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A second-order accurate di�erence scheme is developed to solve Boussinesq sys-
tem. For the time integration, a Crank-Nicolson type scheme is used. The error
estimates for the numerical solution are obtained. Numerical results are also pre-
sented.
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1. INTRODUCTION

We shall be concerned with developing di�erence schemes for approximat-
ing the solution {u(x, t), v(x, t)} , arising in the long water waves theory.

L1[u, v] :=
∂u

∂t
− ∂3u

∂t∂x2
+ αu

∂u

∂x
+ a0(x, t)u+ a1(x, t)v + a2(x, t)

∂v

∂x
= f1(x, t),

(1.1) (x, t) ∈ Q,

L2[u, v] :=
∂v

∂t
− ∂3v

∂t∂x2
+β

∂

∂x
(uv)+b0(x, t)v+b1(x, t)u+b2(x, t)

∂u

∂x
= f2(x, t),

(1.2) (x, t) ∈ Q,

(1.3) u(x, 0) = ϕ(x), v(x, 0) = ψ(x), x ∈ Ω,

(1.4) u(0, t) = v(0, t) = u(l, t) = v(l, t) = 0, t ∈ (0, T ],

where Q = Ω ∪ (0, T ],Ω = (0, l) and Ω the closure of Ω. ak(x, t), bk(x, t)(k =
0, 1, 2), fk(x, t)(k = 1, 2), ϕ(x), ψ(x) are given su�ciently smooth function such
as

∂sak
∂xs

,
∂sbk
∂xs

,
∂sak
∂ts

,
∂sbk
∂ts

∈ C(Q)(k, s = 0, 1, 2)

(1.5)
∂sfk
∂xs

,
∂sfk
∂ts

,∈ C(Q)(k = 1, 2; s = 0, 1, 2)
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and α, β are given constants.
The system (1.1)�(1.2) provides an approximate model for long gravity

waves of small amplitude in one dimension [11, 5]. Here, u denotes horizon-
tal velocity at the level of �uid, and v is the height of the surface above the
undisturbed level.

The di�erence methods having �rst-order in time direction accuracy was
investigated in [1, 2]. In [2] two-dimentional case and in [1] singularly perturbed
case was considered. Note also, that many studies have been devoted to the so-
called Sobolev or pseudo-parabolic equation [3, 4, 6�10, 12] (see, also references
cited in them).

In this paper, we present a di�erence method with exponential �tting
factors to problem (1.1)�(1.4). For the time variable we use Crank-Nicolson
type discretization. The fully discrete scheme is shown to be second-order both
accurate in space and time variables.

2. DIFFERENCE APPROXIMATION AND CONVERGENCE

Let a set of mesh nodes that discretises Q be given by

ωhτ = ωh × ωτ
with

ωh = {xi = ih, i = 1, 2, ..., N − 1, h = l/N} ,
ωτ = {tj = jτ, i = 1, 2, ..., N0, τ = T/N0}

and

ω+
h = ωh ∪ {xN = l}, ω̄h = ωh ∪ {x0 = 0, xN = l},
ω̄τ = ωτ ∪ {t0 = 0}, ω̄hτ = ω̄h × ω̄τ .

De�ne the following �nite di�erences for any mesh function gi = g(xi)
given on ω̄h by

gx̄,i =
gi − gi−1

h
, gx,i =

gi+1 − gi
h

, g0
x,i

=
gi+1 − gi−1

2h
,

gx̄x,i =
gi+1 − 2gi + gi−1

h2
.

Introduce the inner products for the mesh functions vi and wi de�ned on
ω̄h as follows

(v, w)0 ≡ (v, w)ωh :=

N−1∑
i=1

hviwi,

(v, w] ≡ (v, w)ω+
h

:=
N∑
i=1

hviwi.
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For any mesh function vi, vanishing for i = 0 and i = N we introduce the
norms

‖v‖20 ≡ ‖v‖20,ωh := (v, v)0, ‖v‖20
1

:= (vx̄, vx̄],

‖v‖21 : = ‖v‖20 + ‖v‖20
1
,

Given a function g ≡ gji ≡ g(xi, tj) de�ned on ω̄hτ , we shall also use the
notation

gj
t̄,i

=
gji − g

j−1
i

τ
, gjt,i =

gj+1
i − gji
τ

.

