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In this paper, we define expanding mappings in the setting of cone metric spaces
analogous to expanding mappings in metric spaces. We also obtain some results
for two mappings to the setting of cone metric spaces.
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1. INTRODUCTION AND PRELIMINARIES

The existing literature of fixed point theory contains many results enun-
ciating fixed point theorems for self-mappings in metric and Banach spaces.
Recently, Huang and Zhang [4] introduced the concept of cone metric spaces
which generalized the concept of the metric spaces, replacing the set of real
numbers by an ordered Banach space, and obtained some fixed point the-
orems for mapping satisfying different contractive conditions. The study of
fixed point theorems in such spaces is followed by some other mathematicians,
see [1–2, 5–6, 8–10, 12]. In 1984, Wang et. al. [11] introduced the concept of
expanding mappings and proved some fixed point theorems in complete met-
ric spaces. In 1992, Daffer and Kaneko [3] defined an expanding condition for
a pair of mappings and proved some common fixed point theorems for two
mappings in complete metric spaces.

In this paper, we define expanding mappings in the setting of cone metric
spaces analogous to expanding mappings in complete metric spaces. We also
extend a result of Daffer and Kaneko [3] for two mappings to the setting of
cone metric spaces.

Consistent with Huang and Zhang [4], the following definitions and re-
sults will be needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if and
only if:

(a) P is closed, nonempty and P �= {θ};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax + by ∈ P ;
(c) P ∩ (−P ) = {θ}.

MATH. REPORTS 14(64), 2 (2012), 141–148



142 Xianjiu Huang, Chuanxi Zhu and Xi Wen 2

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by
x ≤ y if and only if y− x ∈ P . A cone P is called normal if there is a number
K > 0 such that for all x, y ∈ E,

θ ≤ x ≤ y implies ‖x‖ ≤ K‖y‖.
The least positive number satisfying the above inequality is called the normal
constant of P , while x	 y stands for y − x ∈ intP (interior of P ).

Definition 1.1. Let X be a nonempty set. Suppose that the mapping
d : X ×X → E satisfies:

(d1) θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a cone metric on X and (X, d) is called a cone metric

space.
The concept of a cone metric space is more general than that of a metric

space.

Example 1.1 ([4]). Let E = R2, P = {(x, y) ∈ E | x, y ≥ 0}, X = R and
d : X × X → E be such that d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a
constant. Then (X, d) is a cone metric space.

Definition 1.2 ([4]). Let (X, d) be a cone metric space. We say that {xn} is:
(e) a Cauchy sequence if for every c ∈ E with θ 	 c, there is an N such

that for all n, m > N , d(xn, xm) 	 c;
(f) a convergent sequence if for every c ∈ E with θ 	 c, there is an N

such that for all n > N , d(xn, x) 	 c for some fixed x ∈ X.
(g) (X, d) is a complete cone metric space if every Cauchy sequence is

convergent.
The continuity of the self-maps in the cone metric spaces is, in fact, the

sequential continuity. If f : X → X, where (X, d) is a cone metric space, then
f is continuous at the point a ∈ X if, for every sequence {xn} ∈ X, which
converges in the cone metric d to a, the sequence fxn converges to fa, i.e.,

d(xn, a) 	 c⇒ d(fxn, fa) 	 c.

In the rest of this paper, we always suppose that E is a real Banach space,
P ⊆ E is a cone with intP �= ∅ and ≤ is partial ordering with respect to P .
We also note that the relations intP +intP ⊆ intP and λ intP ⊆ intP (λ > 0)
always hold true.

Definition 1.3. Let (X, d) be a cone metric space and T : X → X. Then
T is called a expanding mapping, if for every x, y ∈ X there exists a number
k > 1 such that d(Tx, Ty) ≥ kd(x, y).

