# STOCHASTIC INTEGRAL EQUATIONS ASSOCIATED WITH STRATONOVICH CURVELINE INTEGRAL 

VIRGIL DAMIAN and CONSTANTIN VÂRSAN

There are investigated the existence and integral representation of a solution satisfying a system of curveline stochastic equations depending on two independent Itô processes $\left\{\eta_{1}\left(t_{1}\right), \eta_{2}\left(t_{2}\right) \in \mathbb{R}^{2}: 0 \leq t_{1} \leq T_{1}, 0 \leq t_{2} \leq T_{2}\right\}$.
AMS 2010 Subject Classification: 60H15.
Key words: Stratonovich curveline integral, gradient systems, curveline stochastic equations.

## 1. INTRODUCTION

We are concerned about curveline stochastic equations driven by a fixed vector field $g \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and using a Stratonovich type differential of a smooth test function $F\left(\tau_{1}, \tau_{2}\right)$ combined with two independent Itô processes

$$
\begin{gathered}
\tau_{i}=\eta_{i}\left(t_{i}\right), \quad i \in\{1,2\} \\
\left(t_{1}, t_{2}\right) \in D=\left\{\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}: 0 \leq t_{1} \leq T_{1}, 0 \leq t_{2} \leq T_{2}\right\}
\end{gathered}
$$

An explicit representation formula for a solution is given in Theorem 1, when $g$ is a bounded smooth vector field. The case of a complete vector field $g \in$ $\mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ is analyzed in Theorem 2 , introducing adequate stopping times. The main support in writing a solution comes from the solution

$$
y_{\lambda}\left(\tau_{1}, \tau_{2}\right)=G\left(F\left(\tau_{1}, \tau_{2}\right)\right)[\lambda], \quad\left(\tau_{1}, \tau_{2}\right) \in \mathbb{R}^{2}, \lambda \in \mathbb{R}^{n}
$$

satisfying a deterministic gradient system

$$
\left\{\begin{array}{l}
\partial_{\tau_{1}} y_{\lambda}\left(\tau_{1}, \tau_{2}\right)=g\left(y_{\lambda}\left(\tau_{1}, \tau_{2}\right)\right) \partial_{\tau_{1}} F\left(\tau_{1}, \tau_{2}\right) \\
\partial_{\tau_{2}} y_{\lambda}\left(\tau_{1}, \tau_{2}\right)=g\left(y_{\lambda}\left(\tau_{1}, \tau_{2}\right)\right) \partial_{\tau_{2}} F\left(\tau_{1}, \tau_{2}\right),\left(\tau_{1}, \tau_{2}\right) \in \mathbb{R}^{2} \\
y_{\lambda}(0,0)=\lambda \in \mathbb{R}^{n}
\end{array}\right.
$$

Here, $\left\{G(\tau)[\lambda]: \tau \in \mathbb{R}, \lambda \in \mathbb{R}^{n}\right\}$ is the global flow generated by the complete vector field $g \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $F \in \mathcal{C}^{2}\left(\mathbb{R}^{2}\right)$ fulfils a polynomial growth condition.

When the corresponding curveline stochastic equation are written, they make sense with respect to the Stratonovich curveline integral provided the right-hand side is a semimartingale and some stopping times are used.

This subject has some roots in the reference [3], but it was inspired by the works given in [1] and [2]. More precisely, the subject analyzed here, on our point of view, presents a new angle in solving the stochastic equations problem mentioned in [1] and [2].

## 2. CURVELINE STOCHASTIC INTEGRAL

To begin with, we consider two independent brownian motions

$$
\begin{align*}
& \left(W_{1}\left(t_{1}, \omega\right), W_{2}\left(t_{2}, \omega\right)\right): D \times \Omega \rightarrow \mathbb{R}^{2},  \tag{2.1}\\
D= & \left\{\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}: 0 \leq t_{1} \leq T_{1}, 0 \leq t_{2} \leq T_{2}\right\},
\end{align*}
$$

