STOCHASTIC INTEGRAL EQUATIONS ASSOCIATED
WITH STRATONOVICH CURVELINE INTEGRAL

VIRGIL DAMIAN and CONSTANTIN VARSAN

There are investigated the existence and integral representation of a solution satis-
fying a system of curveline stochastic equations depending on two independent It6
processes {7’]1(t1),172(t2) ER?2:0<t; <Ty, 0<ts < Tg},
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1. INTRODUCTION

We are concerned about curveline stochastic equations driven by a fixed
vector field g € CY(R",R") and using a Stratonovich type differential of a
smooth test function F'(71,72) combined with two independent Itd processes

Ti = 77@'(751:)7 (RS {L 2}7
(tl,tg) €D = {(tl,tQ) c RQ 0<t; Ty, 0<ty < T2} .

An explicit representation formula for a solution is given in Theorem 1, when
g is a bounded smooth vector field. The case of a complete vector field g €
C'(R™,R") is analyzed in Theorem 2, introducing adequate stopping times.
The main support in writing a solution comes from the solution

y)\(Tl,7'2>:G(F(7_1,7_2)) [/\], (7’1,7’2) GRQ, /\GR",
satisfying a deterministic gradient system

Or yx (11, 72) = g (Ya(11,72)) Or F' (11, T2),
aTgy)\ (7-177—2) =g (y)\(TlaTZ)) aTQF(Tl,T2)7 (7—177_2) S R2a
y2(0,0) = \ € R,
Here, {G(7)[\]: 7 € R, A € R"} is the global flow generated by the com-

plete vector field g € C*(R™,R") and F € C*(R?) fulfils a polynomial growth
condition.
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When the corresponding curveline stochastic equation are written, they
make sense with respect to the Stratonovich curveline integral provided the
right-hand side is a semimartingale and some stopping times are used.

This subject has some roots in the reference [3], but it was inspired by
the works given in [1] and [2]. More precisely, the subject analyzed here, on
our point of view, presents a new angle in solving the stochastic equations
problem mentioned in [1] and [2].

2. CURVELINE STOCHASTIC INTEGRAL

To begin with, we consider two independent brownian motions

(2.1) (Wl(tl,w), Wg(tg,w)) D xQ — RQ,
D={(t1,t2) eR*:0<t; <Ty, 0<ty <Tp},

over the complete filtered probability space {Q, F D {F¢, 1, },P}. Here, Fy, 4,

& Fi, @ Fi, and Fy, is the complete o-algebra o (W; (s,w) : 0 < s < t;) gene-

rated by the brownian motion as Wi (t1), 0 < ¢t; < T7 and Wy(t2), 0 < ty < Th.
Denote by (A, B) C D(A, B € D) any polygonal curve connecting two
fixed points A, B € D such that any line-segment of 7(A, B) is parallel to one
of the coordinates axis in R2.
We are going to define, following a standard procedure, two types of
curveline stochastic integral.

2.1. Itd curveline integral

Let Py, P, € C?(R?) be given such that the following polynomial growth
condition is satisfied

(2.2) |Pi(r1,72)] 107, Pi(r1, 72)| < O (14 [ [M 2|2,

where (11, 72) € R? for i € {1,2} and Ny, No > 1 are some natural numbers
and C > 0 is a constant.

Following the standard Itd procedure, we define the Ité curveline sto-
chastic integral I5(A, B) by

(2.3) (A, B) = / LAY AEIRIABE

+ / Py (Wi(t1), Walts)) - dWa(ta)
7(A,B)
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Here, Py, P> € C?(R?) satisfy the polynomial growth condition (2.2) and It6
stochastic integrals “-” involved in the right-hand side of (2.3) are defined as
F (b1 ,by)-martingales, B = (by,b2) € D.

2.2. Stratonovich curveline integral

With the same notations as in above subsection and using the hypothesis
(2.2), it makes sense to define the following Stratonovich curveline integral

(2.4) S@(A, B) = /A(A 5 Py (Wh(t1), Wa(te)) o AWy (t1)+
y{Aa,

+/ P (Wl(tl),Wz(tg)) Osz(tg).
7(A,B)

)

Here, the Stratonovich integral “o’
[43 . b)) b
y

is expressed using It0 stochastic integral

(2.5) P, (Wl(tl), WQ(tQ)) o dWi(tl) = %({%—sz (Wl(tl), WQ(tg)) de;+
+P; (Wi(th), Wa(te)) - dWi(t:),

for i € {1,2} and the right-hand side of (2.4) is well defined as a F, ,)-se-
mimartingale, B = (b1, b2) € D. In addition, a direct computation lead us to
the formula connecting the two curveline stochastic integrals