Definition 1.4 ([7]). Two self mappings f and g of a cone metric space
(X, d) are said to be commuting if fgx = gfx for all x ∈ X.
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Definition 1.5 ([1]). Let f and g be self mappings of a set X (i.e., f, g :
X → X). If w = fx = gx for some x in X, then x is called a coincidence point
of f and g, and w is called a point of coincidence of f and g. Self mappings f
and g are said to be weakly compatible if they commute at their coincidence
point; i.e., if fx = gx for some x ∈ X, then fgx = gfx.

Weakly compatible mappings are more general than that of commuting
but neither implication is reversible.

The following lemma and remark will be useful in what follows.

Lemma 1.1 ([8]). Let u, v, w be vectors from Banach space E.
(1) If u ≤ v and v 	 w, then u 	 w.
(2) If θ ≤ u 	 c for each c ∈ intP then u = θ.

Remark 1.1 ([8]). If E is a real Banach space with cone P and if a ≤ ka
where a ∈ P and 0 < k < 1, then a = θ.

2. MAIN RESULTS

In this section we shall prove some fixed point theorems of expanding
mappings.

We start with a lemma.

Lemma 2.1. Let (X, d) be a cone metric space and {xn} be a sequence
in X. If there exists a number k ∈ (0, 1) such that

(1) d(xn+1, xn) ≤ kd(xn, xn−1), n = 1, 2, . . .

then {xn} is a Cauchy sequence in X.

Proof. By the simple induction with the condition (1), we have

d(xn+1, xn) ≤ kd(xn, xn−1) ≤ k2d(xn−1, xn−2) ≤ · · · ≤ knd(x1, x0).

Hence for n > m

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm) ≤
≤ (kn−1 + kn+2 + · · ·+ km)d(x1, x0) ≤ km

1 + k
d(x1, x0).

Let θ 	 c be given. Chose δ > 0 such that c + Nδ(θ) ⊆ P , where
Nδ(θ) = {y ∈ E : ‖y‖ < δ}. Also, choose a natural number N1 such that
km

1+kd(x1, x0) ∈ Nδ(θ), for all m ≥ N1. Then km

1+kd(x1, x0) 	 c, for all m ≥ N1.
Thus

d(xn, xm) ≤ km

1 + k
d(x1, x0) 	 c,

for all n > m. Hence {xn}∞n=1 is a Cauchy sequence in X. �
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Theorem 2.1. Let (X, d) be a complete cone metric space and T : X →
X be a surjection. Suppose that there exist a1, a2, a3 ≥ 0 with a1 +a2 +a3 > 1
such that

(2) d(Tx, Ty) ≥ a1d(x, y)+a2d(x, Tx)+a3d(y, Ty), for all x, y ∈ X, x �= y.

Then T has a fixed point in X.

Proof. Under the assumption, it is clear that T is injective. Let G be the
inverse mapping of T . Choose x0 ∈ X, set x1 = G(x0), x2 = G(x1) = G2(x0),
. . . , xn+1 = G(xn) = Gn+1(x0), . . ..

Without loss of generality, we assume that xn−1 �= xn for all n = 1, 2, . . .
(otherwise, if there exists some n0 such that xn0−1 = xn0 , then xn0 is a fixed
point of T ).

It follows that from condition (2)

d(xn−1, xn) = d(TT−1xn−1, TT−1xn) ≥
≥ a1d(T−1xn−1, T

−1xn)+ a2d(T−1xn−1, TT−1xn−1)+ a3d(T−1xn, TT−1xn) =

= a1d(Gxn−1, Gxn) + a2d(Gxn−1, xn−1) + a3d(Gxn, xn) =

= a1d(xn, xn+1) + a2d(xn, xn−1) + a3d(xn+1, xn)

or
(1− a2)d(xn−1, xn) ≥ (a1 + a3)d(xn+1, xn).

