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The purpose of this paper is to study a mathematical model of reaction-diffusion
with chemotaxis that may describe a process of bioremediation of a polluted
medium. We shall prove the existence of an asymptotic solution developed with
respect to certain small parameters of the problem.
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1. INTRODUCTION

We deal with the study of a mathematical model of reaction-diffusion
with chemotaxis that may describe a process of bioremediation of a medium
polluted with a pollutant of concentration c(t, x) by an action of a bacteria of
density b(t, x) which is able to destroy the pollutant.

A mathematical reaction-diffusion model of chemotaxis is expressed by
a system of equations which describe the movement of some microorganisms
(bacteria in our case) whose density is denoted by b in response to chemical
gradients emitted by the chemoattractant c (in our case the pollutant). For
surveys on this subject we refer to [6], [7], [8], [14], [16]. Generally, a chemo-
tactic system consists of two equations for b and c with initial conditions

∂b

∂t
−∇ · (D (b, c)∇b) +∇ · (K (b, c) b∇c) = g (b, c)− h (b, c) ,(1)

b(0, ξ) = b0(ξ),(2)
∂c

∂t
−∇ · (δ (b, c)∇c) = ϕ (b, c) ,(3)

c(0, ξ) = c0(ξ),(4)

and boundary conditions.
In the previous equations D(b, c) and δ(b, c) represent the diffusion coeffi-

cients of the attracted population b and chemoattractant c respectively g (b, c)
and h (b, c) are functions describing the rates of growth and death of b and
ϕ (b, c) is the function describing the degradation of the chemoattractant. We
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still denote

(5) f(b, c) = g (b, c)− h (b, c) .

If f (b, c) is positive the rate of growth of bacteria g (b, c) is greater than its
mortality rate h (b, c) and if f (b, c) is negative the degradation of b is dominant
against its growth. The function K characterizes the chemotactic sensitivity.
In literature especially the particular models with special forms for D, K, f
or ϕ have been studied (see the surveys [14], [16]).

The model proposed in this paper focuses on the case in which the kinetic
term and the chemotactic sensitivity have a weak influence on the flow.

The chemotaxis model will be set in a stratified 3D domain which can be
viewed as a sequence of layers along a space coordinate, in each layer certain
problem parameters having constant values, different from one layer to the
other. The mathematical model is given by a system of n nonlinear parabolic
equations which are made dimensionless, form which displays a dimensionless
small parameter (or parameters) ε. We adopt a perturbation procedure (see
e.g., [4]), namely we do an asymptotic analysis by developing all the functions
with respect to the powers of the small parameters and retain two systems
for the 0-order and 1-order of approximations. The existence and uniqueness
of a global in time solution for the asymptotic model are studied within the
framework of the evolution equations with m-accretive operators in Hilbert
spaces, under certain assumptions for the nonlinear functions f and K.

2. THE MODEL FORMULATION

We consider that the spatial 3D domain is

Ω = {ξ = (x, y, z) ∈ R3; x ∈ (0, L), ξ′ = (y, z) ∈ Ω2},

where Ω2 is an open bounded subset of R2 with a sufficient regular boundary
(e.g., of class C2). We assume that the domain Ω is composed of n parallel
layers (xi−1, xi) along the Ox axis. The separation of the layers being due to
the fact that certain parameters of the problem have constant values in the
layer i, i.e., they do not depend on the variable x in (xi−1, xi).

We consider that in each layer i the chemotaxis process is modeled by
the equations (1) and (3) written for the bi and the chemoattractant ci. In our
model, we shall consider a particular form of the function ϕ (b, c) encountered
also in other studies (see [10]). However, there will be an essential difference
with respect to that model, because it will be considered that the chemoat-
tractant diffusion is positive. Let us consider

(6) ϕi (bi, ci) = − β1ici
1 + β2ici

bi.
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Thus, in each layer i, i = 1, n, we consider constant values for Di, δi, β1i, β2i

with

(7) Di > 0, δi > 0, β1i ≥ 0, β2i ≥ 0.

These values as well as the expressions of the functions fi, Ki which do not
depend explicitly on x are different from one layer to another. Therefore, the
domain Ω consists of n subdomains Ωi, having the boundaries

∂Ωi = Γi−1 ∪ Γi ∪ Γlati , i = 1, . . . , n,

where Γlati are the lateral boundary of Ωi and Γi = {x = xi}, i = 0, . . . , n. The
surfaces Γ0 and Γn are the external boundaries, while Γi with i = 1, . . . , n− 1
are the boundaries between layers. We denote

Qi := (0, T )× Ωi, Σi := (0, T )× Γi, Σlat
i := (0, T )× Γlati , i = 1, . . . , n.

The interaction between the layers is established by transmission condi-
tions for bi and ci, i.e., the continuity of the solutions and fluxes. We assume
that the system is closed for bacteria, namely the flux across the exterior
frontiers is zero. For the chemoattractant we can require homogeneous Dirich-
let conditions on the external boundaries (the pollutant does not reach the
boundaries).

With these considerations, we propose as mathematical model the fol-
lowing system

∂bi
∂t

−Di∆bi +∇ · [biKi (bi, ci)∇ci] = fi (bi, ci) in Qi,(8)

∂ci
∂t

= δi∆ci −
β1ici

1 + β2ici
bi in Qi,(9)

bi(0, ξ) = bi,0(ξ) in Ωi,(10)

ci(0, ξ) = ci,0(ξ) in Ωi,(11)

for all i = 1, n, where ci,0 and bi,0 are initial conditions for ci and bi. At the
interface between two layers we have the conditions

−Di
∂bi
∂x

+ biKi (bi, ci)
∂ci
∂x

=(12)

= −Di+1
∂bi+1

∂x
+ bi+1Ki+1 (bi+1, ci+1)

∂ci+1

∂x
on Σi,

bi = bi+1 on Σi,(13)

ci = ci+1 on Σi,(14)

δi
∂ci
∂x

= δi+1
∂ci+1

∂x
on Σi,(15)
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for i = 1, n− 1 together with the boundary conditions on the exterior hori-
zontal and lateral boundaries

−D1
∂b1
∂x

+ b1K1 (b1, c1)
∂c1
∂x

= 0 on Σ0,(16)

−Dn
∂bn
∂x

+ bnKn (bn, cn)
∂cn
∂x

= 0 on Σn,(17)

∇bi · ν = 0 on Σlat
i , i = 1, n,(18)

c1 = 0 on Σ0,(19)

cn = 0 on Σn,(20)

ci = 0 on Σlat
i , i = 1, n.(21)

Here ν is the unit outer normal to Γlati and ∂
∂v is the normal derivative.

