ON THE HYBRID MEAN VALUE OF COCHRANE SUMS AND TWO-TERM EXPONENTIAL SUMS

WANG TINGTING and ZHANG WENPENG

In this paper, we use the elementary and analytic methods to study the mean value properties of the Cochrane sums weighted by two-term exponential sums, and give two exact computational formulae for them.

AMS 2010 Subject Classification: 11L40, 11F20.

Key words: Cochrane sums, two-term exponential sums, hybrid mean value, computational formula.

1. INTRODUCTION

Let q be a natural number and h an integer prime to q. The Cochrane sums $C(h, q)$ is defined by

$$C(h, q) = \sum_{a=1}^{q} \left(\left(\frac{a}{q} \right) \left(\frac{ah}{q} \right) \right),$$

where

$$((x)) = \begin{cases} x - [x] - \frac{1}{2} & \text{if } x \text{ is not an integer,} \\ 0 & \text{if } x \text{ is an integer,} \end{cases}$$

$ar{a}$ is defined by $a\bar{a} \equiv 1 \mod q$ and $\sum_{a=1}^{q}'$ denotes the summation over all $1 \leq a \leq q$ such that $(a, q) = 1$.

About the arithmetical properties of the Cochrane sums and related sums, some authors have studied it, and obtained many interesting results, see for example [1], [3], [4] and [5].

In this paper, we consider the computational problem of the mean value

$$\sum_{m=1}^{q} \sum_{n=1}^{q}' |C(m, n, k, h; q)|^2 \cdot C(mn, q),$$

MATH. REPORTS 14(64), 4 (2012), 355–362
where the two-term exponential sums $C(m, n, k, h; q)$ is defined as

$$C(m, n, k, h; q) = \sum_{a=1}^{q} e\left(\frac{ma^k + na^h}{q}\right), \quad e(y) = e^{2\pi i y}.$$

Some results related to $C(m, n, k, h; q)$ can be found in [6]–[7].

But for mean value (1), it seems that none has studied it yet, at least we have not seen any related results before. This sum is interesting, because it has close relations with the class number h_p of the quadratic field $\mathbb{Q}(\sqrt{-p})$, so we can give a new expression for h_p. In this paper, we use the elementary and analytic methods to study this problem, and give two exact computational formulae for (1). That is, we shall prove the following two conclusions:

Theorem 1. Let p be an odd prime with $p \equiv 1 \pmod{4}$, then we have the computational formulae

$$\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |C(m, n, 3, 1; p)|^2 \cdot C(mn, p) =$$

$$= \begin{cases} 0 & \text{if } p \equiv 1 \pmod{8}, \\ -\left(\frac{3}{p}\right) \cdot \frac{p^3}{\pi^2} \left\{ \tau^2(\chi_4)L^2(1, \chi_4) + \tau^2(\overline{\chi_4})L^2(1, \chi_4) \right\} & \text{if } p \equiv 5 \pmod{8}, \end{cases}$$

where χ_4 is an odd character mod p such that χ_4^2 is the Legendre’s symbol, $L(1, \chi_4)$ denotes the Dirichlet L-function corresponding to χ_4, and $\tau(\chi) = \sum_{a=1}^{p-1} \chi(a)e\left(\frac{a}{p}\right)$ denotes the classical Gauss sums.

Theorem 2. Let $p > 3$ be an odd prime with $p \equiv 3 \pmod{4}$, then we have

$$\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |C(m, n, 3, 1; p)|^2 \cdot C(mn, p) = \begin{cases} -p \cdot h_p^2 & \text{if } p \equiv 7 \pmod{12}, \\ p \cdot h_p^2 & \text{if } p \equiv 11 \pmod{12}. \end{cases}$$

Corollary. For any prime $p > 3$ with $p \equiv 3 \pmod{4}$, we have

$$h_p^2 = \left(\frac{3}{p}\right) \cdot \frac{1}{p} \cdot \sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |C(m, n, 3, 1; p)|^2 \cdot C(mn, p),$$

where $\left(\frac{\cdot}{p}\right)$ denotes the Legendre’s symbol.

For some special positive integers k and h, we can also give an identity for

$$\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |C(m, n, k, h; p)|^2 \cdot C(mn, p).$$
But for general positive integer q, whether there exists a computational formula for (1) is an open problem, where $k \geq 3$ and $h \geq 1$ are two integers.

2. SEVERAL LEMMAS

In this section, we shall give several lemmas, which are necessary in the proof of our theorems. First we have the following:

Lemma 1. Let $p > 3$ be a prime, then for any integer n with $(n, p) = 1$, we have the identity

$$
\sum_{a=1}^{p} \left(\frac{a^2 + n}{p} \right) = -1,
$$

where $\left(\frac{\cdot}{p} \right)$ denotes the Legendre’s symbol.

