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There are investigated the existence and integral representation of a solution satis-
fying a system of curveline stochastic equations depending on two independent Itô
processes

{
η1(t1), η2(t2) ∈ R2 : 0 ≤ t1 ≤ T1, 0 ≤ t2 ≤ T2

}
.
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1. INTRODUCTION

We are concerned about curveline stochastic equations driven by a fixed
vector field g ∈ C1(Rn, Rn) and using a Stratonovich type differential of a
smooth test function F (τ1, τ2) combined with two independent Itô processes

τi = ηi(ti), i ∈ {1, 2},
(t1, t2) ∈ D =

{
(t1, t2) ∈ R2 : 0 ≤ t1 ≤ T1, 0 ≤ t2 ≤ T2

}
.

An explicit representation formula for a solution is given in Theorem 1, when
g is a bounded smooth vector field. The case of a complete vector field g ∈
C1(Rn, Rn) is analyzed in Theorem 2, introducing adequate stopping times.
The main support in writing a solution comes from the solution

yλ(τ1, τ2) = G (F (τ1, τ2)) [λ], (τ1, τ2) ∈ R2, λ ∈ Rn,

satisfying a deterministic gradient system
∂τ1yλ (τ1, τ2) = g (yλ(τ1, τ2)) ∂τ1F (τ1, τ2),
∂τ2yλ (τ1, τ2) = g (yλ(τ1, τ2)) ∂τ2F (τ1, τ2), (τ1, τ2) ∈ R2,

yλ(0, 0) = λ ∈ Rn.

Here, {G(τ)[λ] : τ ∈ R, λ ∈ Rn} is the global flow generated by the com-
plete vector field g ∈ C1(Rn, Rn) and F ∈ C2(R2) fulfils a polynomial growth
condition.
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When the corresponding curveline stochastic equation are written, they
make sense with respect to the Stratonovich curveline integral provided the
right-hand side is a semimartingale and some stopping times are used.

This subject has some roots in the reference [3], but it was inspired by
the works given in [1] and [2]. More precisely, the subject analyzed here, on
our point of view, presents a new angle in solving the stochastic equations
problem mentioned in [1] and [2].

2. CURVELINE STOCHASTIC INTEGRAL

To begin with, we consider two independent brownian motions

(W1(t1, ω),W2(t2, ω)) : D × Ω → R2,(2.1)

D =
{
(t1, t2) ∈ R2 : 0 ≤ t1 ≤ T1, 0 ≤ t2 ≤ T2

}
,

over the complete filtered probability space {Ω,F ⊇ {Ft1,t2}, P}. Here, Ft1,t2
def= Ft1 ⊗Ft2 and Fti is the complete σ-algebra σ (Wi (s, ω) : 0 ≤ s ≤ ti) gene-
rated by the brownian motion as W1(t1), 0 ≤ t1 ≤ T1 and W2(t2), 0 ≤ t2 ≤ T2.

Denote by γ̂(A,B) ⊆ D(A,B ∈ D) any polygonal curve connecting two
fixed points A,B ∈ D such that any line-segment of γ̂(A,B) is parallel to one
of the coordinates axis in R2.

We are going to define, following a standard procedure, two types of
curveline stochastic integral.

2.1. Itô curveline integral

Let P1, P2 ∈ C2(R2) be given such that the following polynomial growth
condition is satisfied

(2.2) |Pi(τ1, τ2)| , |∂τiPi(τ1, τ2)| ≤ C
(
1 + |τ1|N1 |τ2|N2

)
,

where (τ1, τ2) ∈ R2 for i ∈ {1, 2} and N1, N2 ≥ 1 are some natural numbers
and C > 0 is a constant.

Following the standard Itô procedure, we define the Itô curveline sto-
chastic integral Iγ̂(A,B) by

Iγ̂(A,B) =
∫

γ̂(A,B)
P1 (W1(t1),W2(t2)) · dW1(t1)+(2.3)

+
∫

γ̂(A,B)
P2 (W1(t1),W2(t2)) · dW2(t2)
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Here, P1, P2 ∈ C2(R2) satisfy the polynomial growth condition (2.2) and Itô
stochastic integrals “ · ” involved in the right-hand side of (2.3) are defined as
F(b1,b2)-martingales, B = (b1, b2) ∈ D.