In order to write the dimensionless system, we consider characteristic
values denoted by index “a”: La for length, Ta for time, ba, ca for concentra-
tions ci and bi, respectively, Da, δa for the diffusion coefficients, Ka for the
chemotactic reaction, fa for the rate of variation of bi, β1a and β2a for the
kinetic coefficients and we introduce the relations

ξ = ξ∗La, t = t∗Ta, bi = b∗i ba, ci = c∗i ca, Di = D∗
iDa,

δi = δ∗i δa, Ki = K∗
iKa, fi = f∗i fa, β1i = β∗1iβ1a, β2i = β∗2iβ2a,

where the superscript “ ∗ ” denotes dimensionless quantities. They are replaced
in the dimensional system and we get the system equations in dimension-
less form

∂b∗i
∂t∗

−DD∗
i∆b

∗
i +K∇ · [b∗iK∗

i (b∗i , c
∗
i )∇c∗i ] = ff∗i (b∗i , c

∗
i ) in Q∗

i ,(22)

∂c∗i
∂t∗

= δδ∗i∆c
∗
i −

β1β
∗
1ic

∗
i

1 + β2β∗2ic
∗
i

b∗i in Q∗
i ,(23)

b∗i (0, ξ
∗) = b∗i,0 (ξ∗) , ξ∗ ∈ Ω∗

i ,(24)

c∗i (0, ξ
∗) = c∗i,0 (ξ∗) , ξ∗ ∈ Ω∗

i ,(25)

for all i = 1, n, where D, K, f , δ are dimensionless parameters given by

D =
Ta
L2
a

Da, δ =
Ta
L2
a

δa, K =
caTa
L2
a

Ka,

f =
Ta
ba
fa, β1 = baTaβ1a, β2 = caβ2a.
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The dimensionless boundary conditions are

−DD∗
i

∂b∗i
∂x∗

+Kb∗iK
∗
i (b∗i , c

∗
i )
∂c∗i
∂x∗

=(26)

= −DD∗
i+1

∂b∗i+1

∂x∗
+Kb∗i+1K

∗
i+1

(
b∗i+1, c

∗
i+1

) ∂c∗i+1

∂x∗
on Σ∗

i ,

b∗i = b∗i+1 on Σ∗
i ,(27)

c∗i = c∗i+1 on Σ∗
i ,(28)

δ∗i
∂c∗i
∂x∗

= δ∗i+1

∂c∗i+1

∂x∗
on Σ∗

i ,(29)

for i = 1, n− 1 and

−DD∗
1

∂b∗1
∂x∗

+Kb∗1K
∗
1 (b∗1, c

∗
1)
∂c∗1
∂x∗

= 0 on Σ∗
0,(30)

−DD∗
n

∂b∗n
∂x∗

+Kb∗nK
∗
n (b∗n, c

∗
n)
∂c∗n
∂x∗

= 0 on Σ∗
n,(31)

∇b∗i · ν = 0 on Σ∗lat
i , i = 1, n,(32)

c∗1 = 0 on Σ∗
0,(33)

c∗n = 0 on Σ∗
n,(34)

c∗i = 0 on Σ∗lat
i , i = 1, n.(35)

To simplify the writing, the superscript “ ∗ ” will be no longer indicated.

2.1. Hypotheses

In the system (22)–(35) we assume that the influence of the kinetic term
and chemotactic coefficient are of ε-order with respect to the other dimension-
less parameters and we set

(36) β2 = ε, K = ε.

The other parameters D, f , δ, β1 are assumed of O (1) .
We make the following hypotheses, for all i = 1, n:
i1) bi,0 ≥ 0 and there exists an i such that bi,0 > 0;
i2) ci,0 ≥ 0 and there exists an i such that ci,0 > 0;
i3) Di ≥ D0 > 0 in Ωi with D0 = min

i=1,n
Di;

i4) δi ≥ δ0 > 0 in Ωi with δ0 = min
i=1,n

δi;

i5) (r1, r2) → Ki(r1, r2) are bounded in absolute value, i.e., |Ki(r1, r2)| ≤
KM for any r1, r2 ∈ R.

We observe that generally, equations with nonlinear terms fi do not
admit global solutions in time (see [11], [12]). In this article we consider the
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next form for fi for which we shall prove the existence of a global solution
in time

(37) fi(r1, r2) = −kir1 + εf̃i(r1, r2),

where ki are positive constants for i = 1, n with k0 = min
i=1,n

ki. We consider that

i6) (r1, r2) → |f̃i(r1, r2)| are bounded for any r1, r2 ∈ R.

2.2. ε0-order and ε1-order approximations

We write the series expansions of all functions with respect to the small
parameters β2 = K = ε. We have

bi(t, ξ) = b0i (t, ξ) + εb1i (t, ξ) + · · · ,
ci(t, ξ) = c0i (t, ξ) + εc1i (t, ξ) + · · · ,

Ki (bi, ci) = Ki

(
b0i , c

0
i

)
+ ε (Ki)bi

(
b0i , c

0
i

)
b1i + ε (Ki)ci

(
b0i , c

0
i

)
c1i + · · · ,

fi (bi, ci) = fi
(
b0i , c

0
i

)
+ ε (fi)bi

(
b0i , c

0
i

)
b1i + ε (fi)ci

(
b0i , c

0
i

)
c1i + · · · ,

where (Ki)bi , (Ki)ci , (fi)bi , (fi)ci represent the derivatives of Ki and fi with
respect to bi and ci.

We replace these series in the system (22)–(35) and by equaling the
coefficients of the powers of ε0 and ε1 we deduce the systems corresponding
to the ε0-order and ε1-order approximations, without writing the symbol “ ∗ ”,
as specified before.