Proof. This is a well known result, here we give a proof for the sake of completeness. Since $\left(\frac{\cdot}{p} \right) \equiv \chi_2$ is a primitive character mod p, so from the properties of Gauss sums $\tau(\chi) = \sum_{a=1}^{p-1} \chi(a)e\left(\frac{a}{p} \right)$ we know that

$$
\sum_{a=1}^{p} \left(\frac{a^2 + n}{p} \right) = \frac{1}{\tau(\chi_2)} \sum_{a=1}^{p-1} \sum_{b=1}^{p-1} \left(\frac{b}{p} \right) e\left(\frac{b(a^2 + n)}{p} \right)
$$

$$
= \frac{1}{\tau(\chi_2)} \sum_{b=1}^{p-1} \left(\frac{b}{p} \right) e\left(\frac{nb}{p} \right) \sum_{a=1}^{p} e\left(\frac{ba^2}{p} \right).
$$

From Theorem 7.5.4 of [2] we know that for any integer u with $(u, p) = 1$, we have

$$
\sum_{a=1}^{p} e\left(\frac{ua^2}{p} \right) = \left(\frac{u}{p} \right) \tau(\chi_2) = \left(\frac{u}{p} \right) \sum_{a=1}^{p-1} \left(\frac{a}{p} \right) e\left(\frac{a}{p} \right).
$$

Then from (2) and (3) we have

$$
\sum_{a=1}^{p} \left(\frac{a^2 + n}{p} \right) = \frac{1}{\tau(\chi_2)} \sum_{b=1}^{p-1} \left(\frac{b}{p} \right) e\left(\frac{nb}{p} \right) \left(\frac{b}{p} \right) \tau(\chi_2) = \sum_{b=1}^{p-1} e\left(\frac{nb}{p} \right) = -1.
$$

This proves Lemma 1. □

Lemma 2. Let p be an odd prime with $p \equiv 5 \mod 8$, χ_4 denotes the odd character mod p such that $\chi_4^2 = \left(\frac{\cdot}{p} \right)$. Then we have the identity

$$
\sum_{a=1}^{p} \sum_{b=1}^{p} \chi_4 ((a^3 - b^3)(a - b)) = -\left(\frac{3}{p} \right) \cdot (p - 1) \cdot \sqrt{p} \cdot \frac{\tau(\chi_4)}{\tau(\chi_2)}.
$$
Proof. In fact \(\chi_4(n) = e\left(\frac{ind_g(n)}{4}\right)\), where \(g\) is a primitive root mod \(p\), and \(\text{ind}_g(n)\) denotes the index of \(n\) in primitive root \(g\) mod \(p\) (related contents can be found in [8]). Note that \(\left(\frac{2}{p}\right) = -1\), from the properties of complete residue system mod \(p\) we have

\[
\begin{align*}
4 \sum_{a=1}^{p} \sum_{b=1}^{p} \chi_4 ((a^3 - b^3)(a - b)) &= \\
&= \sum_{a=1}^{p} \chi_4(a^4) + \sum_{a=1}^{p} \sum_{b=1}^{p-1} \chi_4 ((a^3b^3 - b^3)(ab - b)) \\
&= \sum_{a=1}^{p} \chi_4(a^4) + \left(\sum_{b=1}^{p-1} \chi_4(b^4)\right) \left(\sum_{a=1}^{p} \chi_4 ((a^3 - 1)(a - 1))\right) \\
&= (p - 1) \left(1 + \sum_{a=1}^{p} \chi_4 ((a^3 - 1)(a - 1))\right) \\
&= (p - 1) \left(1 + \sum_{a=0}^{p-1} \chi_4 (a^2(a^2 + 3a + 3))\right) \\
&= (p - 1) \left(1 + \sum_{a=1}^{p-1} \chi_4 (a^4) \cdot \chi_4 (1 + 3\tau + 3\tau^2)\right) \\
&= (p - 1) \left(1 + \sum_{a=1}^{p-1} \chi_4 (3a^2 + 3a + 1)\right) \\
&= (p - 1) \left(1 + \frac{2}{p} \sum_{a=1}^{p-1} \chi_4 (12a^2 + 12a + 4)\right) \\
&= (p - 1) \left(1 + \frac{2}{p} \sum_{a=1}^{p-1} \chi_4 (3(2a + 1)^2 + 1)\right) \\
&= (p - 1) \left(\frac{2}{p}\right) \sum_{a=1}^{p} \chi_4 (3(2a + 1)^2 + 1) = -(p - 1) \sum_{a=1}^{p} \chi_4 (3a^2 + 1).
\end{align*}
\]

