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Let K be a �eld, V a K-vector space with basis e1, . . . , en and let E be the
exterior algebra of V . We study the Hilbert function of reverse lexicographic
ideals in E and their Bass numbers.
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1. INTRODUCTION

Let K be a �eld, V a K-vector space with basis e1, . . . , en and let E be
the exterior algebra of V .

Let I be a graded ideal in E. The most important theorem in the study
of the Hilbert functions of graded algebras of the form E/I is the Kruskal-
Katona theorem [1, Theorem 4.1], which is the precise analogue to Macaulay's
theorem [3] on the Hilbert functions of homogeneous commutative rings. An
important role in this context play the lexsegment ideals (see, for example [1,
2, 5, 6] and the references therein). In fact, if I ( E is a graded ideal, then
there exists a unique lexsegment ideal with the same Hilbert function as that of
I [1]. The reverse lexicographic ideals have not in general the same behaviour.
Indeed, given an Hilbert function H there is often no reverse lexicographic ideal
attaining H.

One of the purposes of this paper is to study the Hilbert function of E/I,
when I is a reverse lexicographic ideal and state when a �nite sequence of
non negative integers determines the Hilbert function of a reverse lexicographic
ideal.

It is known that the exterior algebra is self-dual. Hence, some results on
Hilbert functions or resolutions have dual counterparts [1].

In [7], the authors showed that the reverse lexicographic ideal has the
smallest graded Betti numbers among all strongly stable ideals with the same
Hilbert function in an exterior algebra. In this paper, we show that the reverse
lexicographic ideals give the lowest graded Bass numbers among all strongly
stable ideals with the same Hilbert function.
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The paper is organized as follows. Section 2 contains preliminary notions
and results. In Section 3, the Hilbert functions of reverse lexicographic ideals
are studied. The main result in this section consists in proving that, given a
�nite sequence of non negative integers (h1, . . . hn), then there exists a reverse
lexicographic ideal I in E such that HE/I = 1 +

∑n
i=1 hit

i (Theorem 3.1). In
Section 4, we compare the Bass numbers of a strongly stable ideal in E and the
Bass numbers of a reverse lexicographic ideal with the same Hilbert function
as I (Proposition 4.2).

2. PRELIMINARIES AND NOTATIONS

Let K be a �eld. We denote by E = K 〈e1, . . . , en〉 the exterior algebra
of a K-vector space V with basis e1, . . . , en. For any subset σ = {i1, . . . , id} of
{1, . . . , n} with 1 ≤ i1 < i2 < . . . < id ≤ n we write eσ = ei1 ∧ . . .∧ eid and call
eσ a monomial of degree d. The set of monomials in E forms a K-basis of E
of cardinality 2n.

In order to simplify the notation we put fg = f ∧ g for any two elements
f and g in E. An element f ∈ E is called homogeneous of degree j if f ∈ Ej ,
where Ej =

∧j V. An ideal I is called graded if I is generated by homogeneous
elements. If I is graded, then I = ⊕j≥0Ij , where Ij is the K-vector space of all
homogeneous elements f ∈ I of degree j.

Let eσ = ei1ei2 · · · eid be a monomial of degree d. We de�ne

supp(eσ) = {i : ei divides eσ},

and we write

m(eσ) = max{i : i ∈ supp(eσ)}.

De�nition 2.1. Let I  E be a monomial ideal. I is called stable if for
each monomial eσ ∈ I and each j < m(eσ) one has ejeσ\{m(eσ)} ∈ I. I is
called strongly stable if for each monomial eσ ∈ I and each j ∈ σ one has that
eieσ\{j} ∈ I, for all i < j.

Let I be a graded ideal of E. The function HE/I(j) = dimK(E/I)j , j =
0, 1, . . . , is called the Hilbert function of E/I and the polynomial HE/I =∑

j≥0HE/I(j)t
i is called the Hilbert series of E/I.