So for the ε0-order approximation we get

∂b0i
∂t

−DDi∆b0i = −fkib0i in Qi,(38)

∂c0i
∂t

= δδi∆c0i − β1β1ic
0
i b

0
i in Qi,(39)

b0i (0, ξ) = bi,0(ξ) in Ωi,(40)

c0i (0, ξ) = ci,0(ξ) in Ωi,(41)

for i = 1, n,

Di
∂b0i
∂x

= Di+1
∂b0i+1

∂x
on Σi,(42)

b0i = b0i+1 on Σi,(43)

c0i = c0i+1 on Σi,(44)

δi
∂c0i
∂x

= δi+1
∂c0i+1

∂x
on Σi,(45)
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for i = 1, n− 1,

∂b01
∂x

(t, ξ) = 0, (t, ξ) ∈ Σ0,(46)

∂b0n
∂x

(t, ξ) = 0, (t, ξ) ∈ Σn,(47)

∇b0i · ν = 0, (t, ξ) ∈ Σlat
i , i = 1, n,(48)

c0i (t, ξ) = 0, (t, ξ) ∈ Σ = Σ0 ∪ Σn ∪ Σlat
i , i = 1, n.(49)

Next, identifying the coefficients of ε1 we obtain the following system for the
ε1-order approximation

∂b1i
∂t

−DDi∆b1i + fkib
1
i = Fi(t, ξ) in Qi,(50)

∂c1i
∂t

− δδi∆c1i + β1β1ib
0
i c

1
i = Hi(t, ξ) in Qi,(51)

c1i (0, ξ) = 0 in Ωi,(52)

b1i (0, ξ) = 0 in Ωi,(53)

for i = 1, n,(
−DDi

∂b1i
∂x

+DDi+1
∂b1i+1

∂x

)∣∣∣∣
x=xi

= Gi
(
t, xi, ξ

′) on Σi,(54)

b1i = b1i+1 on Σi,(55)

c1i = c1i+1 on Σi,(56)

δi
∂c1i
∂x

= δi+1
∂c1i+1

∂x
on Σi,(57)

for i = 1, n− 1,

−DD1
∂b11
∂x

= G0

(
t, x0, ξ

′) on Σ0,(58)

DDn
∂b1n
∂x

= Gn
(
t, xn, ξ

′) on Σn,(59)

∇b1i · ν = 0 on Σlat
i ,(60)

c1i (t, ξ) = 0, (t, ξ) ∈ Σ = Σ0 ∪ Σn ∪ Σlat
i ,(61)

for i = 1, n, where we have denoted by ξ′ := (y, z) ∈ Ω2,

Fi(t, ξ) = ff̃i
(
b0i , c

0
i

)
−∇ ·

[
b0i (t, ξ)Ki

(
b0i , c

0
i

)
∇c0i (t, ξ)

]
,(62)

Hi(t, ξ) = −β2ic
0
i (t, ξ)

∂c0i
∂t

+ δδiβ2ic
0
i (t, ξ)∆c

0
i − β1β1ic

0
i (t, ξ)b

1
i (t, ξ),(63)



228 Elena-Roxana Ardeleanu (Sgarcea) 8

for all i = 1, n,

Gi(t, xi, ξ′) =
(
−b0i (t, ξ)Ki

(
b0i , c

0
i

) ∂c0i
∂x

+(64)

+ b0i+1(t, ξ)Ki+1

(
b0i+1, c

0
i+1

) ∂c0i+1

∂x

)∣∣∣∣
x=xi

,

for all i = 1, n− 1, and by

G0

(
t, x0, ξ

′) =
(
−b01 (t, x)K1

(
b01, c

0
1

) ∂c01
∂x

)∣∣∣∣
x=x0

,(65)

Gn
(
t, xn, ξ

′) =
(
b0n (t, x)Kn

(
b0n, c

0
n

) ∂c0n
∂x

)∣∣∣∣
x=xn

.(66)

Once solved the system for the ε0-order approximation the functions Fi(t, ξ),
Hi(t, ξ), Gi(t, xi, ξ′), G0 (t, x0, ξ

′), Gn (t, xn, ξ′) become known.
We retain only the first two approximations because the equations for

the next approximations raise the same mathematical treatment as those cor-
responding to the ε1-order system. Further approximations can be used for
numerical purposes.

We shall resume in detail the definition of the solutions b0i , c
0
i and b1i , c

1
i

in the next sections.

3. THE ε0-ORDER APPROXIMATION

We resume the system (38)–(49) for the ε0-order approximation. For the
moment we recall only the equations for b0i . In order to simplify the writing
we shall no longer write the “ 0 ” superscript symbol. We get the system

∂bi
∂t

−DDi∆bi + fkibi = 0 in Qi, i = 1, n,(67)

bi(0, ξ) = bi,0(ξ) in Ωi, i = 1, n,(68)

Di
∂bi
∂x

= Di+1
∂bi+1

∂x
on Σi, i = 1, n− 1,(69)

bi = bi+1 on Σi, i = 1, n− 1,(70)
∂b1
∂x

= 0 on Σ0,(71)

∂bn
∂x

= 0 on Σn,(72)

∇bi · ν = 0 on Σlat
i , i = 1, n.(73)
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Functional framework. We introduce the functions

(74) b(t, ξ), c(t, ξ) =

 b1(t, ξ), c1(t, ξ), x ∈ (x0, x1)
· · ·
bn(t, ξ), cn(t, ξ), x ∈ (xn−1, xn)

,

b0(ξ), c0(ξ) =

 b1,0(ξ), c1,0(ξ), x ∈ (x0, x1)
· · ·
bn,0(ξ), cn,0(ξ), x ∈ (xn−1, xn)

,

D(x), δ(x) =

 DD1, δδ1, x ∈ (x0, x1)
· · ·
DDn, δδn, x ∈ (xn−1, xn)

,

k(x) =

 fk1, x ∈ (x0, x1)
· · ·
fkn, x ∈ (xn−1, xn)

,

(75) β1(x) =

 β1β11, x ∈ (x0, x1)
· · ·
β1β1n, x ∈ (xn−1, xn)

.

