A k-bridge hypergraph is an h-uniform linear hypergraph consisting of k linear paths having common ends. In this note it is shown that every two chromatically equivalent k-bridge hypergraphs are isomorphic if $k \geq 3$. This solves in affirmative an open question raised by Bokhary et al. [2], where a supplementary condition on the multiplicities of path lengths was imposed.

AMS 2010 Subject Classification: Primary 05C15.

Key words: chromatic polynomial, linear path, k-bridge hypergraph, chromatically equivalent hypergraphs.

1. NOTATION AND PRELIMINARY RESULTS

An h-uniform hypergraph $(h \geq 2)$ $H = (V, \mathcal{E})$ of order $n = |V|$ and size $m = |\mathcal{E}|$, consists of a vertex set $\mathcal{V}(H) = V$ and edge set $\mathcal{E}(H) = \mathcal{E}$, where $E \subset \mathcal{V}$ and $|E| = h$ for each edge E in \mathcal{E}. H is said to be linear if $0 \leq |E \cap F| \leq 1$ for any two distinct edges $E, F \in \mathcal{E}(H)$ [1].

Let $P_{p}^{h,1}$ denote the linear path consisting of $p \geq 1$ edges E_1, \ldots, E_p such that $|E_1| = \ldots = |E_p| = h$, $|E_k \cap E_l| = 1$ if $\{k, l\} = \{i, i+1\}$ for any $1 \leq i \leq p - 1$ and 0 otherwise.

Each vertex from $E_1 \setminus E_2$ or from $E_p \setminus E_{p-1}$ will be called an end vertex of $P_{p}^{h,1}$.

For any positive integers $a_1, \ldots, a_k \in \mathbb{N}$ and $h \geq 2$ we denote by $\theta(h; a_1, \ldots, a_k)$ the h-uniform linear hypergraph consisting of k linear paths $P_{a_1}^{h,1}, P_{a_2}^{h,1}, \ldots, P_{a_k}^{h,1}$ of lengths a_1, a_2, \ldots, a_k respectively, having in common only two fixed ends. It is a parallel hypergraph [4] of order $(h - 1)(a_1 + \ldots + a_k) - k + 2$. For example, $\theta(3; 4, 3, 5)$ is depicted in Fig. 1 with x and y common ends of the paths. This linear hypergraph will be called a k-bridge hypergraph; $\theta(2; a_1, \ldots, a_k)$ is a notation for a k-bridge graph (see [3]).

A λ-coloring of a hypergraph H is a function $f : \mathcal{V}(H) \to \{1, \ldots, \lambda\}$ such that each edge $E \in \mathcal{E}(H)$ contains two vertices x and y having different colors $f(x) \neq f(y)$. The number of λ-colorings of H is given by a polynomial $P(H, \lambda)$.
in \(\lambda \), called the chromatic polynomial of \(H \), of degree equal to \(|V(H)|\). Two hypergraphs \(H \) and \(G \) are said to be chromatically equivalent if they have the same chromatic polynomial, i.e., \(P(H, \lambda) = P(G, \lambda) \).

The chromatic polynomial of \(k \)-bridge hypergraphs was deduced in [2]:

Lemma 1.1. For every \(h \geq 2 \) and \(k, a_1, \ldots, a_k \geq 1 \) we have

\[
P(\theta(h; a_1, \ldots, a_k), \lambda) = \frac{1}{\lambda^{k-1}} \prod_{i=1}^{k} ((\lambda^{h-1} - 1)^{a_i} + (-1)^{a_i}(\lambda - 1))
+ \frac{\lambda - 1}{\lambda^{k-1}} \prod_{i=1}^{k} ((\lambda^{h-1} - 1)^{a_i} - (-1)^{a_i}).
\]

In [2] it was proved that if \(k, h \geq 3; 2 \leq a_1 \leq \ldots \leq a_k; 2 \leq b_1 \leq \ldots \leq b_k \) and any number in the multisets \(\{a_1, \ldots, a_k\} \) and \(\{b_1, \ldots, b_k\} \) has a multiplicity less than \(2^{h-1} - 1 \), then chromatic equivalence between \(\theta(h; a_1, \ldots, a_k) \) and \(\theta(h; b_1, \ldots, b_k) \) implies \(a_i = b_i \) for all \(i = 1, \ldots, k \). This means that \(\theta(h; a_1, \ldots, a_k) \) and \(\theta(h; b_1, \ldots, b_k) \) are isomorphic hypergraphs.

An open question raised in [2] was to decide whether the condition on the multiplicities of path lengths can be removed, since this can be done at least for \(h = 3 \) and a similar property also holds for \(k \)-bridge graphs \((h = 2) \) [3].

