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In a fatal shock model, the joint distribution of the times-to-failure of the compo-
nents is not absolutely continuous with respect to the Lebesgue measure. In this
paper, we define a specific measure that makes this distribution absolutely con-
tinuous. We derive the corresponding density, we show how to use it to evaluate
expected values, and we present several examples and particular cases.
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1. INTRODUCTION: THE FATAL SHOCK MODEL

The main objective of system reliability is the construction of a model
(life distribution) that describes the times-to-failure of an entire system based
on the life distributions of the components from which it is composed. Such a
model is an useful tool when choosing the components in order to improve or
optimize the overall system reliability, maintainability and/or availability. To
accomplish this, the relationship between these components must be studied.

In this paper, we consider an n-component parallel system and let Y1, ..., Yn
represent the times-to-failure of the components labeled 1, ..., n respectively.
For calculation purposes, in system reliability, these components are often as-
sumed to be independent, with independent failure times. A more realistic si-
tuation is when all the components are exposed to a common stress (shock),
and therefore, dependency between these components must be taken into ac-
count. In this sense, in the following we consider a special version of the fatal
shock model described in [8]. We assume that there exist events (shocks) that
are selectively fatal to only one of the components, and events that are simul-
taneously fatal to all components. Examples of common-cause shocks include
extreme environmental conditions, computer viruses, sabotages, power out-
ages, design weaknesses, human errors, etc. For example, in insurance, such
shocks might be natural catastrophes; in credit risk modelling, they might be
a variety of economic events (e.g., global recession); in operational risk mod-
elling, they might be the failure of various IT systems; in medicine or biology,
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134 Gheorghiţă Zbăganu and Raluca Vernic 2

they could be due to different kinds of trauma, etc. For other types of shock
models studied in the literature, see, e.g., [4–6, 10, 11], etc. To mathematically
model the above described system, we denote by Xi the moment of the first
selective event that affects component i, i = 1, ..., n, and by Z the moment
of the first event simultaneously affecting all components. Then we obviously
have Yi = min (Z,Xi) , i = 1, ..., n. The usual assumption is that Z,X1, ..., Xn

are independent absolutely continuous random variables, often identically dis-
tributed.

The purpose of this work is to describe the distribution of the random vec-
tor Y = (Y1, ..., Yn) in order to be able to compute, e.g., expected values of the
type Eϕ (Y) , for ϕ : Rn → R a measurable bounded function. Unfortunately,
this distribution is not absolutely continuous with respect to the n-dimensional
Lebesgue measure λn. However, it is possible to make it absolutely continuous
with respect to a properly defined measure. After introducing some notation
in Section 2, in Section 3 we obtain such a measure and the corresponding
density. The density can also be used for parameter estimation, enabling the
derivation of a likelihood function, and hence, the application of the maximum
likelihood estimation method. In Section 4, we give an equivalent form of this
density compatible with the existing literature, together with several examples
and particular cases.

2. NOTATION

The following notation will be needed: let n ≥ 2 be fixed, I = {1, 2, ..., n},
and let J ⊆ I be a subset with |J | = k elements, 0 ≤ k ≤ n; here |J | denotes
the cardinality of J . Let Jc = I\J be the complement of J ; we emphasize its
ordered elements as Jc = {j1 < ... < jn−k}.

We denote a line vector by a bold-face letter and its elements by the
corresponding italic with a subscript denoting the number of the element; the
dimension of this vector will result from the context. The elements of the
canonical basis in Rn will be denoted by ei, i = 1, ..., n. For a non-empty
subset J ⊆ I with |J | = k, we denote by χJ : Rn−k+1 → Rn the mapping

χJ (x0, x1, ..., xn−k) =

n−k∑
i=1

xieji + x0
∑
j∈J

ej .