Similarly, we define f(b, c, x) and K(b, c, x).
We notice that assumption (7) and hypotheses i1)–i4) imply similar

properties for the functions defined before. Namely, we have

c0(ξ) ≥ 0,(76)

b0(ξ) ≥ 0,(77)

D(x) ≥ D0 > 0,(78)

δ(x) ≥ δ0 > 0,(79)

β1(x) ≥ 0.(80)

Recall that Ω = (x0, xn). We consider the Sobolev space V = H1(Ω)
endowed with the standard norm

‖ψ‖V =
(
‖ψ‖2 + ‖∇ψ‖2

)1/2
.

We denote V ′ the dual of V and H = L2(Ω) with V ⊂ H ⊂ V ′. We also
specify that by (· , ·) and ‖ · ‖ we shall denote the scalar product and the norm
in L2(Ω). The value of g ∈ V ′ at ψ ∈ V is

(81) g(ψ) = 〈g, ψ〉V ′,V ,

where 〈· , ·〉V ′,V represents the duality between V ′ and V .
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Now, we define the operator A : V → V ′ by

〈Ab, ψ〉V ′,V =
n∑
i=1

∫
Ωi

[
DDi∇bi · ∇ψ + fkibiψ

]
dξ(82)

=
∫

Ω
[D(x)∇b · ∇ψ + k(x)bψ] dξ, ∀ψ ∈ V .

So, we are led to the Cauchy problem
db
dt

(t) +Ab(t) = 0 a.e. t ∈ (0, T ),(83)

b(0) = b0.(84)

We shall prove that (83)–(84) has a strong solution implying that (67)–
(73) has a solution in the sense of distributions and that this solution is unique.

3.1. Main results

Theorem 3.1. Let b0 ∈ L2 (Ω). Then problem (83)–(84) has a unique
strong solution

(85) b ∈W 1,2([0, T ];V ′) ∩ L2 (0, T ;V ) ∩ C([0, T ];L2(Ω))

which satisfies the estimates

‖b(t)‖2 + α0

∫ t

0
‖b(τ)‖2

V dτ ≤ ‖b0‖2 ,(86) ∥∥b(t)− b(t)
∥∥ ≤ ∥∥b0 − b0

∥∥ ,(87)

where α0 = 2min {D0, k0} and b(t) is another solution of (83) with b(0) = b0.
In addition, if b0 ∈ V , we have the regularity

(88) b ∈W 1,2
(
[0, T ] ;L2(Ω)

)
∩ L∞ (0, T ;V ) .

Proof. We prove the existence of the strong solution using the Lions’
theorem for the time independent case (see [15]). To this end we show that
the operator A is positively defined, bounded and coercive. We have

‖Ab(t)‖V ′ = sup
ψ∈V ; ‖ψ‖V ≤1

∣∣∣〈Ab(t), ψ〉V ′,V

∣∣∣
≤ sup

ψ∈V ; ‖ψ‖V ≤1

∣∣∣∣∫
Ω

(D(x)∇b · ∇ψ + k(x)bψ) dξ
∣∣∣∣

≤ sup
ψ∈V ; ‖ψ‖V ≤1

(D∞ ‖∇b‖ ‖ψ‖V + k∞‖b‖ ‖ψ‖V )

≤ max {D∞, k∞} sup
ψ∈V ; ‖ψ‖V ≤1

‖b‖V ‖ψ‖V ≤ max {D∞, k∞} ‖b‖V ,
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where D∞ = max
i=1,n

Di and k∞ = max
i=1,n

ki.

Then we compute

〈Ab(t), b(t)〉V ′,V =
∫

Ω
D(x) (∇b)2 dξ +

∫
Ω
k(x)b2dξ

≥ D0 ‖∇b‖2 + k0‖b‖2 ≥ min {D0, k0} ‖b‖2
V ≥ 0

and we conclude that the operator A is coercive.
It follows that the operator A satisfies the hypotheses of Lions’ theorem

and we conclude that the problem (83)–(84) has a unique strong solution as
claimed in (85).

To obtain (86) we multiply (83) by b, integrate over (0, t) and we get

‖b(t)‖2 − ‖b0‖2 + 2
∫ t

0
〈Ab(τ), b(τ)〉V ′,V dτ = 0.

Using the fact that the operator A is positively defined we have

‖b(t)‖2 − ‖b0‖2 + 2D0

∫ t

0
‖∇b(τ)‖2 dτ + 2k0

∫ t

0
‖b(τ)‖2 dτ ≤ 0

which implies (86) with α0 = 2min {D0, k0}.
In order to obtain (87), let us consider two solutions b and b corresponding

to the initial data b0 and b0. Writing (86) for
(
b(t)− b (t)

)
we get∥∥b(t)− b(t)

∥∥2 + α0

∫ t

0

∥∥b(τ)− b(τ)
∥∥2

V
dτ ≤

∥∥b0 − b0
∥∥2
,

which implies (87) since the second term in the left hand side is positive.
Next, we multiply (83) by db

dt and integrate over (0, t). We get∫ t

0

∫
Ω

(
db
dτ

)2

dξdτ +
∫ t

0

∫
Ω
D(x)

d
dτ

(
|∇b|2

)
dξdτ+

+
∫ t

0

∫
Ω
k(x)b

db
dτ

dξdτ = 0.

Using (78) we can write∫ t

0

∥∥∥∥ db
dτ

(τ)
∥∥∥∥2

dτ +D0 ‖∇b(t)‖2 ≤ D∞ ‖∇b0‖2 − k∞

∫ t

0
‖b(τ)‖

∥∥∥∥ db
dτ

(τ)
∥∥∥∥dτ .

Further, ∫ t

0

∥∥∥∥ db
dτ

(τ)
∥∥∥∥2

dτ +D0 ‖∇b(t)‖2 ≤

≤ D∞ ‖∇b0‖2 +
k2
∞
2

∫ t

0
‖b(τ)‖2 dτ +

1
2

∫ t

0

∥∥∥∥ db
dτ

(τ)
∥∥∥∥2

dτ.
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Then we can write

1
2

∫ t

0

∥∥∥∥ db
dτ

(τ)
∥∥∥∥2

dτ +D0 ‖∇b(t)‖2 ≤ D∞ ‖∇b0‖2 +
k2
∞
2

∫ t

0
‖b(τ)‖2 dτ.

