈ R
2n+1, z ∈ R

2n+1 is the characteristic field
corresponding to H1 ∈ H. We recall that Z1 is obtained from H1 ∈ H such
that the following equation

(11) X(z) = ∂pH1(z), P1(z) = −[∂xH1(z) + p∂uH1(z)], U1(z) = 〈p, H1(z)〉
is satisfied. The linear mapping connecting an arbitrary H ∈ H and its char-
acteristic field can be represented by

(12) ZH(z) = T (p)
(
∂zH

)
(z), z ∈ R

2n+1.

Here, the real (2n + 1)× (2n + 1) matrix T (p) is defined by

(13) T (p) =

⎛
⎝ O In θ
−In O −p
θ∗ p∗ O

⎞
⎠

considering O = zero matrix of Mn,m, In – unity matrix of Mn,m and θ ∈ R
n

is the null column vector.
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We notice that T (p) is a skew symmetric

(14) [T (p)]∗ = −T (p)

and as a consequence, the Poisson bracket satisfies a skew symmetric property

{H1,H2}(z) = 〈∂zH2(z), Z1(z)〉 = 〈∂zH2(z), T (p)(∂zH1)(z)〉(15)

= 〈[T (p)]∗(∂zH2)(z), ∂zH1(z)〉 = −{H2,H1}(z).

In addition, the linear space of characteristic fields K⊆C∞(R2n+1; R2n+1)
is the image of a linear mapping S : DH → K, where DH = {∂zH = H ∈ H}.
Using (12), we define

(16) S(∂zH)(z) = T (p)(∂zH)(z), z ∈ R
2n+1,

where the matrix T (p) is given in (13).
The linear space of characteristic fields K = S(DH) is extended to a

Lie algebra Lk ⊆ C∞(R2n+1; R2n+1), using the standard Lie bracket of vector
fields

(17) [Z1, Z2] = [∂zZ2]Z1 − [∂zZ1]Z2, Zi ∈ K, i = 1, 2.

On the other hand, each H ∈ H is associated with a linear mapping

(18)
−→
H (ϕ)(z) = {H,ϕ}(z) = 〈∂zϕ(z), ZH(z)〉, z ∈ R

2n+1,

for each ϕ ∈ H, where ZH ∈ K is the characteristic vector field corresponding
to H ∈ H obtained from ∂zH by ZH(z) = T (p)(∂zH)(z) see (12).

Define a linear space consisting of linear mappings

(19)
−→H = {−→H : H ∈ H}

and extend
−→H to a Lie algebra LH using the Lie bracket of linear mappings

(20) [
−→
H 1,

−→
H 2] =

−→
H 1 ◦ −→H 2 −−→H 1 ◦ −→H 1.

The link between the two lie algebras LK (extending K) and LH (extending−→H) is given by a homomorphism of Lie algebras

(21) A : LH → LK , A(
−→H) = K

satisfying

(22) A
(
[
−→
H 1,

−→
H 2]

)
= [Z1, Z2] ∈ LK , where Zi = A(

−→
H i), i = 1, 2.

Remark 2.1. In general, the Lie algebra LH ⊇ −→H does not coincide with
the linear space

−→H and as a consequence, we get K ⊆ LK , LK 	= K. It relies
upon the fact that the linear mapping {−−−−→H1,H2} generated by the Poisson
bracket {H1,H2} ∈ H does not coincide with the Lie bracket [

−→
H 1,

−→
H 2] defined

in (20).
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Remark 2.2. In the particular case when H0 in (1) is replaced by a second
order continuous differentiable function H0(x, p) : R

2n → R then the above
given analysis will be restricted to the space H = C∞(R2n, R). If it is the
case then the corresponding linear mapping S : DH → K is determined by a
simplectic matrix

(23) T̂ =
(

O In

−In O

)
, DH = {∂zH : H ∈ C∞(R2n; R)}.