By χ∅ we denote the identity function on Rn. For example, for n = 4, we have

χ{1} (x0, x1, x2, x3) = (x0, x1, x2, x3) , χ{2} (x0, x1, x2, x3) = (x1, x0, x2, x3) ,

χ{3} (x0, x1, x2, x3) = (x1, x2, x0, x3) , χ{4} (x0, x1, x2, x3) = (x1, x2, x3, x0) ,

χ{1,2} (x0, x1, x2) = (x0, x0, x1, x2) , χ{1,3} (x0, x1, x2) = (x0, x1, x0, x2) ,
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χ{1,4} (x0, x1, x2) = (x0, x1, x2, x0) , χ{2,3} (x0, x1, x2) = (x1, x0, x0, x2) ,

χ{2,4} (x0, x1, x2) = (x1, x0, x2, x0) , χ{3,4} (x0, x1, x2) = (x1, x2, x0, x0) ,

χ{1,2,3} (x0, x1) = (x0, x0, x0, x1) , χ{1,2,4} (x0, x1) = (x0, x0, x1, x0) ,

χ{1,3,4} (x0, x1) = (x0, x1, x0, x0) , χ{2,3,4} (x0, x1) = (x1, x0, x0, x0) ,

χ{1,2,3,4} (x0) = (x0, x0, x0, x0) .

In other words, for k ≥ 2, the injection χJ associates a vector with n
components to a vector with n−k+1 components, making all the components
from J equal to x0; for singletons J = {j}, χJ is a permutation, while χ∅ is
the identity.

We also let A (J) = {Xj < Z, for all j ∈ Jc, and Xj ≥ Z, for all j ∈ J} ,

while Y (J) is the vector Y onA (J). This means that (Y (J))j =

{
Xj , j ∈ Jc
Z, j ∈ J

and Y (∅) = X. Note that we have Y (J) = χJ
(
Z,Xj1 , ..., Xjn−k

)
.

A density function will be denoted by a lower-case letter, the cumulative
distribution function (cdf) by the corresponding capital, and its right tail by
a bar on that capital. In this sense, the density of Xi is fi, the density of Z
is f , Fi, F are their cdfs, while F̄i, F̄ are the corresponding right tails (e.g.,
F̄ (x) = P (Z > x)).

For a more compact writing, we will use the operators ∧ and ∨ to denote
the minimum and, respectively, maximum values of a set of elements; e.g., we
can rewrite Yi = min (Z,Xi) = Z ∧Xi. Moreover, let x+ = max (x, 0) and let
1A denote the indicator function of the subset A, that is, 1A (u) is equal to one
if u ∈ A, and zero otherwise.

3. MAIN RESULT

We start by computing Eϕ (Y), which can be done by breaking the cor-
responding integral into 2n smaller ones. More precisely, we use the decompo-
sition

ϕ (Y) =
∑
J⊆I

ϕ (Y (J)) 1A(J),

from where

Eϕ (Y) =
∑
J⊆I

E
[
ϕ (Y (J)) 1A(J)

]
.

Moreover, for a non-empty subset J ⊆ I with |J | = k, it is easy to see
that denoting dx = dx1...dxn, we have
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E
[
ϕ (Y (J)) 1A(J)

]
=

∫
Rn+1

ϕ
(
χJ
(
z, xj1 , ..., xjn−k

))
f (z)

(
n∏
i=1

fi (xi)

)

×

∏
j∈Jc

1(−∞,z) (xj)

∏
j∈J

1[z,∞) (xj)

dxdz

=

∫
Rn−k+1

ϕ
(
χJ

(
z, (xj)j∈Jc

))
f (z)

∏
j∈Jc

fj (xj) 1(−∞,z) (xj)

(3.1)

×

∏
j∈J

F̄j (z)

∏
j∈Jc

dxj

dz.