In the next section, we shall prove that this can be done for all \(k, h \geq 3 \).

2. MAIN RESULT

First, we need a lemma concerning a non-divisibility property in a polynomial ring.

Lemma 2.1. Let \(m, n \geq 2 \) be natural numbers. The polynomial \(\lambda^n - 1 \) does not divide \((\lambda - 1)^m + (-1)^m(\lambda - 1) \).

Proof. Suppose that \(\lambda^n - 1 \) divides \((\lambda - 1)^m + (-1)^m(\lambda - 1) \). It follows that \(m \geq n \) and \(P(\lambda) = \lambda^{n-1} + \lambda^{n-2} + \ldots + 1 \) divides \(Q(\lambda) = (\lambda - 1)^{m-1} + (-1)^m \).

This means that all roots of \(P(\lambda) \) are also roots of \(Q(\lambda) \). The roots of \(P(\lambda) \) are all roots of order \(n \) of unity which are different from 1, i.e., complex
numbers \(\cos \frac{2\pi t}{n} + i\sin \frac{2\pi t}{n} \), where \(t = 1, \ldots, n - 1 \). The roots of \(Q(\lambda) \) can be easily obtained from the roots of unity by the substitution \(\lambda - 1 = \mu \) and they are numbers \(1 + \cos \frac{2\pi t}{m-1} + i\sin \frac{2\pi t}{m-1} \) for \(m \) odd and \(1 + \cos \frac{\pi(2t+1)}{m-1} + i\sin \frac{\pi(2t+1)}{m-1} \)

for \(m \) even (\(0 \leq t \leq m - 2 \)).

It is necessary to see if there exist \(\alpha, \beta \) such that \(0 \leq \alpha, \beta < 2\pi \) and \(1 + \cos \beta + i\sin \beta = \cos \alpha + i\sin \alpha \). We deduce \(\cos \alpha = 1 + \cos \beta \) and \(\sin \alpha = \sin \beta \), hence \((1 + \cos \beta)^2 + \sin^2 \beta = 1 \), which implies \(\cos \beta = -\frac{1}{2} \). We get \(\beta_1 = \frac{2\pi}{3} \) and \(\beta_2 = \frac{4\pi}{3} \) and corresponding values \(\alpha_1 = \frac{\pi}{3} \) and \(\alpha_2 = \frac{5\pi}{3} \).

Consequently, only two roots of \(P(\lambda) \) can possibly be roots of \(Q(\lambda) \). It follows that \(P(\lambda) \) does not divide \(Q(\lambda) \) for \(n \geq 4 \).

It remains to verify this property for \(n = 2 \) and \(n = 3 \). For \(n = 2 \) we have \(P(\lambda) = \lambda + 1 \) and \(Q(-1) \neq 0 \). If \(n = 3 \) the roots of \(P(\lambda) \) are \(\varepsilon \) and \(\varepsilon^2 \), where \(\varepsilon = \frac{-1+i\sqrt{3}}{2} \) is a cubic root of unity. Suppose that \(Q(\varepsilon) = 0 \). This would imply \(|\varepsilon - 1| = 1 \). But \(|\varepsilon - 1| = \sqrt{3} \), a contradiction. \(\square \)

Theorem 2.2. Let \(k, h \geq 3 \). If \(k \)-bridge hypergraphs \(H_1 \) and \(H_2 \) are chromatically equivalent, then they are isomorphic hypergraphs.

Proof. Suppose that \(H_1 = \theta(h; a_1, \ldots, a_k) \) and \(H_2 = \theta(h; b_1, \ldots, b_k) \) with \(1 \leq a_1 \leq \ldots \leq a_k \) and \(1 \leq b_1 \leq \ldots \leq b_k \).

By hypothesis we have \(P(H_1, \lambda) = P(H_2, \lambda) \). It is necessary to prove that \(a_i = b_i \) for all \(i = 1, \ldots, k \).

By Lemma 1.1 we get after reductions

\[
(1) \quad \lambda^{k-1} P(H_1, \lambda) = \lambda^{h-1} - 1)^a_1 + \ldots + a_k + \sum_{i=2}^{k} \sum_{K \subset \{1, \ldots, k\}} (\lambda - 1)^i (\lambda - 1) \times (-1)^{a_K} (\lambda^{h-1} - 1)^a_K,
\]

where we have denoted \(K = \{1, \ldots, k\} \setminus K \), \(a_k = \sum_{j \in K} a_j \) and \(a_\emptyset = 0 \). Since \(P(H_1, \lambda) = P(H_2, \lambda) \) it follows that \(\sum_{i=1}^{k} a_i = \sum_{i=1}^{k} b_i \) because the terms of the highest degree in both polynomials must be equal.