It is known that if I is a graded ideal in E, then E/I has the unique
minimal graded free resolution over E:

F : . . .→ F2
d2→ F1

d1→ F0 → E/I → 0.

where Fi = ⊕jE(−j)βi,j(E/I). The integers βi,j(E/I) = dimK TorEi (E/I,K)j
are called the graded Betti numbers.
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Now, let Md denote the set of all monomials of degree d ≥ 1 in E. For
any subset S of E, we denote by M(S) the set of all monomials in S and we
denote by |S| its cardinality.

We write >revlex for the reverse lexicographic order (revlex for short) on
the �nite set Md, i.e., if u = ei1ei2 · · · eid and v = ej1ej2 · · · ejd are monomials
belonging to Md with 1 ≤ i1 < i2 < . . . < id ≤ n and 1 ≤ j1 < j2 < . . . < jd ≤
n, then

u >revlex v if id = jd, id−1 = jd−1, . . . , is+1 = js+1 and is < js

for some 1 ≤ s ≤ d.
From now on, in order to simply the notations, we will write > instead of

>revlex.

De�nition 2.2. A nonempty set M ⊆ Md is called a reverse lexicographic

segment of degree d (revlex segment of degree d, for short) if for all v ∈M and
all u ∈Md such that u > v, we have that u ∈M .

If M is a revlex segment of degree d and |M|=`, ` is called the length of M.

De�nition 2.3. Let I = ⊕j≥0Ij be a monomial ideal of E. We say that I
is a reverse lexicographic ideal of E if, for every j, Ij is spanned by a revlex
segment (as K-vector space).

From now on, for the sake of simplicity, given a monomial ideal I = ⊕j≥0Ij
of E we will say that Ij is a reverse lexicographic segment of degree j if Ij is
spanned as K-vector space by a reverse lexicographic segment of degree j.

De�nition 2.4. LetM be a subset of monomials of E. Set ei = {e1, . . . , ei}.
We de�ne the set

eiM = {uej : u ∈M , j /∈ supp(u), j = 1, . . . , i}.

Note that eiM = ∅ if, for every monomial u ∈ M and for every j =
1, . . . , i, one has j ∈ supp(u).

If M is a set of monomial of degree d < n, enM is called the shadow of
M and is denoted by Shad(M) [4]:

Shad(M) = {uej : u ∈M, j /∈ supp(u), j = 1, . . . , n}.

We de�ne the i-th shadow recursively by Shadi(M) = Shad(Shadi−1(M)).
If M is a revlex segment of degree d, then Shad(M) needs not be a revlex

segment of degree d+ 1 [7].
For a subset M of monomials of degree d of E we denote by E1M the

K-vector space generated by Shad(M). Moreover, if I = ⊕j≥0Ij is a monomial
ideal of E, we denote by E1Id the K-vector space generated by Shad(M(Id))
and by Ed2−d1Id1 theK-vector space generated by Shadd2−d1(M(Id1)), d2 > d1.
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If I  E is a monomial ideal, we denote by G(I) the unique minimal set
of monomial generators of I and we de�ne the following sets:

G(I)d = {u ∈ G(I) : deg(u) = d}, G(I; i) = {u ∈ G(I) : m(u) = i},
mi(I) = |G(I; i)| ,

for d > 0 and 1 ≤ i ≤ n.
Proposition 2.1. Let M be a revlex segment of degree d < n − 2 of E.

Then the following conditions are equivalent:

(a) Shad(M) is a revlex segment of degree d+ 1;

(b) |M | ≥
(
n−2
d

)
;

(c) en−(d+1) · · · en−2 ∈M ;

(d) all iterated shadows of M are revlex segments.

If one of the above conditions is ful�lled, then Shad2(M) = Md+2.

Proof. (a)⇔ (b). See [7, Proposition 4.1].
(a)⇔ (c). See [7, Corollary 3.8].
(c)⇒ (d). If en−(d+1) · · · en−2 ∈M , then en−(d+1) · · · en−2en ∈ Shad(M).

Hence, Shad2(M) = Md+2, and, consequently, Shadi(M) = Md+i, for all
i ≥ 3.

(d)⇒ (c). Obvious. �

As a consequence of Proposition 2.1, we obtain the following result.