In addition, the linear spaces
−→H and K ⊆ C∞(R2n; R2n) coincide with their

Lie algebras LH and correspondingly LK . It follows from a direct computation
and we get

(24) [Z1, Z2](z) = T̂ ∂zH12, z ∈ R
n,

where Zi = T∂zHi, i = 1, 2 and

(25) H12 = (z) = {H1,H2}(z) = 〈∂zH2(z), Z1(z)〉
in the Poisson bracket associated with two scalar functions H1,H2 ∈ H. Com-
pute

T̂H12(z) = T̂ [∂2
zH2(z)]Z1(z) + T̂ [∂zZ

∗
1 (z)]∂zH2(z)(26)

= [∂zZ2(z)]Z1(z) + T̂ [(∂zH1)∗(z)T̂ ∗]∂zH2(z)

= ∂zZ2(z)Z1(z)− T̂ (∂2
zH1)(T̂ ∂zH2(z))

= [∂zZ2(z)]Z1(z)− [∂zZ1(z)]Z2(z) = [Z1, Z2](z)

and the conclusion {LH =
−→H, Kk = K} is proved. For the general case,

the conclusion of Remark 2.2 is not any more true and the manifold struc-
ture involved in the solution of PDE (1) will be obtained, using first integrals
{H1(z), . . . , Hm(z) : z ∈ B(z0, 2ρ)} (m ≥ 1) corresponding to the fixed char-
acteristic field Z0.

Denote by K0 ⊆ C∞(B(z0, 2ρ); R2n+1) the linear space consisting of all
characteristic fields Z ∈ C∞(B(z0, 2ρ); R2n+1)

(27) Z(z) = T (p)∂zH(z), where {H(z) : z ∈ B(z0, 2ρ) ⊆ R
2n+1}

is a first integral for the fixed characteristic vector field {Z0(z) : z ∈ B(z0, 2ρ)}.
Let L0 ⊆ C∞(B(z0, 2ρ); R2n+1) be the Lie algebra determined by the linear
space K0 ⊆ L0.

Definition 2.3. We say that L0 is of the finite type over C∞(B(z0, 2ρ)) (or
R) with respect to K0 if there exists a system of vector fields {Z1(z), . . . , Zm(z) :

z ∈ B(z0, 2ρ)} ⊆ K0 such that any Lie bracket [Zi, Zj ](z) =
m∑

k=1

αk
ij(z)Zk(z),

z ∈ B(z0, 2ρ), where αk
ij ∈ C∞(B(z0, 2ρ)) (or αk

ij ∈ R), i, j, k ∈ {1, . . . ,m};
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{Z1, . . . , Zm} ⊆ C∞(B(z0, 2ρ); R2n+1) will be called a system of generators
for L0.

Remark 2.4. In the case that PDE (1) is determined by a scalar function
H0(x, p) : B(z0, 2ρ) ⊆ R

2n → R then the linear space K̂0 ⊆ C(B(z0, 2ρ) ⊆
R

2n; R2n) is consisting of all characteristic fields

(28) Ẑ(z) = T̂ ∂zH(z),

where H(z), z ∈ B(z0, 2ρ), is first integral of Ẑ0(z) = T̂ ∂zH0(z) (see Re-
mark 2.2). We get that the Lie algebra L̂0 determined by K̂0 coincides with
K̂0, L̂0 = K̂0 (see Remark 2.2).

Definition 2.5. We say that L̂0 is of the finite type over C∞(B(z0, 2ρ)) (or
R) if there exists a system of vector fields {Z1(z), . . . , Zm(z) : z ∈ B(z0, 2ρ) ⊆
R

2n} ⊆ K̂0 such that any Lie bracket [Zi, Zj ](z) =
m∑

k=1

αk
ij(z)Zk(z), for αk

ij ∈
C∞(B(z0, 2ρ)) (or αk

ij ∈ R), i, j, k ∈ {1, . . . ,m}; {Z1, . . . , Zm} is called a sys-
tem of generators for L̂0.