We deduce that

(89)
∫ t

0

∥∥∥∥ db
dτ

(τ)
∥∥∥∥2

dτ + 2D0 ‖∇b(t)‖2 ≤ 2D∞ ‖∇b0‖2 + k2
∞T ‖b0‖

2 = C ′.

We use (86) and finally we get

(90) ‖b(t)‖V ≤ CV ,

where CV =
√
‖b0‖2 + C′

2D0
.

Because b0 ∈ V the relation above implies (88) and it yields that

bi ∈W 1,2
(
[0, T ] ;L2(Ωi)

)
∩ L∞

(
0, T ;H1(Ωi)

)
. �

We return in the equation (67) and we deduce that

DDi4bi =
∂bi
∂t

+ fkibi ∈ L2
(
0, T ;L2(Ωi)

)
which together with the boundary conditions on the externals boundaries im-
plies that bi ∈ L2

(
0, T ;H2(Ωi)

)
, i = 1, n. This assertion is proved in a similar

way with the regularity of the weak solutions (see [3]) modifying the proof
correspondingly to the Neumann boundary conditions on Γi.

In conclusion, in each layer the functions b0i have the regularity

b0i ∈W 1,2([0, T ]; (H1(Ωi)′) ∩ L2
(
0, T ;H1(Ωi)

)
∩(91)

∩C([0, T ];L2(Ωi)) ∩ L2
(
0, T ;H2(Ωi)

)
.

In order to show the connection with the physical model we verify if the
solution falls within an accepted physical domain. This being a concentration
we shall check its positiveness.

Proposition 3.2. Assume b0 ∈ L2 (Ω), b0 ≥ 0 a.e. in Ω and let bM be
a positive constant such that 0 ≤ b0 ≤ bM . Then the solution b to problem
(83)–(84) satisfies

(92) 0 ≤ b(t) ≤ bM a.e. in Ω , ∀t ∈ [0, T ].

Proof. Recalling that the positive and negative parts of b are b+ =
max{b, 0} and b− = −min{b, 0}, we have to prove that b−(t) = 0 for each
t ∈ [0, T ]. We multiply (83) scalarly by b−(t) and get∫

Ω

db
dt

(t)b−(t)dξ +
∫

Ω
D(x)∇b(t) · ∇b−(t)dξ +

∫
Ω
k(x)b(t)b−(t)dξ = 0.



13 A chemotaxis model in a stratified domain 233

We use the Stampacchia’s lemma

(93) −1
2

d
dt

∥∥b−(t)
∥∥2 −

∫
Ω
D(x)

∣∣∇b−(t)
∣∣2 dξ −

∫
Ω
k(x)

∣∣b− (t)
∣∣2 dξ = 0

and integrating over (0, T ) we have

1
2

∥∥b−(t)
∥∥2 − 1

2

∥∥b−(0)
∥∥2 +D0

∫ t

0

∥∥∇b−(τ)
∥∥2 dτ + k0

∫ t

0

∥∥b−(τ)
∥∥2 dτ ≤ 0.

But b−0 = 0 since b0(t) ≥ 0 and the two last terms are positive since D0, k0 ≥ 0.
It follows that ‖b−(t)‖ = 0 whence b(t) ≥ 0 for each t ∈ [0, T ].

Now, we consider the equation (83) written equivalently∫ T

0

∫
Ω

db
dt
ψdξdt+

∫ T

0

∫
Ω
D(x)∇b · ∇ψdξdt+

∫ T

0

∫
Ω
k(x)bψdξdt = 0

for any ψ ∈ L2 (0, T ;V ).
Next, we still have∫ T

0

∫
Ω

d
dt

(b− bM )ψdξdt+
∫ T

0

∫
Ω
D(x)∇ (b− bM )∇ψdξdt

+
∫ T

0

∫
Ω

[k(x) (b− bM ) + k(x)bM ]ψdξdt = 0

and make ψ = (b− bM )+. We obtain

1
2

∥∥(b− bM )+ (t)
∥∥2 − 1

2

∥∥(b0 − bM )+
∥∥2

+
∫ T

0

∫
Ω
D(x)

∣∣∇ (b− bM )+
∣∣2 dξdt+

+
∫ T

0

∫
Ω
k(x)

∣∣(b− bM )+
∣∣2 dξdt = −

∫ T

0

∫
Ω
k(x)bM (b− bM )+ dξdt.

Since b0 ≤ bM it follows that (b0 − bM )+ = 0 and we have

1
2

∥∥(b− bM )+ (t)
∥∥2

+D0

∫ T

0

∫
Ω

∣∣∇ (b− bM )+
∣∣2 dξdt+

+ k0

∫ T

0

∫
Ω

∣∣(b− bM )+
∣∣2 dξdt ≤ 0.

Finally, we get ∥∥(b− bM )+ (t)
∥∥2

= 0 .

This means that b(t, ξ) ≤ bM a.e. in Ω for any t ∈ [0, T ]. �
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Now we resume the system of the ε0-order approximation for c0i written
without “0” superscript symbol

∂ci
∂t

− δδi∆ci + β1β1ibici = 0 in Qi, i = 1, n,(94)

ci(0, ξ) = ci,0(ξ) in Ωi, i = 1, n,(95)

δi
∂ci
∂x

= δi+1
∂ci+1

∂x
on Σi, i = 1, n− 1,(96)

ci = ci+1 on Σi, i = 1, n− 1,(97)

ci(t, ξ) = 0, (t, ξ) ∈ Σ = Σ0 ∪ Σn ∪ Σlat
i , i = 1, n.(98)

The problem (94)–(98) is similar to the problem (67)–(73) treated in the
space V0 = H1

0 (Ω) endowed with the standard norm

‖ψ‖V0
= ‖∇ψ‖

with V ′
0 = H−1(Ω) its dual.