From the properties of Gauss sums we also have

\[
\begin{align*}
5 \sum_{a=1}^{p} \chi_4 (3a^2 + 1) &= \frac{1}{\tau (\chi_4)} \sum_{a=1}^{p} \sum_{b=1}^{p-1} \chi_4(b) e\left(\frac{b(3a^2 + 1)}{p}\right) \\
&= \frac{1}{\tau (\chi_4)} \sum_{b=1}^{p-1} \chi_4(b) \sum_{a=1}^{p} e\left(\frac{3ba^2}{p}\right)
\end{align*}
\]
\[
= \frac{\sqrt{p}}{\tau(\chi_4)} \left(\frac{3}{p} \right) \sum_{b=1}^{p-1} \chi_4(b) \left(\frac{b}{p} \right) e \left(\frac{b}{p} \right)
\]
\[
= \frac{\sqrt{p}}{\tau(\chi_4)} \left(\frac{3}{p} \right) \sum_{b=1}^{p-1} \chi_4(b) e \left(\frac{b}{p} \right) = \left(\frac{3}{p} \right) \cdot \sqrt{p} \cdot \frac{\tau(\chi_4)}{\tau(\chi_4)},
\]
where we have used the fact that \(\chi_4^2(b) = \left(\frac{b}{q} \right)\). Combining (4) and (5) we have
\[
\sum_{a=1}^{p} \sum_{b=1}^{p} \chi_4((a^3 - b^3)(a - b)) = - \left(\frac{3}{p} \right) \cdot (p - 1) \cdot \sqrt{p} \cdot \frac{\tau(\chi_4)}{\tau(\chi_4)}.
\]
This proves Lemma 2. □

Lemma 3. Let \(a, q\) are two integers with \(q \geq 3\) and \((a, q) = 1\). Then we have
\[
C(a, q) = - \frac{1}{\pi^2 \phi(q)} \sum_{\chi \mod q} \chi(-1 = -1) \left(\sum_{n=1}^{\infty} \frac{G(\chi, n)}{n} \right)^2,
\]
where \(\chi\) runs through the Dirichlet characters mod \(q\) with \(\chi(-1) = -1\), and
\[
G(\chi, n) = \sum_{a=1}^{q} \chi(a) e \left(\frac{an}{q} \right)
\]
denotes the Gauss sums corresponding to \(\chi\).

Proof. See [5, Lemma 1]. □

3. PROOF OF THE THEOREMS

In this section, we shall use the lemmas proved in section two to complete the proof of our theorems. First we prove Theorem 1. If \(p\) is an odd prime then all non-principal characters \(\chi \mod p\) are primitive. Hence by Lemma 3 and the property \(G(\chi, n) = \overline{\chi}(n) \tau(\chi)\) of the Gauss sums associated to primitive characters we have
\[
C(a, p) = - \frac{1}{\pi^2 (p - 1)} \sum_{\chi \mod p} \overline{\chi}(a) \cdot \tau^2(\chi) \cdot L^2(1, \overline{\chi}),
\]
where \(\tau(\chi) = \sum_{b=1}^{p-1} \chi(b) e \left(\frac{b}{p} \right)\).
By this identity and the definition of $C(m, n, k, h; q)$ we have

\begin{equation}
(7) \sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |C(m, n, 3, 1; p)|^2 \cdot C(mn, p) = -\frac{\pi^2}{p-1} \sum_{\chi \mod p \chi(-1) = -1} \tau^2(\chi) \cdot L^2(1, \overline{\chi}).
\end{equation}

\begin{equation}
\cdot \frac{p}{p-1} \sum_{a=1}^{p} \sum_{b=1}^{p-1} \sum_{m=1}^{p-1} \sum_{n=1}^{p-1} \chi(mn) e \left(\frac{m(a^3 - b^3) + n(a-b)}{p} \right)
\end{equation}

\begin{equation}
= \frac{-\pi^2}{p-1} \sum_{\chi \mod p \chi(-1) = -1} L^2(1, \overline{\chi}) \tau^2(\chi) \tau^2(\overline{\chi}) \sum_{a=1}^{p} \sum_{b=1}^{p} \chi(a^3 - b^3) \chi(a-b)
\end{equation}

\begin{equation}
= \frac{-p^2 \cdot \pi^2}{p-1} \sum_{\chi \mod p \chi(-1) = -1} L^2(1, \overline{\chi}) \sum_{a=1}^{p} \sum_{b=1}^{p} \chi(a^3 - b^3) \chi(a-b)
\end{equation}

and

\begin{equation}
(8) \sum_{a=1}^{p} \sum_{b=1}^{p} \chi(a^3 - b^3) \chi(a-b)
= \left(\sum_{b=1}^{p-1} \chi^4(b) \right) \left(1 + \sum_{a=1}^{p-1} \chi(a^2 + a + 1) \chi^2(a-1) \right)
= \left(\sum_{b=1}^{p-1} \chi^4(b) \right) \left(\sum_{a=1}^{p} \chi(a^2 + a + 1) \chi^2(a-1) \right),
\end{equation}

where we have used the identity $\tau(\chi)\tau(\overline{\chi}) = \tau(\chi)\overline{\tau(\chi)}\overline{\chi(-1)} = -p$ in (7).