Remark 2.6. The simplest case in our analysis is obtained when PDE (1)
is determined by a linear function with respect to p ∈ R

n, i.e.,

(29) H0(x, p) = 〈p, f0(x)〉, p ∈ R
n, x ∈ R

n, z = (x, p), z0 = (x0, p0),

where f0 ∈ C2(Rn, Rn). In this case the linear space K̂0 (see Remark 2.4)
coincides with the Lie algebra L̂0 generated by K̂0 where
(30)

K̂0 = {T̂ ∂zH(z) : H(z) = 〈p, f(x)〉, [f, f0](x) = 0, x ∈ B(z0, 2ρ) ⊆ R
n}.

Lemma 2.7. Assume that PDE (1) is determined by H0(x, p) = 〈p, f(x)〉,
x ∈ B(z0, 2ρ) ⊆ R

n, f0 ∈ C2(B(z0, 2ρ); Rn). Assume that there exists {f1, . . . ,
fm} ⊆ C∞(B(z0, 2ρ); Rn) satisfying

[fi, fj ](x) =
m∑

k=1

αk
ijfk(x), x ∈ B(z0, 2ρ),(31)

where αk
ij ⊆ R, k, i, j ∈ {1, . . . ,m}

(32) [f0, fi](x) = 0, x ∈ B(z0, 2ρ), i ∈ {1, . . . ,m}.
Then the lie algebra L̂0 generated by K̂0 (see (30)) fulfils

(33) L̂0 = K̂0 and L̂0 is finite dimensional with dim L̂0 ≤ m.
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Proof. Define Hi(z) = 〈p, fi(x)〉 and the corresponding characteristic
field

(34) Zi(z) =
(

fi(x)
Ai(x)p

)
, Ai(x) = −[∂xfi(x)]∗, 1 ≤ i ≤ m.

Compute a Lie bracket

(35) [Zi, Zj ](z) =
(

[fi, fj ](x)
Pij(z)

)
, i, j ∈ {1, . . . ,m}, x ∈ B(z0, 2ρ),

where [fi, fj ] is the Lie bracket using fi, fj ∈ C∞(B(z0, 2ρ), Rn). Here Pij(z)
is computed as follows

Pij(z) = [∂x(Aj(x)p)]fi(x) + Aj(x)Ai(x)p− [∂xAi(x)p]fj(x)(36)

= −Ai(x)Aj(x)p = ∂x

[〈Aj(x)p, fi(x)〉 − 〈Ai(x)p, fj(x)〉]
= ∂x〈p, [fi, fj ](x)〉,

where Pij(z) def=
[
∂z(Aj(x)p)

]
Zi(z)−[

∂z(Ai(x)p)
]
Zj(z), x ∈ B(x0, 2ρ), is used.

It shows (see (24)) that the Lie bracket [Zi, Zj ](z) in (35) can be written as a

characteristic vector field associated to Hij(z) def= 〈p, [fi, fj ](x)〉, x ∈ B(z0, 2ρ) ⊆
R

n. As a consequence, assuming that {f1, . . . , fm} satisfies (31) and (32), we
get that {Z1, . . . , Zm} ⊆ K̂0 is a system of generators for K̂0. The proof is
complete. �

Lemma 2.8. Assume that PDE (1) is determined by a second order con-
tinuously differentiable H0(x, p) : B(z0, 2ρ) → R, and the Lie algebra L̂0 = K̂0

defined in Remark 2.4 is of the finite type over R. Then there exists a parame-
terized stationary solution of PDE (1) given by

(37) z̃(λ, z0) = G1(t1)◦· · ·◦Gm(tm)[z0], λ = (t1, . . . , tm) ∈
m∏

i=1

[−ai, ai] = Λ,

where {Gi(σ)[y] : σ ∈ [−a1, ai], y ∈ B(z0, ρ)} is the local flow generated by the
vector field Zi ∈ C∞(B(z0, 2ρ), R2n) and {Z1, . . . , Zm} ⊆ C∞(B(z0, 2ρ); R2n)
is a system of generators for L̂0.