Note that it was possible to reduce the order of the multiple integral from
n+ 1 to n− k+ 1 because the integral does not contain the components xj for
j ∈ J, these components being replaced with z. Let us now relabel the n − k
components of x belonging to Jc, namely xji , by zi, and write z0 instead of z.
With this new labeling and with z = (z0, z1, ..., zn−k) , formula (3.1) becomes

E
[
ϕ (Y (J)) 1A(J)

]
(3.2)

=

∫
Rn−k+1

ϕ (χJ (z)) f (z0)

(
n−k∏
i=1

fji (zi) 1(−∞,z0) (zi)

)∏
j∈J

F̄j (z0)

 dz.

For example, if n = 4 and J = {1, 3}, we obtain

E
[
ϕ (Y ({1, 3})) 1A({1,3})

]
=

∫
R3

ϕ (z, x2, z, x4) f (z) f2 (x2) 1(−∞,z) (x2) f4 (x4) 1(−∞,z) (x4) F̄1 (z)

×F̄3 (z) dx2dx4dz

=

∫
R3

ϕ
(
χ{1,3} (z0, z1, z2)

)
f (z0) f2 (z1) f4 (z2) F̄1 (z0) F̄3 (z0)

×1{z0>z1∨z2} (z0, z1, z2) dz1dz2dz0.

This is the integral of ϕ
(
χ{1,3} (·)

)
with respect to a measure which has

the density

ρ{1,3} (z0, z1, z2) = f (z0) f2 (z1) f4 (z2) F̄1 (z0) F̄3 (z0) 1{z0>z1∨z2} (z0, z1, z2) .

Similarly, we can rewrite (3.2) as

E
[
ϕ (Y (J)) 1A(J)

]
=

∫
Rn−k+1

ϕ (χJ (z)) ρJ (z) dλn−k+1 (z) ,
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where the general formula for the densityρJ ,with J a non-empty set, results as

ρJ (z) = f (z0)

(
n−k∏
i=1

fji (zi) 1(−∞,z0) (zi)

)∏
j∈J

F̄j (z0)


= f (z0)

(
n−k∏
i=1

fji (zi)

)∏
j∈J

F̄j (z0)

 1{
z0>

n−k∨
i=1

zi

} (z) .(3.3)

Finally, for the simplest case J = ∅ it is easy to see that

(3.4) ρ∅ (z1, z2, ..., zn) =

(
n∏
i=1

fi (zi)

)
F̄

(
n∨
i=1

zi

)
.

To conclude, we have the following result.

Proposition 1. With the above notation, the distribution of Y can be
written as

(3.5) P ◦Y−1 =
∑

J⊆{1,...,n},J 6=∅

(
ρJ · λn−|J |+1

)
◦ χ−1J + ρ∅ · λn.

Moreover, we have

Eϕ (Y) =
∑

J⊆{1,...,n},J 6=∅

∫
Rn−|J|+1

(ϕ ◦ χJ) ρJdλn−|J |+1 +

∫
Rn

ϕρ∅dλn,

where ρJ is defined by (3.3) and (3.4).

4. SOME PARTICULAR CASES

4.1. FORMULA (3.5) FOR SMALL n

To better understand these densities, we consider formula (3.5) for n = 2.
This gives

P ◦Y−1 = ρ∅ · λ2 +
(
ρ{1} · λ2

)
◦ χ−1{1} +

(
ρ{2} · λ2

)
◦ χ−1{2} +

(
ρ{1,2} · λ

)
◦ χ−1{1,2},

where

ρ∅ (x, y) = f1 (x) f2 (y) F̄ (x ∨ y) , ρ{1} (x, y) = f (x) f2 (y) F̄1 (x) 1{x>y},

ρ{2} (x, y) = f (x) f1 (y) F̄2 (x) 1{x>y}, ρ{1,2} (x) = f (x) F̄1 (x) F̄2 (x) .