over the complete filtered probability space $\left\{\Omega, \mathcal{F} \supseteq\left\{\mathcal{F}_{t_{1}, t_{2}}\right\}, \mathbb{P}\right\}$. Here, $\mathcal{F}_{t_{1}, t_{2}}$ $\stackrel{\text { def }}{=} \mathcal{F}_{t_{1}} \otimes \mathcal{F}_{t_{2}}$ and $\mathcal{F}_{t_{i}}$ is the complete $\sigma$-algebra $\sigma\left(W_{i}(s, \omega): 0 \leq s \leq t_{i}\right)$ generated by the brownian motion as $W_{1}\left(t_{1}\right), 0 \leq t_{1} \leq T_{1}$ and $W_{2}\left(t_{2}\right), 0 \leq t_{2} \leq T_{2}$.

Denote by $\widehat{\gamma}(A, B) \subseteq D(A, B \in D)$ any polygonal curve connecting two fixed points $A, B \in D$ such that any line-segment of $\widehat{\gamma}(A, B)$ is parallel to one of the coordinates axis in $\mathbb{R}^{2}$.

We are going to define, following a standard procedure, two types of curveline stochastic integral.

### 2.1. Itô curveline integral

Let $P_{1}, P_{2} \in \mathcal{C}^{2}\left(\mathbb{R}^{2}\right)$ be given such that the following polynomial growth condition is satisfied

$$
\begin{equation*}
\left|P_{i}\left(\tau_{1}, \tau_{2}\right)\right|,\left|\partial_{\tau_{i}} P_{i}\left(\tau_{1}, \tau_{2}\right)\right| \leq C\left(1+\left|\tau_{1}\right|^{N_{1}}\left|\tau_{2}\right|^{N_{2}}\right), \tag{2.2}
\end{equation*}
$$

where $\left(\tau_{1}, \tau_{2}\right) \in \mathbb{R}^{2}$ for $i \in\{1,2\}$ and $N_{1}, N_{2} \geq 1$ are some natural numbers and $C>0$ is a constant.

Following the standard Itô procedure, we define the Itô curveline stochastic integral $I_{\widehat{\gamma}}(A, B)$ by

$$
\begin{gather*}
I_{\widehat{\gamma}}(A, B)=\int_{\hat{\gamma}(A, B)} P_{1}\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right) \cdot \mathrm{d} W_{1}\left(t_{1}\right)+  \tag{2.3}\\
\quad+\int_{\widehat{\gamma}(A, B)} P_{2}\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right) \cdot \mathrm{d} W_{2}\left(t_{2}\right)
\end{gather*}
$$

Here, $P_{1}, P_{2} \in \mathcal{C}^{2}\left(\mathbb{R}^{2}\right)$ satisfy the polynomial growth condition (2.2) and Itô stochastic integrals "." involved in the right-hand side of (2.3) are defined as $\mathcal{F}_{\left(b_{1}, b_{2}\right)}$-martingales, $B=\left(b_{1}, b_{2}\right) \in D$.

### 2.2. Stratonovich curveline integral

With the same notations as in above subsection and using the hypothesis (2.2), it makes sense to define the following Stratonovich curveline integral

$$
\begin{gather*}
S_{\hat{\gamma}}(A, B)=\int_{\hat{\gamma}(A, B)} P_{1}\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right) \circ \mathrm{d} W_{1}\left(t_{1}\right)+  \tag{2.4}\\
\quad+\int_{\hat{\gamma}(A, B)} P_{2}\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right) \circ \mathrm{d} W_{2}\left(t_{2}\right)
\end{gather*}
$$

Here, the Stratonovich integral "०" is expressed using Itô stochastic integral "." by

$$
\begin{gather*}
P_{i}\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right) \circ \mathrm{d} W_{i}\left(t_{1}\right)=\frac{1}{2} \partial_{\tau_{i}} P_{i}\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right) \mathrm{d} t_{i}+  \tag{2.5}\\
+P_{i}\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right) \cdot \mathrm{d} W_{i}\left(t_{i}\right),
\end{gather*}
$$

for $i \in\{1,2\}$ and the right-hand side of (2.4) is well defined as a $\mathcal{F}_{\left(b_{1}, b_{2}\right)}$-semimartingale, $B=\left(b_{1}, b_{2}\right) \in D$. In addition, a direct computation lead us to the formula connecting the two curveline stochastic integrals