2.2. Stratonovich curveline integral

With the same notations as in above subsection and using the hypothesis
(2.2), it makes sense to define the following Stratonovich curveline integral

Sγ̂(A,B) =
∫

γ̂(A,B)
P1 (W1(t1),W2(t2)) ◦ dW1(t1)+(2.4)

+
∫

γ̂(A,B)
P2 (W1(t1),W2(t2)) ◦ dW2(t2).

Here, the Stratonovich integral “ ◦ ” is expressed using Itô stochastic integral
“ · ” by

Pi (W1(t1),W2(t2)) ◦ dWi(t1) =
1
2
∂τiPi (W1(t1),W2(t2)) dti+(2.5)

+Pi (W1(t1),W2(t2)) · dWi(ti),

for i ∈ {1, 2} and the right-hand side of (2.4) is well defined as a F(b1,b2)-se-
mimartingale, B = (b1, b2) ∈ D. In addition, a direct computation lead us to
the formula connecting the two curveline stochastic integrals

Sγ̂(A,B) = Iγ̂ (A,B) +
1
2

∫
γ̂(A,B)

F1 (W1(t1),W2(t2)) dt1+(2.6)

+
1
2

∫
γ̂(A,B)

F2 (W1(t1),W2(t2)) dt2,

where Fi(τ1, τ2) = ∂τiPi(τ1, τ2), i ∈ {1, 2}.
A significant property of the Stratonovich curveline integral is its inde-

pendence of polygonal path γ̂(A,B) connecting the two fixed points A,B ∈ D.
In this respect, assume: there exists F ∈ C2(R2) such that

(2.7) Pi(τ1, τ2) = ∂τiF (τ1, τ2), (τ1, τ2) ∈ R2, i ∈ {1, 2}.

Lemma 2.1. Assume that P1, P2 ∈ C1(R2) are given such that the condi-
tions (2.2) and (2.7) are fulfilled. Then, the Stratonovich curveline integral
Sγ̂(A,B) (see (2.4)) does not depend on the polygonal path γ̂(A,B) and, in
addition,

(2.8) Sγ̂(A,B) = F (W1(b1),W2(b2))− F (W1(a1),W2(a2)) ,

where F ∈ C2(R2) is given in (2.7).
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Proof. Using the simplest polygonal path γ̂0(A,B) (composed by two
line segments) and applying the standard rule of stochastic derivation with
respect to each component Wi(ti), i ∈ {1, 2}, we get the equality

(2.9) F (W1(b1),W2(b2))− F (W1(a1),W2(a2)) = Sγ̂0
(A,B).

In general, a path γ̂(A,B) contains several couples of segments parallel
to the coordinates axis and the above given formula (see (2.9)) can be applied
for each subpath containing a couple of segments. By summation in both sides
of (2.9), we get

(2.10) F (W1(b1),W2(b2))− F (W1(a1),W2(a2)) = Sγ̂(A,B),

for any polygonal path γ̂(A,B) ⊆ D and the proof is complete. �

Remark 2.1. The above given computation can be restated as follows.
Assume that

1. P1, P2 ∈ C1(R2) are given such that the hypothesis (2.2) is fulfilled;
2. the gradient system S (P1, P2) defined by

Pi(τ1, τ2) = ∂τiF (τ1, τ2) , i ∈ {1, 2}, F (0, 0) = F0, (τ1, τ2) ∈ R2

is completely integrable (∂τ2P1 (τ1, τ2) = ∂τ1P2(τ1, τ2)).