Further on, for n = 3, (3.5) yields

P ◦Y−1 = ρ∅ · λ3 +
(
ρ{1} · λ3

)
◦ χ−1{1} +

(
ρ{2} · λ3

)
◦ χ−1{2}

+
(
ρ{3} · λ3

)
◦ χ−1{3} +

(
ρ{1,2} · λ2

)
◦ χ−1{1,2} +

(
ρ{1,3} · λ2

)
◦ χ−1{1,3}

+
(
ρ{2,3} · λ2

)
◦ χ−1{2,3} +

(
ρ{1,2,3} · λ

)
◦ χ−1{1,2,3},
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with
ρ∅ (x, y, z) = f1 (x) f2 (y) f3 (z) F̄ (x ∨ y ∨ z) ,
ρ{1} (x, y, z) = f (x) f2 (y) f3 (z) F̄1 (x) 1{x>y∨z},

ρ{2} (x, y, z) = f (x) f1 (y) f3 (z) F̄2 (x) 1{x>y∨z},

ρ{3} (x, y, z) = f (x) f1 (y) f2 (z) F̄3 (x) 1{x>y∨z},

ρ{1,2} (x, y) = f (x) f3 (y) F̄1 (x) F̄2 (x) 1{x>y},

ρ{1,3} (x, y) = f (x) f2 (y) F̄1 (x) F̄3 (x) 1{x>y},

ρ{2,3} (x, y) = f (x) f1 (y) F̄2 (x) F̄3 (x) 1{x>y},

ρ{1,2,3} (x) = f (x) F̄1 (x) F̄2 (x) F̄3 (x) .

Let us now have a look at the particular case with uniform marginal dis-
tributions. Let Xi follow an uniform distribution U [0, ai] , ai > 0, i = 1, ..., n,
and Z an uniform distribution U [0, a0] , a0 > 0. Then density (3.3) becomes

ρJ (z) =
1

a0
1[0,a0] (z0)

(
n−k∏
i=1

1

aji
1[0,aji ]

(zi)

)∏
j∈J

(aj − z0)+
aj

 1{
z0>

n−k∨
i=1

zi

} (z) ,

while (3.4) yields

ρ∅ (z1, z2, ..., zn) =

(
n∏
i=1

1

ai
1[0,ai] (zi)

) (a0 − n∨
i=1

zi

)
+

a0
.

Let us detail these formulas for n = 4. First, we have

ρ∅ (z1, z2, z3, z4) =

(
4∏
i=0

a−1i

)(
a0 −

4∨
i=1

zi

)
+

, 0 ≤ zi ≤ ai, i = 1, .., 4.

Secondly, for all sets J with |J | = 1, we have that for
3∨
i=1

zi < z0 ≤ a0,

ρ{1} (z0, z1, z2, z3) =

(
4∏
i=0

a−1i

)
(a1 − z0)+ , 0 ≤ zi ≤ ai+1, i = 1, 2, 3;

ρ{2} (z0, z1, z2, z3) =

(
4∏
i=0

a−1i

)
(a2 − z0)+ , 0 ≤ z1 ≤ a1, 0 ≤ zi ≤ ai+1, i = 2, 3;

ρ{3} (z0, z1, z2, z3) =

(
4∏
i=0

a−1i

)
(a3 − z0)+ , 0 ≤ zi ≤ ai, i = 1, 2, 0 ≤ z3 ≤ a4;

ρ{4} (z0, z1, z2, z3) =

(
4∏
i=0

a−1i

)
(a4 − z0)+ , 0 ≤ zi ≤ ai, i = 1, 2, 3.

Thirdly, when |J | = 2, we have that for (z1 ∨ z2) < z0 ≤ a0,
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ρ{1,2} (z0, z1, z2) =

(
4∏
i=0

a−1i

)
(a1 − z0)+ (a2 − z0)+ , 0 ≤ z1 ≤ a3, 0 ≤ z2 ≤ a4;

ρ{1,3} (z0, z1, z2) =

(
4∏
i=0

a−1i

)
(a1 − z0)+ (a3 − z0)+ , 0 ≤ z1 ≤ a2, 0 ≤ z2 ≤ a4;

ρ{1,4} (z0, z1, z2) =

(
4∏
i=0

a−1i

)
(a1 − z0)+ (a4 − z0)+ , 0 ≤ z1 ≤ a2, 0 ≤ z2 ≤ a3;