$$
\begin{align*}
S_{\hat{\gamma}}(A, B) & =I_{\hat{\gamma}}(A, B)+\frac{1}{2} \int_{\widehat{\gamma}(A, B)} F_{1}\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right) \mathrm{d} t_{1}+  \tag{2.6}\\
& +\frac{1}{2} \int_{\widehat{\gamma}(A, B)} F_{2}\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right) \mathrm{d} t_{2},
\end{align*}
$$

where $F_{i}\left(\tau_{1}, \tau_{2}\right)=\partial_{\tau_{i}} P_{i}\left(\tau_{1}, \tau_{2}\right), i \in\{1,2\}$.
A significant property of the Stratonovich curveline integral is its independence of polygonal path $\widehat{\gamma}(A, B)$ connecting the two fixed points $A, B \in D$. In this respect, assume: there exists $F \in \mathcal{C}^{2}\left(\mathbb{R}^{2}\right)$ such that

$$
\begin{equation*}
P_{i}\left(\tau_{1}, \tau_{2}\right)=\partial_{\tau_{i}} F\left(\tau_{1}, \tau_{2}\right), \quad\left(\tau_{1}, \tau_{2}\right) \in \mathbb{R}^{2}, i \in\{1,2\} \tag{2.7}
\end{equation*}
$$

Lemma 2.1. Assume that $P_{1}, P_{2} \in \mathcal{C}^{1}\left(\mathbb{R}^{2}\right)$ are given such that the conditions (2.2) and (2.7) are fulfilled. Then, the Stratonovich curveline integral $S_{\widehat{\gamma}}(A, B)$ (see (2.4)) does not depend on the polygonal path $\widehat{\gamma}(A, B)$ and, in addition,

$$
\begin{equation*}
S_{\hat{\gamma}}(A, B)=F\left(W_{1}\left(b_{1}\right), W_{2}\left(b_{2}\right)\right)-F\left(W_{1}\left(a_{1}\right), W_{2}\left(a_{2}\right)\right), \tag{2.8}
\end{equation*}
$$

where $F \in \mathcal{C}^{2}\left(\mathbb{R}^{2}\right)$ is given in (2.7).

Proof. Using the simplest polygonal path $\widehat{\gamma}_{0}(A, B)$ (composed by two line segments) and applying the standard rule of stochastic derivation with respect to each component $W_{i}\left(t_{i}\right), i \in\{1,2\}$, we get the equality

$$
\begin{equation*}
F\left(W_{1}\left(b_{1}\right), W_{2}\left(b_{2}\right)\right)-F\left(W_{1}\left(a_{1}\right), W_{2}\left(a_{2}\right)\right)=S_{\hat{\gamma}_{0}}(A, B) . \tag{2.9}
\end{equation*}
$$

In general, a path $\widehat{\gamma}(A, B)$ contains several couples of segments parallel to the coordinates axis and the above given formula (see (2.9)) can be applied for each subpath containing a couple of segments. By summation in both sides of (2.9), we get

$$
\begin{equation*}
F\left(W_{1}\left(b_{1}\right), W_{2}\left(b_{2}\right)\right)-F\left(W_{1}\left(a_{1}\right), W_{2}\left(a_{2}\right)\right)=S_{\hat{\gamma}}(A, B), \tag{2.10}
\end{equation*}
$$

for any polygonal path $\widehat{\gamma}(A, B) \subseteq D$ and the proof is complete.
Remark 2.1. The above given computation can be restated as follows. Assume that