Corollary 2.1. Let I ( E be a revlex ideal generated in degree d < n−2.
Then Shad(M(Id)) is a revlex segment of degree d+ 1 if and only if

HE/I(d) ≤
(
n

d

)
−
(
n− 2

d

)
.

3. HILBERT FUNCTION

In this section, we state under which conditions a �nite sequence of non
negative integers determines the Hilbert function of a revlex ideal.

For a graded ideal I = ⊕j≥0Ij of E, we denote by indeg(I), the initial

degree of I, that is, the minimum s such that Is 6= 0.

Proposition 3.1. A revlex ideal I ( E is minimally generated in at most

two consecutive degrees.

Proof. Let d = indeg(I). Then e1e2 · · · ed ∈ Id, and e1e2 · · · eden ∈ Id+1.
As I is a revlex ideal, it follows that en−(d+2) · · · en−2 ∈ Id+1, and consequently
Shad(M(Id+1)) = Md+2. Therefore, the minimal monomial generators of I are
at most of degree d and d+ 1. �
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Proposition 3.2. Let I ( E be a revlex ideal generated in degree d <
n− 2. If dimK Id =

(
n−2
d

)
+mn−1(I), then

dimK Id+1 =

(
n− 2

d

)
+

(
n− 1

d+ 1

)
+mn−1(I).

Proof. As
(
n−2
d−1

)
−mn−1(I) is the number of monomials v ∈ Md \ G(I)

such that m(v) = n− 1, it follows that

dimK Id+1 = dimK Ed+1 −
[(
n− 2

d− 1

)
−mn−1(I)

]
=

(
n

d+ 1

)
−
(
n− 2

d− 1

)
+mn−1(I)

=

(
n

d+ 1

)
−
(
n− 1

d

)
+

(
n− 2

d

)
+mn−1(I)

=

(
n− 1

d+ 1

)
+

(
n− 2

d

)
+mn−1(I). �

The next result will be crucial in the sequel.

Corollary 3.1. Let I ( E be a revlex ideal generated in degree d < n−2
and b a positive integer such that b ≤

(
n
d

)
−
(
n−2
d

)
.

Let dimK Ed/Id = b, then

(i) dimK Ed+1/E1Id = b−
(
n−1
d−1

)
, if b >

(
n−1
d−1

)
;

(ii) dimK Ed+1/E1Id = 0, if b ≤
(
n−1
d−1

)
.

Proof. First of all, observe that E1Id = Id+1 is a revlex segment set of
degree d + 1 (Corollary 2.1) and that

(
n−1
d−1

)
is the number of all monomials

z ∈Md such that m(z) = n.

(i). Let b >
(
n−1
d−1

)
.

Claim. b−
(
n−1
d−1

)
=
(
n−2
d−1

)
−mn−1(I).

Since
(
n−2
d−1

)
is the number of all monomials w ∈ Md such that m(w) =

n − 1, then
(
n−2
d−1

)
− mn−1(I) is the number of all monomials u ∈ Md \ G(I)

such that m(u) = n− 1. Hence,(
n− 2

d− 1

)
−mn−1(I) =

(
n

d

)
−
(
n− 1

d− 1

)
− dimK Id.

Since dimK Id =
(
n
d

)
− b, then

(1)

(
n− 2

d− 1

)
−mn−1(I) = b−

(
n− 1

d− 1

)
,
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and the claim is proved.
Note that under our hypothesis, if u is the smallest monomial of G(I),

then m(u) ∈ {n− 2, n− 1}.
(Case 1). Suppose m(u) = n − 2. It follows that u = en−(d+1) · · · en−2 is

the smallest monomial of G(I) and consequently mn−1(I) = 0.
Therefore, by Proposition 3.2, we have:

dimK Ed+1/E1Id =

(
n

d+ 1

)
−
(
n− 2

d

)
−
(
n− 1

d+ 1

)
=

(
n− 1

d

)
−
(
n− 2

d

)
=

(
n− 2

d− 1

)
and from the claim, we get the assert.