ρ{2,3} (z0, z1, z2) =

(
4∏
i=0

a−1i

)
(a2 − z0)+ (a3 − z0)+ , 0 ≤ z1 ≤ a1, 0 ≤ z2 ≤ a4;

ρ{2,4} (z0, z1, z2) =

(
4∏
i=0

a−1i

)
(a2 − z0)+ (a4 − z0)+ , 0 ≤ z1 ≤ a1, 0 ≤ z2 ≤ a3;

ρ{3,4} (z0, z1, z2) =

(
4∏
i=0

a−1i

)
(a3 − z0)+ (a4 − z0)+ , 0 ≤ z1 ≤ a1, 0 ≤ z2 ≤ a2.

When |J | = 3, we have that for z1 < z0 ≤ a0,

ρ{1,2,3} (z0, z1) =

(
4∏
i=0

a−1i

)
(a1 − z0)+ (a2 − z0)+ (a3 − z0)+ , 0 ≤ z1 ≤ a4;

ρ{1,2,4} (z0, z1) =

(
4∏
i=0

a−1i

)
(a1 − z0)+ (a2 − z0)+ (a4 − z0)+ , 0 ≤ z1 ≤ a3;

ρ{1,3,4} (z0, z1) =

(
4∏
i=0

a−1i

)
(a1 − z0)+ (a3 − z0)+ (a4 − z0)+ , 0 ≤ z1 ≤ a2;

ρ{2,3,4} (z0, z1) =

(
4∏
i=0

a−1i

)
(a2 − z0)+ (a3 − z0)+ (a4 − z0)+ , 0 ≤ z1 ≤ a1.

And finally, ρ{1,2,3,4} (z0) =
1

a0

4∏
i=1

(ai − z0)+
ai

, 0 ≤ z0 ≤ a0.

4.2. A UNIFIED DENSITY

Note that for a subset J ⊆ I with k = |J | > 0, since χJ is an injection,
we can also write

E
[
ϕ (Y (J)) 1A(J)

]
=

∫
Rn−k+1

ϕ (χJ (z)) ρJ (z) dλn−k+1 (z)
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=

∫
Rn−k+1

ϕ (χJ (z))
(
ρJ ◦ χ−1J

)
(χJ (z)) dλn−k+1 (z)

=

∫
χJ(Rn−k+1)

ϕ (x)
(
ρJ ◦ χ−1J

)
(x) d

(
λn−k+1 ◦ χ−1J

)
(x) ,

from where, we rewrite (3.5) as

P ◦Y−1 =
∑

J⊆{1,...,n},J 6=∅

(
ρJ ◦ χ−1J

)
·
(
λn−|J |+1 ◦ χ−1J

)
+ ρ∅ · λn.

Therefore, for an event C in the Borel σ-algebra in Rn, we define the
following measure

(4.1) ν (C) = λn (C) +
∑

J⊆I, |J |≥2

(
λn−|J |+1 ◦ χ−1J

)
(C) .

Note that λn � ν. The distribution of Y is absolutely continuous with
respect to ν, with the density given for a subset J ⊆ I, |J | ≥ 2, by

rJ (x) =
(
ρJ ◦ χ−1J

)
(x) , x ∈ χJ

(
Rn−|J |+1

)
.

Using now (3.3), we obtain that, for x ∈ χJ
(
Rn−|J |+1

)
and z = xj , j ∈ J,

(4.2) rJ (x) =


f (z)

(
n−k∏
i=1

fji (xji)

)∏
j∈J

F̄j (z)

 , z >
n−k∨
i=1

xji

0, otherwise

.