1. $P_{1}, P_{2} \in \mathcal{C}^{1}\left(\mathbb{R}^{2}\right)$ are given such that the hypothesis (2.2) is fulfilled;
2. the gradient system $S\left(P_{1}, P_{2}\right)$ defined by

$$
P_{i}\left(\tau_{1}, \tau_{2}\right)=\partial_{\tau_{i}} F\left(\tau_{1}, \tau_{2}\right), \quad i \in\{1,2\}, \quad F(0,0)=F_{0}, \quad\left(\tau_{1}, \tau_{2}\right) \in \mathbb{R}^{2}
$$

is completely integrable $\left(\partial_{\tau_{2}} P_{1}\left(\tau_{1}, \tau_{2}\right)=\partial_{\tau_{1}} P_{2}\left(\tau_{1}, \tau_{2}\right)\right)$.
Lemma 2.1 can be restated by
Lemma 2.2. Assume that $P_{1}, P_{2} \in \mathcal{C}^{1}\left(\mathbb{R}^{2}\right)$ are given such that the conditions (2.1) and (2.1) of Remark 2 are satisfied. Let $F \in \mathcal{C}^{2}\left(\mathbb{R}^{2}\right)$ be the unique solution of (2.1) in Remark 2.1. Then

$$
F\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right)=F_{0}+S_{\widehat{\gamma}}\left(\theta ;\left(t_{1}, t_{2}\right)\right), \quad \theta \stackrel{\text { not }}{=}(0,0), \quad\left(t_{1}, t_{2}\right) \in D,
$$

for any polygonal path $\widehat{\gamma}\left(\theta ;\left(t_{1}, t_{2}\right)\right) \subseteq D$.

## 3. CURVELINE INTEGRAL EQUATIONS ASSOCIATED WITH STRATONOVICH CURVELINE INTEGRAL

Let $g \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ be a complete vector field satisfying

$$
\begin{equation*}
\left|\partial_{x_{i}} g(x)\right| \leq C, \quad x \in \mathbb{R}^{n}, \quad i \in\{1, \ldots, n\}, \tag{3.1}
\end{equation*}
$$

where $C>0$ is a constant.
Consider $P_{1}, P_{2} \in \mathcal{C}^{1}\left(\mathbb{R}^{2}\right)$ given such that the gradient system (3.2) $\quad S\left(P_{1}, P_{2}\right)$ is completely integrable (see Remark 2.1, (2.1)).

We associate the gradient system $S_{g}\left(P_{1}, P_{2}\right)$ defined by

$$
\left\{\begin{array}{l}
\partial_{\tau_{1}} y\left(\tau_{1}, \tau_{2}\right)=g\left(y\left(\tau_{1}, \tau_{2}\right)\right) P_{1}\left(\tau_{1}, \tau_{2}\right),  \tag{3.3}\\
\partial_{\tau_{2}} y\left(\tau_{1}, \tau_{2}\right)=g\left(y\left(\tau_{1}, \tau_{2}\right)\right) P_{2}\left(\tau_{1}, \tau_{2}\right), \\
\left(\tau_{1}, \tau_{2}\right) \in \mathbb{R}^{2}, y(\theta)=\lambda \in \mathbb{R}^{n}, \theta=(0,0) \in \mathbb{R}^{2}
\end{array}\right.
$$

Lemma 3.1. Let $g \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $P_{1}, P_{2} \in \mathcal{C}^{1}\left(\mathbb{R}^{2}\right)$ given such that (3.1) and (3.2) are fulifilled. Let $F \in \mathcal{C}^{2}\left(\mathbb{R}^{2}\right)$ be the unique solution given by (3.2) with $F(\theta)=0$. Then, the gradient system $S_{g}\left(P_{1}, P_{2}\right)$ defined in (3.3) is completely integrable and its solution $\left\{y_{\lambda}\left(\tau_{1}, \tau_{2}\right):\left(\tau_{1}, \tau_{2}\right) \in \mathbb{R}^{2}\right\}$ can be represented by

$$
\begin{equation*}
y_{\lambda}\left(\tau_{1}, \tau_{2}\right)=G\left(F\left(\tau_{1}, \tau_{2}\right)\right)[\lambda], \quad\left(\tau_{1}, \tau_{2}\right) \in \mathbb{R}^{2}, \lambda \in \mathbb{R}^{n} \tag{3.4}
\end{equation*}
$$

where $\left\{G(\tau)[\lambda]: \tau \in \mathbb{R}, \lambda \in \mathbb{R}^{n}\right\}$ is the global flow generated by the vector field $g$.
Proof. Using (3.4), by direct computation, we get that the gradient system (3.3) is satisfied.