Lemma 2.1 can be restated by

Lemma 2.2. Assume that P1, P2 ∈ C1(R2) are given such that the condi-
tions (2.1) and (2.1) of Remark 2 are satisfied. Let F ∈ C2(R2) be the unique
solution of (2.1) in Remark 2.1. Then

F (W1(t1),W2(t2)) = F0 + Sγ̂ (θ; (t1, t2)) , θ
not= (0, 0), (t1, t2) ∈ D,

for any polygonal path γ̂ (θ; (t1, t2)) ⊆ D.

3. CURVELINE INTEGRAL EQUATIONS ASSOCIATED WITH
STRATONOVICH CURVELINE INTEGRAL

Let g ∈ C1 (Rn, Rn) be a complete vector field satisfying

(3.1) |∂xig(x)| ≤ C, x ∈ Rn, i ∈ {1, . . . , n} ,

where C > 0 is a constant.
Consider P1, P2 ∈ C1(R2) given such that the gradient system

(3.2) S (P1, P2) is completely integrable (see Remark 2.1, (2.1)).

We associate the gradient system Sg(P1, P2) defined by

(3.3)


∂τ1y(τ1, τ2) = g (y (τ1, τ2))P1(τ1, τ2),
∂τ2y(τ1, τ2) = g (y (τ1, τ2))P2(τ1, τ2),
(τ1, τ2) ∈ R2, y(θ) = λ ∈ Rn, θ = (0, 0) ∈ R2.
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Lemma 3.1. Let g ∈ C1(Rn, Rn) and P1, P2 ∈ C1(R2) given such that
(3.1) and (3.2) are fulifilled. Let F ∈ C2(R2) be the unique solution given by
(3.2) with F (θ) = 0. Then, the gradient system Sg(P1, P2) defined in (3.3) is
completely integrable and its solution

{
yλ(τ1, τ2) : (τ1, τ2) ∈ R2

}
can be repre-

sented by

(3.4) yλ(τ1, τ2) = G (F (τ1, τ2)) [λ], (τ1, τ2) ∈ R2, λ ∈ Rn,

where {G(τ)[λ] : τ ∈ R, λ ∈ Rn} is the global flow generated by the vector field g.

Proof. Using (3.4), by direct computation, we get that the gradient
system (3.3) is satisfied. �

Remark 3.1. Define a continuous and F(t1,t2)-adapted process

(3.5) xλ(t1, t2) = yλ(W1(t1),W2(t2)), (t1, t2) ∈ D, λ ∈ Rn,

where
{
yλ(τ1, τ2) : (τ1, τ2) ∈ R2

}
is given in Lemma 3.1 (see (3.4)). It can be

associated with a solution of a system of stochastic integral equations as follows

xλ(t1, t2) = λ +
∫

γ̂(θ;(t1,t2))
X1 (W1(s1),W2(s2), xλ(s1, s2)) ◦ dW1(s1)+(3.6)

+
∫

γ̂(θ;(t1,t2))
X2 (W1(s1),W2(s2), xλ(s1, s2)) ◦ dW2(s2),

where the Stratonovich curveline integral is used and

Xi(τ1, τ2, x) = g(x)Pi(τ1, τ2), i ∈ {1, 2}.

Theorem 3.1. Let g ∈ C1(Rn, Rn) and P1, P2 ∈ C1(R2) be given such
that the hypothesis (3.1) and (3.2) are fullfilled. In addition, assume that g is
bounded. Then, the continuous F(t1,t2)-adapted process

xλ (t1, t2) = yλ(W1(t1),W2(t2)), (t1, t2) ∈ D,

defined in (3.5) is a solution of stochastic integral equation (3.6).