If a1 +a3 = 0, then a2 > 1. The above inequality implies that a negative
number is greater than or equal to zero. That is impossible. So, a1 + a3 �= 0
and (1− a2) > 0. Therefore,

d(xn+1, xn) ≤ hd(xn−1, xn),

where h = 1−a2
a1+a3

< 1. By Lemma 2.1, {xn}∞n=1 is a Cauchy sequence in X.
Since (X, d) is complete, the sequence {xn}∞n=1 converges to a point z ∈ X.
Let z = Tu, u ∈ X, we have

d(xn, z) = d(Txn+1, Tu) ≥ a1d(xn+1, u) + a2d(xn+1, xn) + a3d(u, Tu)

which implies that as n →∞
θ ≥ (a1 + a3)d(u, z).

Hence, u = z = Tu.
This gives that z is a fixed point of T . This completes the proof. �
Remark 2.1. Setting a2 = a3 = 0 and a1 = k in Theorem 2.1, we can

obtain the following result.

Corollary 2.1. Let (X, d) be a complete cone metric space and T :
X → X be a surjection. Suppose that there exists a constant k > 1 such that

(3) d(Tx, Ty) ≥ kd(x, y), for all x, y ∈ X.
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Then T has a unique fixed point in X.

Proof. From Theorem 2.1, it follows that T has a fixed point z in X by
setting a2 = a3 = 0 and a1 = λ in condition (2).

Uniqueness. Suppose that z �= w is also another fixed point of T , then
from condition (3), we obtain

d(z, w) = d(Tz, Tw) ≥ λd(z, w)

which implies d(z, w) = θ, that is z = w. This completes the proof. �
Corollary 2.2. Let (X, d) be a complete cone metric space and T :

X → X be a surjection. Suppose that there exist a positive integer n and a
real number k > 1 such that

(4) d(Tnx, Tny) ≥ kd(x, y), for all x, y ∈ X.

Then T has a unique fixed point in X.

Proof. From Corollary 2.1, Tn has a unique fixed point z. But Tn(Tz) =
T (Tnz) = Tz, so Tz is also a fixed point of Tn. Hence Tz = z, z is a fixed
point of T . Since the fixed point of T is also fixed point of Tn, the fixed point
of T is unique. �

Theorem 2.2. Let (X, d) be a complete cone metric space and T : X →
X be a continuous surjection. If there exist a constant k > 1 such that, for
any x, y ∈ X, there is

u ≡ u(x, y) ∈ {d(x, y), d(x, Tx), d(y, Ty)}
satisfying

(5) d(Tx, Ty) ≥ ku, for all x, y ∈ X.

Then T has a fixed point in X.

Proof. Similar to the proof of Theorem 2.1, we can obtain a sequence
{xn} such that xn−1 = Txn.

Without loss of generality, we assume that xn−1 �= xn for all n = 1, 2, . . .
(otherwise, if there exists some n0 such that xn0−1 = xn0 , then xn0 is a fixed
point of T ).

It follows that from condition (5)

d(xn−1, xn) = d(Txn, Txn+1) ≥ kun,

where un = {d(xn, xn+1), d(xn, xn−1)}.
Now we have to consider the following two cases:
• If un = d(xn, xn−1), then

d(xn−1, xn) ≥ kd(xn, xn−1)

which implies d(xn−1, xn) = θ by Remark 1.1, that is xn−1 = xn. This is a
contradiction.
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• If un = d(xn, xn+1), then

d(xn−1, xn) ≥ kd(xn, xn+1).

By Lemma 2.1, {xn}∞n=1 is a Cauchy sequence in X. Since (X, d) is complete,
the sequence {xn}∞n=1 converges to a point z ∈ X.

Since T is continuous, it is clear that z is a fixed point of T . This com-
pletes the proof. �

Now, we give a common fixed point theorem of two weakly compatible
mappings in cone metric spaces.

Theorem 2.3. Let (X, d) be a cone metric space. Let S and T be weakly
compatible self-mappings of X and T (X) ⊆ S(X). Suppose that there exists
k > 1 such that

(6) d(Sx, Sy) ≥ kd(Tx, Ty), for all x, y ∈ X.

If one of the subspaces T (X) or S(X) is complete, then S and T have a unique
common fixed point in X.