We separately consider the cases |J | = 1 and J = ∅, which can be unified
since both densities ρJ and ρ∅ are with respect to the same measure λn. Let
J = {j} and x ∈ Rn; then, reasoning as for (4.2), if xj > xi,∀i 6= j, (3.3) yields

r{j} (x) = f (xj)

∏
i 6=j

fi (xi)

 F̄j (xj) ,

while, for the same x, (3.4) gives

r∅ (x) = ρ∅ (x) =

(
n∏
i=1

fi (xi)

)
F̄ (xj) = fj (xj) F̄ (xj)

∏
i 6=j

fi (xi)

 .

The last two relations can be easily unified into

(4.3) r (x) =
(
f (xj) F̄j (xj) + fj (xj) F̄ (xj)

)∏
i 6=j

fi (xi)

 , xj >
∨
i 6=j

xi.
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Now, looking at (4.2), we notice that rJ (x) = 0, for any x ∈ χJ
(
Rn−|J |+1

)
that contains a component xl, l ∈ Jc, such that xl ≥ xj , j ∈ J . For such an x,
there exists another set J ′ for which rJ ′ (x) is not necessarily 0. Therefore, for
compatibility with the existing literature, we unify all densities rJ into

(4.4) r (x) =



f (z)

∏
j∈Jc

fj (xj)

∏
j∈J

F̄j (z)

 , where z =
n∨
i=1

xi,

J = {j ∈ I |xj = z } and |J | ≥ 2(
fj (xj) F̄ (xj) + f (xj) F̄j (xj)

)∏
i 6=j

fi (xi)

 , if xj > xi,

∀i ∈ I\{j} (i.e., the maximum is unique and equal to xj)

.

4.2.1. First particular case: multivariate exponential distribution

If in particular Xi follows an exponential distribution Exp(αi), αi > 0, i =
1, ..., n, and Z an exponential distribution Exp(α0), α0 > 0, then Y will follow
the multivariate exponential distribution introduced by Marshall and Olkin [8].

We recall that the density of the exponential distribution Exp(α) is
g (x) = αe−αx, while its tail function is Ḡ (x) = e−αx, x > 0. Then density
(4.4) becomes

(4.5) r (x) =



α0

∏
j∈Jc

αj

 exp

(
−

n∑
i=1

αixi − α0z

)
, z =

n∨
i=1

xi,

J = {j ∈ I |xj = z } and |J | ≥ 2

(α0 + αj)

∏
i 6=j

αi

 exp

(
−

n∑
i=1

αixi − α0xj

)
, xj > xi,

∀i ∈ I\{j}

.

This is the density obtained by Proschan and Sullo [9] and used to esti-
mate the parameters (αi)i=0,1,...,n by the maximum likelihood method. Unfor-
tunately, the formula of the corresponding measure µ from page 467, Section
3 in [9], makes no sense.

4.2.2. Second particular case: a multivariate Pareto distribution

We recall that X is said to follow a Pareto of the second kind distribu-
tion, denoted X v Pa(II)(µ, σ, α), if it has the right tail function Ḡ(x) =(

1 +
x− µ
σ

)−α
and the density g(x) =

α

σ

(
1 +

x− µ
σ

)−α−1
, with x > µ ∈

R, σ > 0 and α > 0 (see, e.g., [1]).
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Based on the fatal shock model, Asimit et al. [2] introduced a new
multivariate Pareto distribution by taking Z v Pa(II)(0, 1, α0) and Xi v
Pa(II)(µi, σi, αi), i = 1, . . . , n. However, the construction of this new multi-
variate Pareto distribution is somehow different, in the sense that the corre-
sponding random vector Y is defined as

Yi = min (σiZ + µi, Xi) , i = 1, . . . , n.

Nevertheless, to find a density for Y and the corresponding measure, we
can apply a similar reasoning as for Proposition 1. The main difference consists
in the definition of the function χJ , which in this case must be defined for an
J ⊆ I, |J | = k > 0, by

χJ (x0, x1, ..., xn−k) =
n−k∑
i=1

xieji +
∑
j∈J

(σjx0 + µj) ej .