Proof. Assuming that L̂0 is of the finite type over R, we notice that fixing
a system of generators {Z1(z), . . . , Zm(z) : z ∈ B(z0, 2ρ) ⊆ R

2n} ⊆ K̂0 for L̂0

we may and do construct a finite dimensional Lie algebra L(Z1, . . . , Zm) ⊆ L̂0

for which {Z1, . . . , Zm} ⊆ K̂0 is a system of generators over R. It allows (see
[3]) to define a corresponding gradient system in the finite dimensional Lie
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algebra L(Z1, . . . , Zm) associated with the following composition of local flows

(38) ẑ(λ, z0) = G1(t1)◦· · ·◦Gm(tm)[z0], λ = (t1, . . . , tm) ∈
m∏

i=1

[−ai, ai] = Λ.

Here {Gi(σ)[y] : σ ∈ [−a1, ai], y ∈ B(z0, ρ)} is the local flow generated by
the vector field Zi ∈ K̂0 and {Z1, . . . , Zm} is the system of generators. In
addition, there exists analytic vector fields {q1(λ), . . . , qm(λ) : λ ∈ B(0, a) ⊆
Λ} ⊆ Cω(B(0, a); Rm) such that each vector field Zi

(
ẑ(λ, z0)

)
, λ ∈ B(0, a),

can be recovered by taking the Lie derivative

(39) ∂λẐ(λ; z0)qi(λ) = Zi

(
ẑ(λ.z0)

)
, λ ∈ B(0, a) ⊆ Λ, i ∈ {1, . . . ,m}

and

{q1(λ), . . . , qm(λ)} ⊆ R
m are linearly independent(40)

for any λ ∈ B(0, a) ⊆ Λ.

The manifold defined in (38) stands for the parameterized stationary solution
of PDE (1) and by a direct computation, we get

(41) 〈∂λH0

(
ẑ(λ, z0)

)
, qi(λ)〉 = 〈∂zH0

(
ẑ(λ, z0)

)
, Zi

(
ẑ(λ, z0)

)〉 = 0

for any λ ∈ B(0, a) ⊆ Λ and i ∈ {1, . . . ,m}. Using (40), we notice that (41)
lead us to

(42) ∂λH0

(
ẑ(λ, z0)

)
= 0, ∀λ ∈ B(0, a) ⊆ Λ

and the proof is complete. �

3. MAIN RESULTS

With the same notations as in Section 2 and considering that Lie algebra
L̂0 = K̂0, defined in Remark 2.4, is of the finite type over C∞(B(z0, 2ρ), R2n)
(see Definition 2.5), we get

Theorem 3.1. Assume that PDE (1) is determined by H0 ∈ C2(B(z0, 2ρ)
⊆ R

2n) and the Lie algebra L̂0 = K̂0 is of the finite type over C∞(B(z0, 2ρ) ⊆
R

2n). Then there exists a parameterized stationary solution of PDE (1) given by

ẑ(λ, z0) = G1(t1) ◦ · · · ◦Gm(tm)[z0],(43)

λ = (t1, . . . , tm) ∈ B(0, a) ⊆
m∏

i=1

[−ai, ai] = Λ,

where {Gi(σ)[y] : σ ∈ [−a1, ai], y ∈ B(z0, ρ)} is the local flow generated by the
vector field Zi ∈ C∞(B(z0, 2ρ); R2n) and {Z1, . . . , Zm} ⊆ C∞(B(z0, 2ρ); R2n)
is the system of generators for L̂0.
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Proof. By hypothesis, let {Z1, . . . , Zm} ⊆ C∞(B(z0, 2ρ); R2n) be a system
of generators for L̂0 which assumes of the finite type over C∞(B(z0, 2ρ); R2n).
Define an orbit of L̂0 starting from z0.

(44) z̃(λ, z0) = G1(t1)◦· · ·◦Gm(tm)[z0], λ = (t1, . . . , tm) ∈
m∏

i=1

[−ai, ai] = Λ,

where {Gi(σ)[y] : σ ∈ [−a1, ai], y ∈ B(z0, ρ)} is the local flow generated
by the vector field Zi ∈ {Z1, . . . , Zm}, i ∈ {1, . . . ,m}. Let L(Z1, . . . , Zm) ⊆
C∞(B(z0, 2ρ); R2n) be the Lie algebra generated by {Z1, . . . , Zm} and notice
that L = L(Z1, . . . , Zm) is finitely generated over orbits starting from z0, which
is abbreviated as (f.g.o; z0) in [3]. On the other hand, using the orbit starting
from z0 defined in (44), we associate a gradient system in L(Z1, . . . , Zm).