(Case 2). Suppose m(u) = n−1, then dimK Id =
(
n−2
d

)
+mn−1(I). Since,

by Proposition 3.2, dimK Id+1 =
(
n−2
d

)
+
(
n−1
d+1

)
+mn−1(I), it follows that

dimK Ed+1/E1Id =

(
n

d+ 1

)
−
(
n− 2

d

)
−
(
n− 1

d+ 1

)
−mn−1(I)

=

(
n− 2

d− 1

)
−mn−1(I).

From the claim we get the desired equality.
(ii). Let b ≤

(
n−1
d−1

)
. In this case, if u is the smallest monomial of G(I),

then m(u) = n.
Hence, Shad(M(Id)) = Md+1 and dimK Ed+1/E1Id = 0. �

Theorem 3.1. Let (h1, h2, . . . , hn) be a sequence of non negative integers

and d′ a positive integer such that d′ < n− 2.
Suppose that:

(1) hd =
(
n
d

)
, for d = 0, . . . , d′ − 1;

(2) hd′ ≤
(
n
d′

)
−
(
n−2
d′

)
;

(3)

{
hd′+1 ≤ hd′ −

(
n−1
d′−1

)
, if hd′ >

(
n−1
d′−1

)
,

hd′+1 = 0, if hd′ ≤
(
n−1
d′−1

)
;

(4) hd = 0, for d > d′ + 1.

Then there exists a unique revlex ideal J ( E = K 〈e1, . . . , en〉 of initial
degree d′ and such that HE/J(t) = 1 +

∑n
i=1 hit

i.

Proof. Let Jd be the K-vector space generated by the revlex segment of
degree d and length

(
n
d

)
− hd in the exterior algebra E = K 〈e1, . . . , en〉, for

d = 0, . . . , n.
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(Case 1). Let hd′ >
(
n−1
d′−1

)
. First of all, note that Jd = 0, for d =

0, . . . , d′ − 1, and Jd = Ed, for d > d′ + 1.
By de�nition Jd′ is the K-vector space spanned by the revlex segment of

degree d′ and length
(
n
d′

)
−hd′ . By (2), hd′ ≤

(
n
d′

)
−
(
n−2
d′

)
, then dimK Jd′ ≥

(
n−2
d′

)
and from Proposition 2.1, Shad(M(Jd′)) is a revlex segment of degree d′ + 1,
i.e., E1Jd′ is a K-vector subspace of Ed′+1 generated by a revlex segment of
degree d′ + 1. Hence, applying the same reasoning of Corollary 3.1, proof
of (i), we can state that dimK Ed′+1/E1Jd′ = hd′ −

(
n−1
d′−1

)
. Thus, from (3),

it follows that hd′+1 ≤ dimK Ed′+1/E1Jd′ and so dimK Jd′+1 ≥ dimK E1Jd′ .
Hence, E1Jd′ ⊆ Jd′+1.

On the other hand, E1Jd′+1 = Ed′+2 = Jd′+2 by Proposition 2.1. There-
fore J = ⊕nd=d′Jd is indeed an ideal of E = K 〈e1, . . . , en〉 of initial degree d′ and
E/J has the desired Hilbert function. Note that J has generators in degrees d′

and d′ + 1.
(Case 2). Let hd′ ≤

(
n−1
d′−1

)
. In this case, Jd = 0, for d = 0, . . . , d′ − 1, and

Jd = Ed, for d ≥ d′ + 1.
Moreover, the smallest monomial u belonging to M(Jd′) is such that

m(u) = n. Hence, E1Jd′ = 〈Md′+1〉 = Jd′+1. It follows that J = ⊕nd=d′Jd
is an ideal of E = K 〈e1, . . . , en〉 of initial degree d′ and HE/J = 1 +

∑n
i=1 hit

i.
Note that J is an ideal generated in degree d′.
The uniqueness part of the theorem is obvious. �

Remark 3.1. Let (h1, h2, . . . , hn) be a sequence of non negative integers
satisfying the conditions stated in the Kruskal-Katona theorem [1, Theorem 4.1].
There exists always a (unique) lexicographic ideal in E such that HE/I =
1 +

∑n
i=1 hit

i [1]. While there is often no revlex ideal J in E attaining HE/I .
For example, consider the sequence of integers (1, 5, 8, 5, 0); there exists

the lexicographic ideal I = (e1e2, e1e3) ( E = K 〈e1, e2, e3, e4, e5〉 such that
HE/I = 1 + 5t+ 8t2 + 5t3, but no revlex ideal such that HE/J = HE/I can be
found.