Also,

A (J) = {Xj < σjZ + µj , for all j ∈ Jc, and Xj ≥ σjZ + µj , for all j ∈ J} ,

etc. The measure ν has the same form (4.1) and, for |J | ≥ 2, x ∈ χJ
(
Rn−|J |+1

)
and z =

xj − µj
σj

, j ∈ J, we have

rJ (x) =


f (z)

(
n−k∏
i=1

fji (xji)

)∏
j∈J

F̄j (σjz + µj)

 , z >
n−k∨
i=1

xji − µji
σji

0, otherwise

.

The easiest way to obtain the density corresponding to λn (i.e., for the
cases |J | = 1 and J = ∅) is by differentiating the cdf of Y with respect
to x1, ..., xn, as done in [3]. The unified density of Y results for an x with
xi > µi, i = 1, ..., n, as

r(x) =



α0 (1 + z)−α0−
∑

j∈J αj−1

∏
j∈Jc

αj
σj

(
1 +

xj − µj
σj

)−αj−1
 ,

z =
n∨
i=1

xi − µi
σi

, J =

{
j ∈ I

∣∣∣∣xj − µjσj
= z

}
and |J | ≥ 2

α0 + αj
σj

(
1 +

xj − µj
σj

)−α0−αj−1
∏
i 6=j

αi
σi

(
1 +

xi − µi
σi

)−αi−1
 ,

xj − µj
σj

>
xi − µi
σi

,∀i 6= j

.
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This density was also obtain in a different way by Asimit et al. [3].
Moreover, for µi = σi ≡ 1,∀i = 1, ..., n, it simplifies to the density presented
by Hanagal [7].

REFERENCES

[1] B.C. Arnold, Pareto distributions. International Cooperative Publ. House, Fairland,
MD, 1983.

[2] A.V. Asimit, E. Furman and R. Vernic, On a multivariate Pareto distribution. Insurance
Math. Econom. 46 (2) (2010), 308–316.

[3] A.V. Asimit, E. Furman and R. Vernic, On a multivariate Pareto distribution: estima-
tion methods. 14th International Congress on Insurance: Mathematics and Economics,
University of Toronto, June 17–19, 2010.

[4] J.H. Cha and M. Finkelstein, On new classes of extreme shock models and some gener-
alizations. J. Appl. Probab. 48 (1) (2011), 258–270.

[5] A. Gut, Cumulative shock models. Adv. Appl. Probab. 22 (1990), 504–507.

[6] A. Gut, Mixed shock models. Bernoulli 7 (3) (2001), 541–555.

[7] D.D. Hanagal, A multivariate Pareto distribution. Comm. Statist. Theory Methods 25
(1996), 1471–1488.

[8] A.W. Marshall and I. Olkin, A multivariate exponential distribution. J. Amer. Statist.
Assoc. 62 (317) (1967), 30–44.

[9] F. Proschan and P. Sullo, Estimating the parameters of a multivariate exponential dis-
tribution. J. Amer. Statist. Assoc. 71 (354) (1976), 465–472.

[10] J.G. Shanthikumar and U. Sumita, General shock models associated with correlated re-
newal sequences. J. Appl. Probab. 20 (1983), 600–614.

[11] U. Sumita and J.G. Shanthikumar, A class of correlated cumulative shock models. Adv.
Appl. Probab. 17 (1985), 347–366.

Received 31 May 2011 University of Bucharest,
Faculty of Mathematics and Computer Science,

14 Academiei St.,
010014 Bucharest, Romania

and
Institute for Mathematical Statistics,

and Applied Mathematics,
Calea 13 Septembrie 13,

050711 Bucharest, Romania
zbagang@fmi.unibuc.ro

Ovidius University of Constanta,
Faculty of Mathematics and Computer Science,

124 Mamaia Blvd.,
900527 Constanta

and
Institute for Mathematical Statistics,

and Applied Mathematics,
Calea 13 Septembrie 13,

050711 Bucharest, Romania
rvernic@univ-ovidius.ro