Here we define the time dependent operator B(t) : V0 → V ′
0 by

〈B(t)c, ψ〉V ′
0 ,V0

=
n∑
i=1

∫
Ωi

[
δδi∇ci · ∇ψ + β1β1ibi(t)ciψ

]
dξ(99)

=
∫

Ω
[δ(x)∇c · ∇ψ + β1(x)b(t)cψ] dξ, ∀ψ ∈ V0.

So, we are led to the Cauchy problem

dc
dt

(t) +B(t)c(t) = 0 a.e. t ∈ (0, T ) ,(100)

c(0) = c0(101)

and we can give the next result.

Theorem 3.3. Let c0 ∈ L2(Ω) . Then problem (100)–(101) has a unique
strong solution

(102) c ∈W 1,2([0, T ];V ′
0) ∩ L2 (0, T ;V0) ∩ C([0, T ];L2(Ω))

which satisfies the estimates

‖c(t)‖2 + 2δ0
∫ t

0
‖c(τ)‖2

V0
dτ ≤ ‖c0‖2 ,(103)

‖c(t)− c(t)‖2 + 2δ0
∫ t

0
‖c(τ)− c(τ)‖2

V0
dτ ≤ ‖c0 − c0‖2 ,(104)

‖c(t)‖V0
≤ CV0 ,(105)

where CV0 is a constant and c (t) is another solution of (100) with c(0) = c0.
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In addition, if c0 ∈ V0 we have the regularity

(106) c ∈W 1,2
(
[0, T ] ;L2(Ω)

)
∩ L∞ (0, T ;V0) .

Proof. The proof is similar to the one of Theorem 3.1, just that the space
H1(Ω) is replaced by H1

0 (Ω).
In order to obtain (103) we multiply (100) by c (t), we integrate over

(0, t) and we get

1
2

∫ t

0

d
dτ

‖c(τ)‖2 dτ +
∫ t

0

∫
Ω
δ (x) (∇c(τ))2 dξdτ+

+
∫ t

0

∫
Ω
β1(x)b(τ)c2(τ)dξdτ = 0.

For the last term in the right hand side we take into account the relations (80)
and (92) and we can write that

1
2
‖c(t)‖2 + δ0

∫ t

0
‖∇c(τ)‖2 dτ ≤ 1

2
‖c0‖2

which implies (103).
To obtain (104) we consider two solutions c and c corresponding to the

initial data c0 and c0 and we write (103) for (c(t)− c(t)).
Next, we multiply (100) by dc

dt (t) and integrate over (0, t). We have∫ t

0

∥∥∥∥ dc
dτ

(τ)
∥∥∥∥2

dτ +
∫ t

0

∫
Ω
δ(x) (∇c(τ))2 dξdτ+

+
∫ t

0

∫
Ω
β1(x)b(τ)c(τ)

dc
dτ

(τ)dξdτ = 0.

Using (79) we can write∫ t

0

∥∥∥∥ dc
dτ

(τ)
∥∥∥∥2

dτ + δ0 ‖∇c(t)‖2 ≤ δ∞ ‖∇c0‖2 −
∫ t

0

∫
Ω
β1(x)b(τ)c(τ)

dc
dτ

(τ)dξdτ

and further∫ t

0

∥∥∥∥ dc
dτ

(τ)
∥∥∥∥2

dτ + δ0 ‖∇c(t)‖2 ≤

≤ δ∞ ‖∇c0‖2 + β1∞bM

∫ t

0

∫
Ω
|c(τ)|

∣∣∣∣ dc
dτ

(τ)
∣∣∣∣ dξdτ

≤ δ∞ ‖∇c0‖2 + β1∞bM

∫ t

0
‖c(τ)‖

∥∥∥∥ dc
dτ

(τ)
∥∥∥∥dτ

≤ δ∞ ‖∇c0‖2 +
β2

1∞b
2
M

2

∫ t

0
‖c(τ)‖2 dτ +

1
2

∫ t

0

∥∥∥∥ dc
dτ

(τ)
∥∥∥∥2

dτ .
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So, we get∫ t

0

∥∥∥∥ dc
dτ

(τ)
∥∥∥∥2

dτ + 2δ0 ‖∇c(t)‖2 ≤ 2δ∞ ‖∇c0‖2 + β2
1∞b

2
MT ‖c0‖

2 = C1

and from here we deduce that ‖c(t)‖V0
≤ CV0 with CV0 =

√
C1
2δ0
. �

It is obvious that in the same way as before we get in each layer

(107) c0i ∈W 1,2
(
[0, T ] ;L2(Ωi)

)
∩ L∞

(
0, T ;H1

0 (Ωi)
)
∩ L2

(
0, T ;H2(Ωi)

)
.

Proposition 3.4. Assume c0 ∈ L2(Ω), c0 ≥ 0 a.e. in Ω and let cM be
a positive constant such that 0 ≤ c0 ≤ cM . Then the solution c to problem
(100)–(101) satisfies

(108) 0 ≤ c(t) ≤ cM a.e. in Ω, ∀t ∈ [0, T ].

This result ends the proof of the existence and uniqueness of the solution
for the system (38)–(49) of ε0-order approximation.

4. THE ε1-ORDER APPROXIMATION

We resume the system (50)–(61) for the ε1-order approximation. We have
again two systems, one for b1i and one for c1i . In order to simplify the writing
we shall no longer write the “ 1 ” superscript symbol. First we write the system

∂bi
∂t

−DDi∆bi + fkibi = Fi(t, ξ) in Qi, i = 1, n,(109)

bi(0, ξ) = 0 in Ωi, i = 1, n,(110) (
−DDi

∂bi
∂x

+DDi+1
∂bi+1

∂x

)∣∣∣∣
x=xi

= Gi
(
t, xi, ξ

′) on Σi,(111)

bi = bi+1 on Σi, i = 1, n− 1,(112)

−DD1
∂b1
∂x

= G0

(
t, x0, ξ

′) on Σ0,(113)

−DDn
∂bn
∂x

= Gn
(
t, xn, ξ

′) on Σn,(114)

∇bi · ν = 0 on Σlat
i , i = 1, n,(115)

where Fi, Gi are given by the relations (62) and (64)–(66).
We recall that 0 ≤ b0i (t, ξ) ≤ bM for any t ∈ [0, T ] by Proposition 3.2 and