Proof. By hypothesis, yλ(τ1, τ2), (τ1, τ2) ∈ R2, satisfying the gradient
system Sg(P1, P2) in (3.3) exists. Compute

(3.7) ∂τiyλ(τ1, τ2) = g (yλ(τ1, τ2))Pi(τ1, τ2)
not= Y λ

i (τ1, τ2), i ∈ {1, 2}.
Using the simplest polygonal path γ̂0 (θ; (t1, t2)) and applying the standard
rule of stochastic derivation with respect to each process τi = Wi(ti), i ∈ {1, 2},
we get

yλ(W1(t1),W2(t2)) = λ +
∫

γ̂0(θ;(t1,t2))
Y λ

1 (W1(s1),W2(s2)) ◦ dW1(s1)+(3.8)

+
∫

γ̂0(θ;(t1,t2))
Y λ

2 (W1(s1),W2(s2)) ◦ dW2(s2).
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Repeating the above given computation on each subpath in the class of γ̂0, we
get that (3.8) remains valid if γ̂0 (θ; (t1, t2)) is replaced by any polygonal path
γ̂ (θ; (t1, t2)), connecting θ = (0, 0) ∈ D and (t1, t2) ∈ D. On the other hand,
notice that

Xi (W1(s1),W2(s2), xλ(s1, s2)) = Y λ
i (W1(s1),W2(s2)) , i ∈ {1, 2}

and (3.8) becomes the integral equation written in (3.6). The proof is com-
plete. �

Remark 3.2. To write a conclusion as in Theorem 3.1, whitout assuming
the boundness property of g ∈ C1(Rn, Rn), we need to introduce two stopping
times of the form

(3.9) τN
i = inf {ti ∈ [0, Ti] : |Wi(ti)| ≥ N} , i ∈ {1, 2} .

If it is the case, define a continuous and bounded process (for each λ ∈ Rn)

(3.10) xN
λ (t1, t2) = yλ(W1(tN1 ),W2(tN2 )), tN1 = t1 ∧ τN

1 , tN2 = t2 ∧ τN
2

and it will be a solution of the following integral equation

xN
λ (t1, t2) = λ +

∫
γ̂(θ;(tN1 ,tN2 ))

X1(W1(s1),W2(s2), xN
λ (s1, s2)) ◦ dW1(s1)+

(3.11)

+
∫

γ̂(θ;(tN1 ,tN2 ))
X2(W1(s1),W2(s2), xN

λ (s1, s2)) ◦ dW2(s2),

where Xi(τ1, τ2, x), i ∈ {1, 2} are given in (3.6).

Remark 3.3. In the case Wi(ti) is replaced by an Itô process

(3.12) ηi(ti) =
∫ ti

0
ui(si) · dWi(si), i ∈ {1, 2}

(see {ui(ti) : 0 ≤ ti ≤ Ti} is a bounded measurable and Fti-adapted process,
i ∈ {1, 2}). Then both Stratonovich curveline integrals and stochastic integral
equation in (3.11) can be extended accordingly. In this respect, the following
are valid

SN
γ̂ (A,B) =

∫
γ̂(A,B)

P1(η1(t1), η2(t2)) ◦ dη1(t1)+(3.13)

+
∫

γ̂(A,B)
P2(η1(t1), η2(t2)) ◦ dη2(t2),

where Stratonovich integral “ ◦ ” is computed using Itô integral “ · ”,

Pi(η1(t1), η2(t2)) ◦ dηi(ti) = [Pi(η1(t1), η2(t2))ui(ti)] · dWi(ti)+(3.14)

+
1
2
∂τiPi(η1(t1), η2(t2))u2

i (ti)dti, i ∈ {1, 2}.
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The content of Remark 3.2 changes into the following

Theorem 3.2. Let g ∈ C1(Rn, Rn) and P1, P2 ∈ C1(R2) be given such
that hypothesis (3.1) and (3.2) are fullfilled. Let {yλ(τ1, τ2) : (τ1, τ2) ∈ R2} the
unique solution of Sg(P1, P2) given in (3.3). Define {xN

λ (t1, t2) : (t1, t2) ∈ D}
as in (3.10). Then, the following integral stochastic equations

xN
λ (t1, t2) = λ +

∫
γ̂(θ;(tN1 ,tN2 ))

X1(η1(s1), η2(s2), xN
λ (s1, s2)) ◦ dη1(s1)+

+
∫

γ̂(θ;(tN1 ,tN2 ))
X2(η1(s1), η2(s2), xN

λ (s1, s2)) ◦ dη2(s2)

are verified for any (t1, t2) ∈ D.
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