If $p = 8k + 1$, then for any character $\chi \mod p$ with $\chi(-1) = -1$, χ^4 is not a principal character mod p, so we have the identity

\begin{equation}
(9) \sum_{b=1}^{p-1} \chi^4(b) = 0.
\end{equation}

If $p = 8k + 5$, then there exist two and only two characters χ_4 and $\overline{\chi}_4$ mod p with $\chi_4(-1) = \overline{\chi}_4(-1) = -1$ such that χ^4_4 is a principal character mod p. If $\chi = \chi_4$ or $\overline{\chi}_4$, then

\begin{equation}
(10) \sum_{b=1}^{p-1} \chi^4(b) = p - 1.
\end{equation}

For any other character $\chi \mod p$ with $\chi(-1) = -1$, we have

\begin{equation}
(11) \sum_{b=1}^{p-1} \chi^4(b) = 0.
\end{equation}
If \(p > 3 \) and \(p \equiv 3 \mod 4 \), then for any character \(\chi \mod p \) with \(\chi(-1) = -1 \), \(\chi^4 \) is also not a principal character \(\mod p \), except \(\chi = \left(\frac{\cdot}{p} \right) \), the Legendre’s symbol. In this case, from the properties of the complete residue system \(\mod p \) and Lemma 1 we have the identities

\[
\sum_{b=1}^{p-1} \left(\frac{b}{p} \right)^4 = p - 1
\]

and

\[
\sum_{a=1}^{p} \left(\frac{a^2 + a + 1}{p} \right) \left(\frac{a - 1}{p} \right)^2 = \sum_{a=1}^{p} \left(\frac{a^2 + a + 1}{p} \right) - \left(\frac{3}{p} \right)
\]
\[
= \sum_{a=1}^{p} \left(\frac{4a^2 + 4a + 4}{p} \right) - \left(\frac{3}{p} \right) = \sum_{a=1}^{p} \left(\frac{(2a + 1)^2 + 3}{p} \right) - \left(\frac{3}{p} \right)
\]
\[
= \sum_{a=1}^{p} \left(\frac{a^2 + 3}{p} \right) - \left(\frac{3}{p} \right) = -1 - \left(\frac{3}{p} \right).
\]

Now if \(p = 8k + 1 \), then from (7), (8) and (9) we have

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |C(m, n, 3, 1; p)|^2 \cdot C(mn, p) = 0.
\]

If \(p = 8k + 5 \), then from (7), (10), (11) and Lemma 2 we have

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |C(m, n, 3, 1; p)|^2 \cdot C(mn, p)
\]
\[
= - \left(\frac{3}{p} \right) \cdot \frac{p^2}{\pi^2} \left\{ \tau^2(\chi_4)L^2(1, \chi_4) + \tau^2(\chi_4)L^2(1, \chi_4) \right\}.
\]

Now, our Theorem 1 follows from (14) and (15).

If \(p > 3 \) and \(p \equiv 3 \mod 4 \), then note that \(L(1, \chi_2) = \pi h_p / \sqrt{p} \), from (7), (8), (12) and (13) we have the identity

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |C(m, n, 3, 1; p)|^2 \cdot C(mn, p)
\]
\[
= \frac{-p^2}{\pi^2(p - 1)} \cdot L^2(1, \chi_2) \cdot (p - 1) \cdot \left(1 - \frac{3}{p} \right) = \left(\frac{3}{p} \right) p \cdot h_p^2
\]
\[
= \begin{cases}
-p \cdot h_p^2 & \text{if } p = 12k + 7, \\
 p \cdot h_p^2 & \text{if } p = 12k + 11.
\end{cases}
\]

This completes the proof of Theorem 2. \(\square \)
Acknowledgements. This work is supported by the N.S.F. (11071194) of P.R. China.

REFERENCES

Received 7 March 2011

Northwest University
Department of Mathematics
Xi’an Shaanxi, P.R. China
tingtingwang126@126.com
wpzhang@nwu.edu.cn