Proof. Let x0 ∈ X. Since T (X) ⊆ S(X), choose x1 such that y1 = Sx1 =
Tx0. In general, choose xn+1 such that yn+1 = Sxn+1 = Txn. Then from (6),

d(yn+1, yn+2) = d(Txn, Txn+1) ≤ 1
k

d(Sxn, Sxn+1)

=
1
k

d(Txn−1, Txn) =
1
k

d(yn, yn+1).

Thus, by Lemma 2.1, {yn} is a Cauchy sequence, and hence is convergent.
Call the limit z, the lim

n→∞ yn = lim
n→∞Txn = lim

n→∞Sxn. Since T (X) or S(X)

is complete and T (X) ⊆ S(X), there exists a point p ∈ X such that Sp = z.
Now from (6)

d(Tp, Txn) ≤ 1
k
d(Sp, Sxn).

Proceeding to the limit as n →∞, we have d(Tp, z) ≤ 1
kd(Sp, z), which implies

that Tp = z. Therefore, Tp = Sp = z. Since S and T are weakly compatible,
therefore STp = TSp, that is Sz = Tz.

Now we show that z is a fixed point of S and T . From (6)

d(Sz, Sxn) ≥ kd(Tz, Txn).

Proceeding to the limit as n →∞, we have d(Sz, z) ≥ kd(Tz, z), which implies
that Sz = z. Hence Sz = Tz = z.

Uniqueness. Suppose that z �= w is also another common fixed point of S
and T . Then d(Sz, Sw) ≥ kd(Tz, Tw), this implies that z = w. This completes
the proof. �

Now we give an example illustrating Theorem 2.3.



7 Fixed point theorems for expanding mappings in cone metric spaces 147

Example 2.1. Let E = C1([0, 1], R), P = {ϕ ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]},
X = [0, 1], and d : X×X → E defined by d(x, y) = |x−y|ϕ, where ϕ ∈ P is a
fixed function, e.g., ϕ(t) = et. Then (X, d) is a complete cone metric space with
a non-normal cone having the nonempty interior. Let S(x) = x

2 , T (x) = x
6 for

all x, y ∈ X. Then T (X) ⊆ S(X) and S(X) is complete. Further,

d(Sx, Sy) =
1
2
|x− y|ϕ ≥ k

6
d(Tx, Ty)

for 1 < k < 3 and (6) is satisfied. Moreover, mappings are weakly compatible
at x = 0 and 0 is the unique common fixed point. Thus all the conditions of
Theorem 2.3 are satisfied.

Remark 2.2. In Theorem 2.3, the necessary condition of weakly compa-
tibility cannot be removed.

Note that in Example 2.1, if we consider S(x) = 1− x, T (x) = 1− x
2 for

all x, y ∈ X. Then T (X) ⊆ S(X) and S(X) is complete. Moreover,

d(Sx, Sy) = |x− y|ϕ ≥ kd(Tx, Ty)

for 1 < k < 2 and (6) is satisfied. S0 = T0 = 1 but ST0 = 0 and TS0 = 1
2 ,

so S and T are not weakly compatible. It follows that except for the weakly
compatibility of S and T all other hypotheses of Theorem 2.3 are satisfied.
But they do not have a common fixed point. This shows that the weakly
compatibility of S and T in Theorem 2.3 is an essential condition.

Daffer and Kaneko[3] prove a fixed point theorem for a pair of mappings.
We extend their result in cone metric space, thus defining an expanding con-
dition for a pair of mappings in Corollary 2.3 below.

Corollary 2.3. Let (X, d) be a complete cone metric space. Let S :
X → X be a surjection and T : X → X be an injective. If S and T are
commutative, and there exists k > 1 such that

(7) d(Sx, Sy) ≥ kd(Tx, Ty), for all x, y ∈ X,

then S and T have a unique common fixed point in X.

Proof. Note that mappings which commute are clearly weakly compatible
and S(X) is complete and T (X) ⊆ S(X) in Corollary 2.3 since S is surjec-
tive. Then, we can apply Theorem 2.3 that assures the existence of a unique
common fixed point of S and T in X. �
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