Remark 3.1. Define a continuous and $\mathcal{F}_{\left(t_{1}, t_{2}\right)}$-adapted process

$$
\begin{equation*}
x_{\lambda}\left(t_{1}, t_{2}\right)=y_{\lambda}\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right), \quad\left(t_{1}, t_{2}\right) \in D, \lambda \in \mathbb{R}^{n} \tag{3.5}
\end{equation*}
$$

where $\left\{y_{\lambda}\left(\tau_{1}, \tau_{2}\right):\left(\tau_{1}, \tau_{2}\right) \in \mathbb{R}^{2}\right\}$ is given in Lemma 3.1 (see (3.4)). It can be associated with a solution of a system of stochastic integral equations as follows

$$
\begin{gather*}
x_{\lambda}\left(t_{1}, t_{2}\right)=\lambda+\int_{\widehat{\gamma}\left(\theta ;\left(t_{1}, t_{2}\right)\right)} X_{1}\left(W_{1}\left(s_{1}\right), W_{2}\left(s_{2}\right), x_{\lambda}\left(s_{1}, s_{2}\right)\right) \circ \mathrm{d} W_{1}\left(s_{1}\right)+  \tag{3.6}\\
\quad+\int_{\widehat{\gamma}\left(\theta ;\left(t_{1}, t_{2}\right)\right)} X_{2}\left(W_{1}\left(s_{1}\right), W_{2}\left(s_{2}\right), x_{\lambda}\left(s_{1}, s_{2}\right)\right) \circ \mathrm{d} W_{2}\left(s_{2}\right)
\end{gather*}
$$

where the Stratonovich curveline integral is used and

$$
X_{i}\left(\tau_{1}, \tau_{2}, x\right)=g(x) P_{i}\left(\tau_{1}, \tau_{2}\right), \quad i \in\{1,2\}
$$

ThEOREM 3.1. Let $g \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $P_{1}, P_{2} \in \mathcal{C}^{1}\left(\mathbb{R}^{2}\right)$ be given such that the hypothesis (3.1) and (3.2) are fullfilled. In addition, assume that $g$ is bounded. Then, the continuous $\mathcal{F}_{\left(t_{1}, t_{2}\right)}$-adapted process

$$
x_{\lambda}\left(t_{1}, t_{2}\right)=y_{\lambda}\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right), \quad\left(t_{1}, t_{2}\right) \in D
$$

defined in (3.5) is a solution of stochastic integral equation (3.6).
Proof. By hypothesis, $y_{\lambda}\left(\tau_{1}, \tau_{2}\right),\left(\tau_{1}, \tau_{2}\right) \in \mathbb{R}^{2}$, satisfying the gradient system $S_{g}\left(P_{1}, P_{2}\right)$ in (3.3) exists. Compute

$$
\begin{equation*}
\partial_{\tau_{i}} y_{\lambda}\left(\tau_{1}, \tau_{2}\right)=g\left(y_{\lambda}\left(\tau_{1}, \tau_{2}\right)\right) P_{i}\left(\tau_{1}, \tau_{2}\right) \stackrel{\text { not }}{=} Y_{i}^{\lambda}\left(\tau_{1}, \tau_{2}\right), \quad i \in\{1,2\} \tag{3.7}
\end{equation*}
$$

Using the simplest polygonal path $\widehat{\gamma}_{0}\left(\theta ;\left(t_{1}, t_{2}\right)\right)$ and applying the standard rule of stochastic derivation with respect to each process $\tau_{i}=W_{i}\left(t_{i}\right), i \in\{1,2\}$, we get
(3.8) $y_{\lambda}\left(W_{1}\left(t_{1}\right), W_{2}\left(t_{2}\right)\right)=\lambda+\int_{\widehat{\gamma}_{0}\left(\theta ;\left(t_{1}, t_{2}\right)\right)} Y_{1}^{\lambda}\left(W_{1}\left(s_{1}\right), W_{2}\left(s_{2}\right)\right) \circ \mathrm{d} W_{1}\left(s_{1}\right)+$

$$
+\int_{\widehat{\gamma}_{0}\left(\theta ;\left(t_{1}, t_{2}\right)\right)} Y_{2}^{\lambda}\left(W_{1}\left(s_{1}\right), W_{2}\left(s_{2}\right)\right) \circ \mathrm{d} W_{2}\left(s_{2}\right)
$$