1
(26)  S{AB)=LAB)+; [ R(Win) Walt)dnrt
2 J54,B
7(A,B)
1
+ 2/ Fy (Wi(t1), Wa(ta)) dta,
A(A,B)
where F;(11,72) = 07, P;(11,72), i € {1,2}.
A significant property of the Stratonovich curveline integral is its inde-
pendence of polygonal path (A, B) connecting the two fixed points A, B € D.
In this respect, assume: there exists F' € C?(R?) such that

(2.7) 1DZ'(7'1,T2) = 8TZ.F(7-1,7-2), (T1,7'2) c RQ, 1€ {1,2}.

LEMMA 2.1. Assume that Py, Py € C1(R?) are given such that the condi-
tions (2.2) and (2.7) are fulfilled. Then, the Stratonovich curveline integral
S5(A,B) (see (2.4)) does not depend on the polygonal path Y(A, B) and, in
addition,

(2.8) S3(A, B) = F (Wi(b1), Wa(be)) — F' (Wi(a1), Wa(az)),
where F € C?(R?) is given in (2.7).
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Proof. Using the simplest polygonal path 7(A, B) (composed by two
line segments) and applying the standard rule of stochastic derivation with
respect to each component Wj(t;), i € {1,2}, we get the equality

(2.9) F (Wi (b1), Wa(b2)) — F (Wi(a1), Wa(az)) = S5,(A, B).

In general, a path 7(A, B) contains several couples of segments parallel
to the coordinates axis and the above given formula (see (2.9)) can be applied
for each subpath containing a couple of segments. By summation in both sides
of (2.9), we get

(2.10) F (Wl(bl), WQ(bQ)) - F (Wl(al), WQ(CLQ)) = S@(A, B),
for any polygonal path 7(A, B) C D and the proof is complete. [

Remark 2.1. The above given computation can be restated as follows.
Assume that

1. Py, P, € C'(R?) are given such that the hypothesis (2.2) is fulfilled;
2. the gradient system S (P;, P») defined by

Pi(r1,72) = 0, F (11,72), i€{l,2}, F(0,0)=F, (r,7m)cR
is completely integrable (0, P1 (11, 72) = Or, Pa(11,72)).
Lemma 2.1 can be restated by

LEMMA 2.2. Assume that Py, Py € C1(R?) are given such that the condi-
tions (2.1) and (2.1) of Remark 2 are satisfied. Let F' € C*(R?) be the unique
solution of (2.1) in Remark 2.1. Then

F (Wi(tr), Walts)) = Fo + S5 (6 (t1,£2)), 0" (0,0), (t1,t2) € D,
for any polygonal path 7 (0; (t1,t2)) C D.

3. CURVELINE INTEGRAL EQUATIONS ASSOCIATED WITH
STRATONOVICH CURVELINE INTEGRAL

Let g € C' (R",R") be a complete vector field satisfying

(3.1) |0z,9(x)] <C, zeR" ie{l,...,n},

where C' > 0 is a constant.
Consider Py, P, € C'(R?) given such that the gradient system

(3.2) S (Py, Py) is completely integrable (see Remark 2.1, (2.1)).
We associate the gradient system Sy(P;, %) defined by
Ony(11,72) = g (y (11, 72)) P1(71,72),

(3.3) Ony(1,72) = g (y (11,72)) Pa(T1,72),
(11,72) € R2, y() = A € R™, 6 = (0,0) € R
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LEMMA 3.1. Let g € CL(R™,R") and Py, P, € C'(R?) given such that
(3.1) and (3.2) are fulifilled. Let F € C*(R?) be the unique solution given by
(3.2) with F(0) = 0. Then, the gradient system Sy(Pyi, P») defined in (3.3) is
completely integrable and its solution {y,\(ﬁ,Tg) 2 (11,7m2) € Rz} can be repre-
sented by

(3.4) (11, 72) = G(F(r1,72)) [\, (m,72) € R*, A €R",
where {G(T)[A] : 7 € R, A € R"} is the global flow generated by the vector field g.