On the mesh ωhτ , we approximate (1.1)�(1.4) by the following di�erence
problem of Crank-Nicolson type

l1[y1, y2] := y1t̄−θy1t̄x̄x+αS(0.5)(y1)+a
(0.5)
0 y

(0.5)
1 +a

(0.5)
1 y

(0.5)
2 +a

(0.5)
2 y

2
0
x

= f
(0.5)
1 ,

(2.1) (x, t) ∈ ωhτ ,

l2[y1, y2] := y2t̄− θy2t̄x̄x +β(y1y2)0
x

+ b
(0.5)
0 y

(0.5)
2 + b

(0.5)
1 y

(0.5)
1 + b

(0.5)
2 y

1
0
x

= f
(0.5)
2 ,

(2.2) (x, t) ∈ ωhτ ,

(2.3) y1(x, 0) = ϕ(x), y2(x, 0) = ψ(x), x ∈ ω̄h,

(2.4) y1 = y2 = 0, for x = 0, ` and t ∈ ω̄τ ,

where

g(0.5) ≡ g(0.5)j
i =

1

2

(
gji + gj−1

i

)
,

S(yj1,i) =
1

3

{(
y2

1

)j
0
x,i

+ yj1,iy
j

1
0
x,i

}
, θ =

h2

4sinh2(h/2)
.

Our method of approximating the convective term in equation (1.1) has
the property that (S(y1), y1)ωh = 0, i.e., it preserves the analogous principle
for the di�erential case.

We note that assumption (1.5) implies the existence of a unique solution
{u, v} to problem (1.1)�(1.4), belonging to C3(Q̄). Then, by the similar manner
to that in [1�4 ], it can be shown that

`k[u, v] +Rk = fk, k = 1, 2; (x, t) ∈ ωhτ
with truncation errors Rk, such that

‖Rk‖0 = O(h2 + τ2), k = 1, 2; t ∈ ωτ .

Further, from the identity
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τ

j∑
p=1

(`1[yp1 , y
p
2 ]− `1[up, vp], zp1)0 + τ

j∑
p=1

(`2[yp1 , y
p
2 ]− `2[up, vp], zp2)0

= τ

j∑
p=1

2∑
k=1

(
Rk, z

p
k

)
0
,

using summation by parts and appropriate di�erence embedding inequalities,
for the errors z1 = y1 − u, z2 = y2 − v by the similar technique described in [1,
2], we have

(2.5) δj ≤ C

δ∗ + τ

j∑
p=1

(
δj + δj−1 + δ2

j + δ2
j−1

)
with

δj =
2∑

k=1

{
θ
∥∥∥zjk∥∥∥2

0
1

+ ‖zk‖20
}

(δ0 = 0),

δ∗ = τ
∑
wτ

2∑
k=1

‖Rk‖20

and constant C, that is independent of the mesh parameters. From (2.5), by
an application of the di�erence analogue of Bernoulli inequality (see, also [1,
2]), for su�ciently small τ , we obtain

δj ≤ Cδ∗, j = 1, 2, ..., N0.

We summarize this result in the following theorem.

Theorem 2.1. Under the conditions on ak, bk, fk indicated in (1.5), the

solution of (2.1)�(2.4) converges to the exact solution in the mesh norm ‖.‖1
with the rate O(h2 + τ2):

‖y1 − u‖1 + ‖y2 − v‖1 ≤ C(h2 + τ2).

3. NUMERICAL RESULTS

In this section, we present numerical results obtained by applying the
numerical method (2.1)�(2.4) to a particular problem

∂u

∂t
− ∂3u

∂t∂2x
+ 3u

∂u

∂x
+ (e−t + x2)u = f(x, t), (x, t) ∈ [0, 1]× [0, 1],

u(x, 0) = sin(πx)− 0.5x2(1− x),

u(0, t) = u(1, t) = 0,

where f is such that the exact solution is given by

u(x, t) = −1

2
x2(1− x) + e−t sinπx.
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In the computations, the quasilinearization technique to the di�erence
equation was used (see, [3]). The step sizes h and τ were both taken to be
0.025. The results at selected points are presented in Table 1.

Table 1

(x, t) Exact Solution Approximate Solution Pointwise Errors

(0.05, 0.05) 0.14761757 0.14761772 0.00000015
(0.15, 0.15) 0.38119074 0.38119121 0.00000047
(0.25, 0.25) 0.52725781 0.52725907 0.00000126
(0.35, 0.35) 0.58806919 0.58807119 0.00000200
(0.45, 0.45) 0.57409039 0.57409267 0.00000228
(0.55, 0.55) 0.50178410 0.50178641 0.00000231
(0.65, 0.65) 0.39120869 0.39121092 0.00000223
(0.75, 0.75) 0.26370109 0.26370237 0.00000128
(0.85, 0.85) 0.13985482 0.13985580 0.00000098
(0.95, 0.95) 0.03793713 0.03793732 0.00000019

The obtained results show an excellent degree of accuracy for the above
described method.
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