∂1ẑ(λ, z0) = Z1

(
ẑ(λ, z0)

)
, ∂2ẑ(λ, z0) = X2

(
t1; ẑ(λ, z0)

)
, . . . ,= ∂1ẑ(λ, z0)(45)

= Xm

(
t1, . . . , tm−1; ẑ(λ, z0)

)
,

λ = (t1, . . . , tm) ∈
m∏

i=1

[−ai, ai] = Λ,

where ∂iẑ(λ, z0)
def= ∂ti ẑ(λ, z0), i ∈ {1, . . . ,m}.

Using the algebraic representation of a gradient system determined by a
system of generators {Z1, . . . , Zm} ⊂ L in a (f.g.o; z0) Lie algebra L (see [3]),
we get

(46) ∂λẑ(λ, z0) = {Z1, . . . , Zm}(ẑ(λ, z0))A(λ), λ ∈ Λ, A(0) = Im,

where the (m × m) matrix A(λ) is nonsingular for any λ ∈ B(0, a) ⊆ Λ
with some a > 0. It lead us to get

{{q1(λ), . . . , qm(λ)} ⊆ R
m : λ ∈ B(0, a)

}
such that

(47) {q1, . . . , qm} ⊆ C∞(B(0, a); Rm) are linearly independent ∀λ ∈ B(0, a),

(48) ∂λẑ(λ, z0)qi(λ) = Zi

(
B(0, a); Rm

)
, λ ∈ B(0, a) ⊆ Λ, i ∈ {1, . . . ,m}.

The equation (48) allows us to get the conclusion

(49) ∂λẑ(λ, z0)qi(λ) = 0, λ ∈ B(0, a) ⊆ Λ, i ∈ {1, . . . ,m}.
and using (47), we obtain ∂λH0(ẑ(λ, z0)) = 0, λ ∈ B(0, a) ⊆ Λ and the proof
is complete. �

With the same notations as in Section 2 and considering that the Lie
algebra L0 is of the finite type over C∞(B(z0, 2ρ), R2n+1) with respect to K0 ⊆
L0 (see Definition 2.3), we get
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Theorem 3.2. Assume that PDE (1) is determined by H0 ∈ C∞(B(z0, 2ρ)
⊆ R

2n+1) and L0 ⊃ K0 is of the finite type over C∞(B(z0, 2ρ) ⊆ R
2n+1) with

respect to K0. Let {Z1, . . . , Zm} ⊆ C∞(B(z0, 2ρ) ⊆ R
2n+1, R2n+1) ∩ K0 be

a system of generators for L0. Then there exists a parameterized stationary
solution for PDE (1) given by

ẑ(λ, z0) = G1(t1) ◦ · · · ◦Gm(tm)[z0],(50)

λ = (t1, . . . , tm) ∈ B(0, a) ⊆
m∏

i=1

[−ai, ai] = Λ,

where {Gi(σ)[y] : σ ∈ [−a1, ai], y ∈ B(z0, ρ)} is the local flow generated by the
vector field Zi, 1 ≤ i ≤ m.

Proof. By hypothesis, any Lie bracket [Zi, Zj ](z) is a linear combination
of {Z1, . . . , Zm}(z), z ∈ B(z0, 2ρ), using smooth functions from C∞(B(z0, 2ρ) ⊆
R

2n+1). It shows that the Lie algebra L = L(Z1, . . . , Lm) ⊆ C∞(B(z0, 2ρ) ⊆
R

2n+1; R2n+1) generated by the fixed {Z1, . . . , Zm} is finitely generated over
orbits starting from z0 (see (f.g.o; z0) Lie algebra in [3]). In addition, {Z1, . . . ,
Zm} is a system of generators for L. Using the orbit defined in (50) we proceed
as in proof of Theorem 3.1 (see (45)–(49)) and get the conclusion. The proof
is complete. �
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