We denote

\[
S_1 = \sum_{i=2}^{k-1} \sum_{|K|=i} (\lambda - 1)^i (\lambda - 1) (-1)^{a_K} (\lambda^{h-1} - 1)^a_K
\]

and let \(S_2 \) be the corresponding sum for \(b_1, \ldots, b_k \).

By equating \(\lambda^{k-1} P(H_1, \lambda) \) and \(\lambda^{k-1} P(H_2, \lambda) \), from (1) we get \(S_1 = S_2 \) since the free terms in (1) coincide for \(H_1 \) and \(H_2 \).
Suppose that $a_1 \neq b_1$. Without loss of generality we can consider $a_1 < b_1$. Let p denote the multiplicity of $a_1 (1 \leq p \leq k)$. If $p = k$ it follows that $a_1 = \ldots = a_k$. We deduce that $\sum_{i=1}^{k} a_i = ka_1 < kb_1 \leq \sum_{i=1}^{k} b_i$, a contradiction.

Consequently, $p \leq k - 1$ hence, $a_1 = \ldots = a_p < a_{p+1} \leq \ldots \leq a_k$. It can be seen that the term of S_1 containing the smallest power of $\lambda^{h-1} - 1$ corresponds to $i = k - 1$ and choices $\overline{K} = \{1\}, \{2\}, \ldots, \{p\}$ and is equal to

$$R(\lambda) = p((\lambda - 1)^{k-1} + (-1)^{k-1}(\lambda - 1))(-1)^{\sum_{i=1}^{k} a_i - a_1}(\lambda^{h-1} - 1)^{a_1}.$$

Since $b_1 > a_1$, or $b_1 \geq a_1 + 1$, the expression S_2 is divisible by $(\lambda^{h-1} - 1)^{a_1+1}$. Also, $S_1 - R(\lambda)$ is divisible by $(\lambda^{h-1} - 1)^{a_1+1}$ since $a_p+1, \ldots, a_k \geq a_1+1$.

It follows that $R(\lambda) = S_2 - (S_1 - R(\lambda))$ is also divisible by $(\lambda^{h-1} - 1)^{a_1+1}$, which means that $(\lambda - 1)^{k-1} + (-1)^{k-1}(\lambda - 1)$ is divisible by $\lambda^{h-1} - 1$. This is impossible by Lemma 2.1 since $h, k \geq 3$. It follows that $a_1 = b_1$.

Let m be such that $2 \leq m \leq k - 1$. Suppose we have proved that $a_i = b_i$ for $i = 1, \ldots, m - 1$ and $a_m < b_m$ holds.

By canceling all equal terms from both sides of the equation $S_1 = S_2$ we get another equation, denoted by $S_1^1 = S_2^1$.

In S_1^1 and S_2^1 the second sum is over all subsets $K \subset \{1, \ldots, k\}$ with $|K| = i$ such that $\overline{K} \not\subset \{1, \ldots, m - 1\}$, since the corresponding terms in S_1 and S_2 have been canceled because $\sum_{i=1}^{k} a_i = \sum_{i=1}^{k} b_i$. In this case, the minimum of $a_{\overline{K}}$ is reached only for $i = k - 1$ and $\overline{K} = \{m\}, \{m+1\}, \ldots,$ or $\{m + q - 1\}$, and the corresponding term of S_1^1 equals $q((\lambda - 1)^{k-1} + (-1)^{k-1}(\lambda - 1))(-1)^{\sum_{i=1}^{k} a_i - a_m}(\lambda^{h-1} - 1)^{a_m}$ if the multiplicity of a_m is $q \geq 1$.

A similar argument as above shows that $a_m = b_m$.

If $m = k$, then $a_k = \sum_{i=1}^{k} a_i - \sum_{i=1}^{k-1} a_i = \sum_{i=1}^{k} b_i - \sum_{i=1}^{k-1} b_i = b_k$. Therefore, $a_i = b_i$ for $i = 1, \ldots, k$, which concludes the proof. □

Note that for $k = 2$ the property is not true for $a_1 + a_2 \geq 4$ since all 2-bridge hypergraphs $\theta(h; a_1, a_2)$ having $a_1 + a_2 = m \geq 4$ represent the same linear cycle with m edges.

Acknowledgment. This research was partially supported by Higher Education Commission of Pakistan.

REFERENCES

Chromatically equivalent k-bridge hypergraphs

Received 14 April 2012

GC University,
“Abdus Salam” School of Mathematical Sciences,
Lahore-Pakistan
unique.sana@hotmail.com

University of Bucharest,
Faculty of Mathematics and Computer Science,
010014 Bucharest, Romania
ioan@fmi.unibuc.ro