Ki

(
b0i , c

0
i

)
are bounded in absolute value by hypothesis i5).
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We calculate∥∥∥∥b0i (t)Ki

(
b0i (t), c

0
i (t)

) ∂c0i
∂x

(t)
∥∥∥∥2

L2(Ωi)

=
∫

Ω

∣∣∣∣b0i (t)Ki

(
b0i (t), c

0
i (t)

) ∂c0i
∂x

(t)
∣∣∣∣2 dξ ≤

≤ K2
Mb

2
M

∫
Ω

∣∣∣∣∂c0i∂x (t)
∣∣∣∣2 dξ ≤ K2

Mb
2
M

∥∥c0i (t)∥∥2

H1
0 (Ωi)

≤ C a.e. t ∈ (0, T ) .(116)

Here we used the relation (105).
Now, we recall the next result (see [9]): if η ∈ H1(Ω), θ ∈ H1(Ω) then

ηθ ∈ L2(Ω) and

(117) ‖ηθ‖ ≤ C ‖η‖H1(Ω) ‖θ‖H1(Ω)

and we calculate ∥∥∥∥ ∂

∂x

(
b0i (t)Ki

(
b0i (t), c

0
i (t)

)∂c0i
∂x

(t)
)∥∥∥∥

L2(Ωi)

≤(118)

≤ KM

∥∥∥∥∂b0i∂x (t)
∂c0i
∂x

(t) + b0i (t)
∂2c0i
∂x2

(t)
∥∥∥∥
L2(Ωi)

≤

≤ KM

∥∥∥∥∂b0i∂x (t)
∂c0i
∂x

(t)
∥∥∥∥
L2(Ωi)

+KM

∥∥∥∥b0i (t)∂2c0i
∂x2

(t)
∥∥∥∥
L2(Ωi)

.

But b0i ∈ L2
(
0, T ;H2(Ωi)

)
and we get that ∂b0i

∂x (t) ∈ H1(Ωi) for i = 1, n.
So, for the first norm we use (117). For the second norm we have 0 ≤ b0i (t) ≤
bM for any t ∈ [0, T ] and we use

∥∥∥b0i (t)∂2c0i
∂x2 (t)

∥∥∥
L2(Ωi)

≤ bM

∥∥∥∂2c0i
∂x2 (t)

∥∥∥
L2(Ωi)

. We

return in (118) and we obtain

(119)
∥∥∥∥ ∂

∂x

(
b0i (t)Ki

(
b0i (t), c

0
i (t)

) ∂c0i
∂x

(t)
)∥∥∥∥

L2(Ωi)

≤ C a.e. t ∈ (0, T ).

We mention that C represents several constants.
We deduce that

(120) b0i (t, ·)Ki

(
b0i , c

0
i

) ∂c0i
∂x

(t, ·) ∈ H1 (Ωi) a.e. t ∈ (0, T )

and so its trace on Γi exists on L2 (Γi) implying that

(121) Gi ∈ L2
(
0, T ;L2 (Γi)

)
, i = 1, n.

Next, we know by (62) that

Fi(t, ξ) = ff̃i
(
b0i , c

0
i

)
−∇ ·

[
b0iKi

(
b0i , c

0
i

)
∇c0i

]
.

By hypothesis i6), f̃i
(
b0i , c

0
i

)
∈ L∞ (Qi) and by (120) it yields that

∇ ·
[
b0iKi

(
b0i , c

0
i

)
∇c0i

]
∈ L2 (Qi) .
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So, we obtain that Fi ∈ L2 (Qi).
We recall the definition of operator A : V → V ′

〈Ab, ψ〉V ′,V =
∫

Ω
[D(x)∇b · ∇ψ + k(x)bψ] dξ, ∀ψ ∈ V.

Then for a.e. t ∈ (0, T ) we define E(t) : V → V ′ by

(122) 〈E(t), ψ〉V ′,V =
n∑
i=1

∫
Ωi

Fi(t)ψdξ +
n∑
i=1

∫
Γi

Gi
(
t, x, ξ′

)
ψdσ

for any ψ ∈ V and so we are led to the Cauchy problem

db
dt

(t) +Ab(t) = E(t) a.e. t ∈ (0, T ),(123)

b(0) = 0.(124)

Equivalently, it can be written∫ T

0

〈
db
dt

(t), ψ(t)
〉
V ′,V

dt+
∫
Q
D(x)∇b · ∇ψdξdt+

∫
Q
k(x)bψdξdt

=
n∑
i=1

∫
Qi

Fiψdξdt+
n∑
i=1

∫
Σi

Gi(t, xi, ξ′)ψdσdt

for any ψ ∈ V.

Theorem 4.1. The problem (123)–(124) has a unique strong solution

(125) b ∈W 1,2([0, T ];V ′) ∩ L2 (0, T ;V ) ∩ C([0, T ];L2(Ω))

which satisfies the estimate

(126) ‖b(t)‖2 + α0

∫ t

0
‖b(τ)‖2

V dτ ≤ 1
α0

∫ t

0
‖E(τ)‖2

V ′ dτ,

where α0 = min {D0, k0}.

Proof. We know that the operator A satisfies the hypotheses of Lions’
theorem and that E(t) ∈ L2(0, T ;V ′). We conclude that the system (123)–
(124) has a unique strong solution as claimed in (125).