Repeating the above given computation on each subpath in the class of $\widehat{\gamma}_{0}$, we get that (3.8) remains valid if $\widehat{\gamma}_{0}\left(\theta ;\left(t_{1}, t_{2}\right)\right)$ is replaced by any polygonal path $\widehat{\gamma}\left(\theta ;\left(t_{1}, t_{2}\right)\right)$, connecting $\theta=(0,0) \in D$ and $\left(t_{1}, t_{2}\right) \in D$. On the other hand, notice that

$$
X_{i}\left(W_{1}\left(s_{1}\right), W_{2}\left(s_{2}\right), x_{\lambda}\left(s_{1}, s_{2}\right)\right)=Y_{i}^{\lambda}\left(W_{1}\left(s_{1}\right), W_{2}\left(s_{2}\right)\right), \quad i \in\{1,2\}
$$

and (3.8) becomes the integral equation written in (3.6). The proof is complete.

Remark 3.2. To write a conclusion as in Theorem 3.1, whitout assuming the boundness property of $g \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, we need to introduce two stopping times of the form

$$
\begin{equation*}
\tau_{i}^{N}=\inf \left\{t_{i} \in\left[0, T_{i}\right]:\left|W_{i}\left(t_{i}\right)\right| \geq N\right\}, \quad i \in\{1,2\} . \tag{3.9}
\end{equation*}
$$

If it is the case, define a continuous and bounded process (for each $\lambda \in \mathbb{R}^{n}$ )

$$
\begin{equation*}
x_{\lambda}^{N}\left(t_{1}, t_{2}\right)=y_{\lambda}\left(W_{1}\left(t_{1}^{N}\right), W_{2}\left(t_{2}^{N}\right)\right), \quad t_{1}^{N}=t_{1} \wedge \tau_{1}^{N}, \quad t_{2}^{N}=t_{2} \wedge \tau_{2}^{N} \tag{3.10}
\end{equation*}
$$ and it will be a solution of the following integral equation

$$
\begin{gather*}
x_{\lambda}^{N}\left(t_{1}, t_{2}\right)=\lambda+\int_{\hat{\gamma}\left(\theta ;\left(t_{1}^{N}, t_{2}^{N}\right)\right)} X_{1}\left(W_{1}\left(s_{1}\right), W_{2}\left(s_{2}\right), x_{\lambda}^{N}\left(s_{1}, s_{2}\right)\right) \circ \mathrm{d} W_{1}\left(s_{1}\right)+  \tag{3.11}\\
\quad+\int_{\hat{\gamma}\left(\theta ;\left(t_{1}^{N}, t_{2}^{N}\right)\right)} X_{2}\left(W_{1}\left(s_{1}\right), W_{2}\left(s_{2}\right), x_{\lambda}^{N}\left(s_{1}, s_{2}\right)\right) \circ \mathrm{d} W_{2}\left(s_{2}\right),
\end{gather*}
$$

where $X_{i}\left(\tau_{1}, \tau_{2}, x\right), i \in\{1,2\}$ are given in (3.6).
Remark 3.3. In the case $W_{i}\left(t_{i}\right)$ is replaced by an Itô process

$$
\begin{equation*}
\eta_{i}\left(t_{i}\right)=\int_{0}^{t_{i}} u_{i}\left(s_{i}\right) \cdot \mathrm{d} W_{i}\left(s_{i}\right), \quad i \in\{1,2\} \tag{3.12}
\end{equation*}
$$