Proof. Using (3.4), by direct computation, we get that the gradient
system (3.3) is satisfied. [

Remark 3.1. Define a continuous and F, ,)-adapted process
(3.5) xA(t1,t2) = yn(Wi(t1), Wa(te)), (t1,t2) € D, A € R",
where {yx(T1,72) : (11, 72) € R?} is given in Lemma 3.1 (see (3.4)). It can be

associated with a solution of a system of stochastic integral equations as follows

(3.6) .%')\(tl,tg) = A+ / X, (Wl(sl), WQ(SQ),H:')\(Sl, 82)) o dW1(81)+
7(03(t1,t2))

+/ Xo (Wi(s1), Wa(s2),za(s1, s2)) 0 dWa(s2),
7(05(t1,t2))

where the Stratonovich curveline integral is used and
XZ'(Tl,TQ,HT) :g(a}>PZ‘(T1,T2>, 1€ {1,2}.
THEOREM 3.1. Let g € CH(R™,R") and Py, P, € C*(R?) be given such

that the hypothesis (3.1) and (3.2) are fullfilled. In addition, assume that g is
bounded. Then, the continuous Fy, 1,)-adapted process

2 (t1,t2) = p(Wi(ta), Wa(tz)), (ti,t2) € D,
defined in (3.5) is a solution of stochastic integral equation (3.6).
Proof. By hypothesis, yx(71,72), (71,72) € R?, satisfying the gradient
system Sy(Pr, P») in (3.3) exists. Compute
(3.7)  Onyn(r1, ) = g (ua(11, 7)) Pi(r1,72) "2 YN 1, m), i€ {1,2}.

Using the simplest polygonal path 7y (6; (¢1,t2)) and applying the standard
rule of stochastic derivation with respect to each process 7; = W;(t;), i € {1, 2},
we get

(3.8) ya(Wi(t1), Wa(t2)) = A +/A . VP (Wi (s1), Wa(s2)) o dWi(s1)+

4 / Y2 (Wa(s1), Wa(s2)) o dWa(sa).
Yo (0;(t1,t2))
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Repeating the above given computation on each subpath in the class of 7y, we
get that (3.8) remains valid if 7y (0; (t1,t2)) is replaced by any polygonal path
7 (6; (t1,t2)), connecting = (0,0) € D and (t1,t2) € D. On the other hand,
notice that

Xi (Wi(s1), Wa(s2), @a(s1,52) = Y (Wi(s1), Wa(s2)), i€ {12}
and (3.8) becomes the integral equation written in (3.6). The proof is com-
plete. O

Remark 3.2. To write a conclusion as in Theorem 3.1, whitout assuming
the boundness property of g € C!(R™, R"), we need to introduce two stopping
times of the form

(3.9) N =inf{t; € [0, T3] : [W;(t;)| > N}, ie{1,2}.

If it is the case, define a continuous and bounded process (for each A € R™)
(3.10) 2N (t1,t0) = (Wi (), Wa(td)), N =ti Ar, Y =tonrd
and it will be a solution of the following integral equation

(3.11)

xf\v(tl,tg) = A+ / X1(Wi(s1), Wg(Sg),mf\V(sl, s9)) o dWi(s1)+
A(O; (¢ )

T / Xo(Wi(s1), Wa(sa), 2 (51, 52)) o dWWa(s2),
ICAGARZS))

where X;(71,72,x), ¢ € {1,2} are given in (3.6).
Remark 3.3. In the case W;(t;) is replaced by an Itd process

(3.12) ni(ti) = /(; i ul(sz) . dWi(si), 1 € {1,2}

(see {u;(t;) : 0 <t; <T;} is a bounded measurable and F;, -adapted process,
i € {1,2}). Then both Stratonovich curveline integrals and stochastic integral
equation in (3.11) can be extended accordingly. In this respect, the following
are valid

(3.13) SY(A,B) = /A(A 5 Pi(m (1), n2(t2)) o dmi(t1)+
YA,

+ / Po(mi(t1), ma(t2)) © dipa(ta),
~(A,B)

i

where Stratonovich integral “o” is computed using It6 integral “-”,

(3.14)  Pi(m(t1),m2(t2)) o dmi(ts) = [Pi(m (1), n2(t2))wi(ts)] - dWi(t:)+

1 .
+§8n1%(m(t1),nz(ta))u?(ti)dti, i€ {1,2}.
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The content of Remark 3.2 changes into the following

THEOREM 3.2. Let g € CY(R",R") and Py, P, € C*(R?) be given such
that hypothesis (3.1) and (3.2) are fullfilled. Let {yx(m1,72) : (11, 72) € R?} the
unique solution of Sq(P1, P2) given in (3.3). Define {z} (t1,t2) : (t1,t2) € D}
as in (3.10). Then, the following integral stochastic equations

Y (ft2) = A+ / Xy (1 (1), ma(s2), 2 (s1, 82)) o s (1) +
RICHGARZ)!
4 / Xo(m (1), 2(52), 2 (51, 52)) 0 dpa(s2)
F(0;(tY t5))

are verified for any (t1,t2) € D.
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