To obtain (126) we multiply (123) by b, integrate over (0, t) and we have

1
2
‖b(t)‖2 − 1

2
‖b0‖2 +

∫ t

0
D(x) ‖∇b(τ)‖2 dτ+

+
∫ t

0
k(x) ‖b(τ)‖2 dτ ≤

∫ t

0
‖E(τ)‖V ′ ‖b(τ)‖V dτ.
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Using the hypotheses for D(x) and k(x) we can write

1
2
‖b(t)‖2 +D0

∫ t

0
‖∇b(τ)‖2 dτ + k0

∫ t

0
‖b(τ)‖2 dτ ≤

≤ 1
2α0

∫ t

0
‖E(τ)‖2

V ′ dτ +
α0

2

∫ t

0
‖b(τ)‖2

V dτ

and so we get

1
2
‖b(t)‖2 + α0

∫ t

0
‖b(τ)‖2

V dτ ≤ 1
2α0

∫ t

0
‖E(τ)‖2

V ′ dτ +
α0

2

∫ t

0
‖b(τ)‖2

V dτ,

where α0 = min {D0, k0}. From here we get (126) as we claimed. �

Now, we resume the system (50)–(61) for the ε1-order approximation for
c1i written without the “ 1 ” superscript symbol

∂ci
∂t

− δδi∆ci + β1β1ib
0
i (t)ci = Hi (t, ξ) in Qi, i = 1, n,(127)

ci(0, ξ) = 0 in Ωi, i = 1, n,(128)

δi
∂ci
∂x

= δi+1
∂ci+1

∂x
on Σi, i = 1, n− 1 ,(129)

ci = ci+1 on Σi, i = 1, n− 1,(130)

ci(t, ξ) = 0, (t, ξ) ∈ Σ = Σ0 ∪ Σn ∪ Σlat
i , i = 1, n.(131)

We recall that Hi(t, ξ) is given by relation (63). We know by Proposition 3.4
that c0i is bounded and by (107) we deduce that ∂c0i

∂t (t) ∈ L2(Ωi) a.e. t ∈ (0, T ).
Since 4c0i (t) ∈ L2 (Ωi) a.e. t ∈ (0, T ) and b1i (t) ∈ L2(Ωi), with these arguments
we obtain that Hi ∈ L2

(
0, T ;L2(Ωi)

)
.

We define the operator B1(t) : V0 → V ′
0 by

〈B1(t)c, ψ〉V ′
0 ,V0

=
∫

Ω

[
δ(x)∇c · ∇ψ + β1(x)b0(t)cψ

]
dξ

for any ψ ∈ V0 and H(t) : V0 → V ′
0 by

〈H(t), ψ〉V ′
0 ,V0

=
n∑
i=1

∫
Ωi

Hi(t)ψdξ a.e. t ∈ (0, T ).

So, we have the Cauchy problem
dc
dt

(t) +B1(t)c(t) = H(t) a.e. t ∈ (0, T ),(132)

c(0) = 0.(133)

Theorem 4.2. The problem (132)–(133) has a unique strong solution

(134) c ∈W 1,2([0, T ];V ′
0) ∩ L2 (0, T ;V0) ∩ C([0, T ];L2(Ω))
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which satisfies the estimate

(135) ‖c(t)‖2 + δ0

∫ t

0
‖c(τ)‖2

V0
dτ ≤ 1

δ0

∫ t

0
‖H(τ)‖2

V ′
0
dτ.

Proof. The proof is the same like in Theorem 4.1. To obtain (135) we
multiply (132) by c(t) and integrate over (0, t)

1
2

∫ t

0

d
dτ

‖c(τ)‖2 dτ +
∫ t

0
〈B(τ)c(τ), c(τ)〉V ′

0 ,V0
dτ =

∫ t

0
〈H(τ), c(τ)〉V ′

0 ,V0
dτ .

Further, we can write

1
2
‖c(t)‖2 +

∫ t

0

∫
Ω
δ(x) (∇c(τ))2 dξdτ +

∫ t

0

∫
Ω
β1(x)b0(τ)c2(τ)dξdτ

=
∫ t

0
〈H(τ), c(τ)〉V ′

0 ,V0
dτ

and using the hypotheses and the result from Proposition 3.2 we get

1
2
‖c(t)‖2 + δ0

∫ t

0
‖∇c(τ)‖2 dτ ≤

∫ t

0
‖H(τ)‖V ′

0
‖c(τ)‖V0

dτ .

Next, we have that

1
2
‖c(t)‖2 + δ0

∫ t

0
‖c(τ)‖2

V0
dτ ≤ 1

2δ0

∫ t

0
‖H (τ)‖2

V ′
0
dτ +

δ0
2

∫ t

0
‖c(τ)‖2

V0
dτ

and from here we obtain (135). �

It is obvious that by Theorem 4.1 and Theorem 4.2 we can write

b1i ∈W 1,2([0, T ];
(
H1(Ωi)

)′) ∩ L2
(
0, T ;H1(Ωi)

)
∩ C([0, T ];L2(Ωi)),

c1i ∈W 1,2([0, T ];H−1(Ωi)) ∩ L2
(
0, T ;H1

0 (Ωi)
)
∩ C([0, T ];L2(Ωi))

for each layer i, i = 1, n.

Finally, with the results for the approximations ε0 and ε1 it can be
characterized the solution for the chemotaxis model.

Corollary 4.3. Problem (22)–(35) admits a unique solution up the
order of approximation ε,

b ∈W 1,2
(
[0, T ];V ′) ∩ L2 (0, T ;V ) ∩ C

(
[0, T ] ;L2(Ω)

)
,(136)

c ∈W 1,2([0, T ];V ′
0) ∩ L2 (0, T ;V0) ∩ C([0, T ];L2(Ω)),

given by

b(t, ξ) = b0(t, ξ) + εb1 (t, ξ) + 0(ε2),(137)

c(t, ξ) = c0(t, ξ) + εc1 (t, ξ) + 0(ε2) → 0.
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Remark. This implies that problem (22)–(35) has a unique solution up
to the order ε in each layer i, i = 1, n given by

b1i ∈W 1,2([0, T ];
(
H1(Ωi)

)′) ∩ L2
(
0, T ;H1(Ωi)

)
∩ C([0, T ];L2(Ωi)),

c1i ∈W 1,2([0, T ];H−1(Ωi)) ∩ L2
(
0, T ;H1

0 (Ωi)
)
∩ C([0, T ];L2(Ωi)),

with

bi(t, ξ) = b0i (t, ξ) + εb1i (t, ξ) + 0(ε2),

ci(t, ξ) = c0i (t, ξ) + εc1i (t, ξ) + 0(ε2) → 0.

The further order of approximations corresponding to εn, n = 2, 3, . . . in-
volve equations which are similar with those for the ε1-order of approximation,
so that we no longer study them. However, for the next order of approxima-
tions it might be necessary to complete the set of hypotheses with additional
assumptions regarding the properties of the functions Ki and f̃i.
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