(see $\left\{u_{i}\left(t_{i}\right): 0 \leq t_{i} \leq T_{i}\right\}$ is a bounded measurable and $\mathcal{F}_{t_{i}}$-adapted process, $i \in\{1,2\})$. Then both Stratonovich curveline integrals and stochastic integral equation in (3.11) can be extended accordingly. In this respect, the following are valid

$$
\begin{gather*}
S_{\hat{\gamma}}^{N}(A, B)=\int_{\widehat{\gamma}(A, B)} P_{1}\left(\eta_{1}\left(t_{1}\right), \eta_{2}\left(t_{2}\right)\right) \circ \mathrm{d} \eta_{1}\left(t_{1}\right)+  \tag{3.13}\\
\quad+\int_{\hat{\gamma}(A, B)} P_{2}\left(\eta_{1}\left(t_{1}\right), \eta_{2}\left(t_{2}\right)\right) \circ \mathrm{d} \eta_{2}\left(t_{2}\right),
\end{gather*}
$$

where Stratonovich integral " $\circ$ " is computed using Itô integral ".",

$$
\begin{align*}
& P_{i}\left(\eta_{1}\left(t_{1}\right), \eta_{2}\left(t_{2}\right)\right) \circ \mathrm{d} \eta_{i}\left(t_{i}\right)=\left[P_{i}\left(\eta_{1}\left(t_{1}\right), \eta_{2}\left(t_{2}\right)\right) u_{i}\left(t_{i}\right)\right] \cdot \mathrm{d} W_{i}\left(t_{i}\right)+  \tag{3.14}\\
& \quad+\frac{1}{2} \partial_{\tau_{i}} P_{i}\left(\eta_{1}\left(t_{1}\right), \eta_{2}\left(t_{2}\right)\right) u_{i}^{2}\left(t_{i}\right) \mathrm{d} t_{i}, \quad i \in\{1,2\} .
\end{align*}
$$

The content of Remark 3.2 changes into the following
Theorem 3.2. Let $g \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $P_{1}, P_{2} \in \mathcal{C}^{1}\left(\mathbb{R}^{2}\right)$ be given such that hypothesis (3.1) and (3.2) are fullfilled. Let $\left\{y_{\lambda}\left(\tau_{1}, \tau_{2}\right):\left(\tau_{1}, \tau_{2}\right) \in \mathbb{R}^{2}\right\}$ the unique solution of $S_{g}\left(P_{1}, P_{2}\right)$ given in (3.3). Define $\left\{x_{\lambda}^{N}\left(t_{1}, t_{2}\right):\left(t_{1}, t_{2}\right) \in D\right\}$ as in (3.10). Then, the following integral stochastic equations

$$
\begin{gathered}
x_{\lambda}^{N}\left(t_{1}, t_{2}\right)=\lambda+\int_{\hat{\gamma}\left(\theta ;\left(t_{1}^{N}, t_{2}^{N}\right)\right)} X_{1}\left(\eta_{1}\left(s_{1}\right), \eta_{2}\left(s_{2}\right), x_{\lambda}^{N}\left(s_{1}, s_{2}\right)\right) \circ \mathrm{d} \eta_{1}\left(s_{1}\right)+ \\
\quad+\int_{\hat{\gamma}\left(\theta ;\left(t_{1}^{N}, t_{2}^{N}\right)\right)} X_{2}\left(\eta_{1}\left(s_{1}\right), \eta_{2}\left(s_{2}\right), x_{\lambda}^{N}\left(s_{1}, s_{2}\right)\right) \circ \mathrm{d} \eta_{2}\left(s_{2}\right)
\end{gathered}
$$

are verified for any $\left(t_{1}, t_{2}\right) \in D$.

## REFERENCES

[1] M. Dozzi, Stochastic processes with a multidimensional parameter. Longman Scientific \& Technical, London, 1989.
[2] C. Udrişte, Multitime Stochastic Control Theory. In: S. Kartalopoulos, M. Demiralp, N. Mastorakis, R. Soni, H. Nassar (Eds.), Selected Topics on Circuits, Systems, Electronics, Control \& Signal Processing, WSEAS Press, 2007, 171-176.
[3] C. Vârsan, Applications of Lie Algebras to Hyperbolic and Stochastic Differential Equations. Kluwer Academic Publishers, Amsterdam, 1999.

Received 31 January 2011

University "Politehnica" of Bucharest 313, Splaiul Independenţei 060042 Bucharest, Romania vdamian@mathem.pub.ro<br>Romanian Academy<br>"Simion Stoilow" Institute of Mathematics<br>P.O. Box 1-764<br>Calea Grivitei 21<br>014700 Bucharest, Romania<br>constantin.varsan@imar.ro