Note that the sequence examined does not satisfy all the conditions in
Theorem 3.1.

4. BASS NUMBERS

In this section, we analyze the Bass numbers of revlex ideals in the exterior
algebra E = K 〈e1, . . . , en〉.

Let M be a �nite left (right) E-module. We denote by M ′ the right (left)
E-module HomE(M,E). The graded Bass numbers of M ′ are the integers
de�ned as follows [3]:

µi,j(M
′) = dimK ExtiE(K,M ′)j .
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The next result due to Aramova, Herzog and Hibi [1, Proposition 5.2]
relates the graded Betti numbers of the left E-module M to the graded Bass
numbers of the dual right E-module M ′.

Proposition 4.1. Let M be a graded right E-module. Then

βi,j(M) = µi,n−j(M
′), for all i, j.

If I ( E is an ideal, then HomE(E/I,E) ' 0 : I, where 0 : I is the
annihilator of I, that is, the set of all elements b ∈ E such that ba = 0, for all
a ∈ I.

Thus, if I ( E is a graded ideal, it follows that [1, Corollary 5.3]:

(2) dimK(E/I)i = dimK(0 : I)n−i, for all i.

For more details on this subject see [1].

Lemma 4.1. Let I ( E be a graded ideal.

(1) If I is a strongly stable ideal, then 0 : I is a strongly stable ideal in E.

(2) If I is a revlex ideal, then 0 : I is a revlex ideal in E.

Proof. The ideal 0 : I is spanned as K-vector space by all monomials eσ̄
such that eσ /∈ I, where σ̄ is the complement of σ in the set {1, . . . , n} (see [1,
Proposition 5.7], proof).

(1). If T is a strongly stable set in E, i.e., a set of monomials of degree
d ≥ 1 in E such that for each monomial eσ ∈ T and each j ∈ σ one has that
(−1)α(σ,i)ejeσ\{j} ∈ T , where α(σ, i) = |{r ∈ σ : r < i}|, for all i < j, then the
set {eσ̄ : eσ /∈ T} is a strongly stable set in E, too. Hence, if I is a strongly
stable ideal, then 0 : I is a strongly stable ideal in E.

(2). If T is a revlex segment in E, then the set {eσ̄ : eσ /∈ T} is a revlex
segment in E, too. Hence, if I is a revlex ideal, then 0 : I is a revlex ideal
in E. �

Remark 3.1 has pointed out that given a strongly stable ideal I ( E there
is not always a revlex ideal with the same Hilbert function as I (see [8] for the
polynomial case). This fact justi�es our assumption in the next results.

Lemma 4.2. Let I ( E be a strongly stable ideal and J  E a revlex ideal

such that HE/J(d) = HE/I(d), for all d. Then

HE/0:J(d) = HE/0:I(d), for all d.

Proof. From (2) and by our assumptions, it follows that

dimK(0 : I)d = dimK(E/I)n−d = dimK(E/J)n−d = dimK(0 : J)d,

and we get the assert. �
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As a consequence, we obtain a bound similar to [7, Theorem 5.6] for the
Bass numbers of E/I, for I strongly stable ideal.

Proposition 4.2. Let I ( E be a strongly stable ideal and J  E a revlex

ideal such that HE/J(d) = HE/I(d), for all d. Then

µi,j(E/J) ≤ µi,j(E/I), for all i, j.

Proof. First of all observe that, from Lemmas 4.1 and 4.2, 0 : I is a
strongly stable ideal with the same Hilbert function as the revlex ideal 0 : J .
Hence, from Proposition 4.1 and [7, Theorem 5.6], it follows that:

µi,j(E/I) = βi,n−j(0 : I) ≥ βi,n−j(0 : J) = µi,j(E/J). �
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