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Let X be a smooth projective variety. It was shown by A. Gathmann that in
case X is a very ample hypersurface of some other smooth projective variety
Y , the genus-0 (so-called “restricted” and “unrestricted” with a sufficiently low
number of marked points) Gromov-Witten invariants of X can be computed in
terms of genus-0 Gromov-Witten invariants of Y. The purpose of this article is to
generalize this result. More precisely, we will try to answer the following questions:
“When can we compute the rational invariants of X from those of the projective
space that contains X?” or, if this is not possible, “When can we compute the
invariants of X from those of a bigger variety Z that contains X?”. In the first
section we prove our main theorem that allows the computation of Gromov-Witten
invariants of nef hypersurfaces. We will then try to compute the invariants of an
s-codimensional subvariety X of a given variety Z, in case we can find a sequence
of varieties Y1, . . . , Ys−1, such that X ↪→ Y1 ↪→ Y2 · · · ↪→ Ys := Z and each two
consequent varieties in the above row respect the hypothesis of our main theorem.
In particular, we develop an algorithm for the computation of the Gromov-Witten
invariants of complete intersections. One example is the number of lines and
conics on a degree-9 three-fold in P5 that is a complete intersection of two cubic
hypersurfaces, numbers that were first predicted by A. Libgober and J. Teitelbaum
([12]) in 1993.
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1. INTRODUCTION

In case not otherwise stated, by a variety we will always mean a complex,
smooth, projective variety. Let X be such a variety. The first ingredients we
need are the moduli spaces of absolute and relative stable maps of a certain
given homology class β ∈ H2(X) to X. As these spaces are known to have
in general the “wrong dimension” we will also need to give valid definitions
of their virtual fundamental classes. If for the absolute maps there is a well
known construction, for the moduli space of relative maps we will use a recent
construction of Li in order to define its virtual fundamental class. Let us first
briefly recall the definitions we already mentioned.
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Definition 1.1. We denote the set of all n-pointed stable maps to X of
class β ∈ H2(X) by Mn(X,β). By Theorem 1.1.14 of [4] Mn(X,β) is a proper
and separated Deligne-Mumford stack, that we will call the moduli space of
stable (absolute) maps of class β to X. Moreover, by [1], [2] there exists
a virtual fundamental class [Mn(X,β)]virt ∈ H∗(Mn(X,β)) of expected
complex dimension

dim[Mn(X,β)]virt = −KX · β + (dimX − 3) + n.

Remark 1.2. Let X be a hypersurface of Y and β ∈ H2(X). Then it
is easily seen that Mn(X,β) ⊂ Mn(Y, i∗β) and [Mn(X,β)]virt is a class in
H∗(Mn(Y, i∗β)).

Notation 1.3. Related to these spaces for any for i = 1, . . . , n we consider
the maps

(i) evi : Mn(X,β) → X, the evaluation at the ith marked point, and
(ii) πi : Mn(X,β) → Mn−1(X,β), the forgetful map that forgets the ith

marked point.
It obviously makes sense to consider compositions of such forgetful maps. We
denote by π(n,m) the composition of forgetful maps that forget the last n−m
marked points.

Definition 1.4. Let α = (α1, . . . , αn) a tuple of non-negative integers.
Then we define MX

α (Y, β) to be the locus in Mn(Y, β) of all stable maps
(C, x1, . . . , xn, f) such that

• f(xi) ∈ X for all i with αi > 0,
• f∗X −∑i αixi ∈ A0(f−1(X)) is effective.

We will call any (C, x1, . . . , xn, f) ∈MX
α (Y, β) a stable relative map to X.

Construction 1.5. The cycle class f∗X ∈ A0(f−1(X)) is well defined by
[3], Chapter 6, as the refined intersection product X ·C in X×Y C = f−1(X).

Remark 1.6. For degree reasons, the space MX
α (Y, β) is empty if

∑
i αi >

X · β.

As already stated, we need to endow this space (so far we have just a set-
theoretic definition) with additional structures. For this we use the following
construction (of Li).

Construction 1.7. Let X a smooth hypersurface in a smooth projective
variety Y . We denote by P = P(N∨

X/Y ⊕ OX) the projective closure of the
dual normal bundle of Y in X. It comes equipped with a natural C∗ action
that rescales the fibers by acting with weights 1 respectively 0 on P(NX/Y )
and OX respectively. The fixed point locus of this C∗ action consists of two
components: the zero section X0 := P(0 ⊕ OX) � X ⊂ P and the infinity
section Y∞ := P = P(N∨

X/Y ⊕ 0) � X ⊂ P .
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For any k ≥ 0 we define a normal crossing scheme Yk, called the k-th
degeneration of Y, as follows. It consists of k + 1 irreducible components
that will also be called levels. Level 0 is isomorphic to Y , whereas all the others
are isomorphic to P . These components are glued transversally as follows:

• we glue X ⊂ Y in level 0 to X0 ⊂ P in level 1;
• we glue X∞ ⊂ P in level i to X0 ⊂ P in level i+ 1 for i = 1, . . . , k − 1.
For every k, there is a projection morphism π : Yk → Y , by collapsing

the fibers in all levels greater than 0. Moreover, the C∗ action on the k copies
of P makes the group (C∗)k into a group of automorphisms of Xk. We will
call these automorphisms the allowed automorphisms of Xk.

Definition 1.8. An n-pointed pre-stable map to Y relative X is an
n-pointed prestable map (C, x1, . . . , xn, f) to some degeneration Yk such that:

• No irreducible component of C maps entirely to X∞ ⊂ Ykor to the
singular locus of Yk.

• Every point that maps to X∞ ⊂ Yk is a marked point.
• Every point that maps to the singular locus of Yk is a node with the

property that the two local branches around the node map to the two different
local components of Yk with the same orders of contact to the singular locus
on both sides.

A morphism (C, x1, . . . , xn, f) → (C ′, x′1, . . . , x′n, f ′) of n-pointed pre-
stable relative maps of the same level k is a pair (ϕ, ϕ̃), where

• ϕ : C → C ′ is a morphism of the underlying curves,
• ϕ̃ : Xk → Xk is an allowed automorphism , such that ϕ̃ ◦ f ◦ ϕ = f ′.
A pre-stable relative map is called stable if its group of automorphisms

is finite. The class of a pre-stable relative map is defined to be the element
π∗f∗[C] ∈ H+

2 (Y ).

Definition 1.9. Let (C, x1, . . . , xn, f) be a pre-stable relative map of level
k to Y relative X. For i = 1, . . . , n we define the multiplicity αi of the ith
marked point xi to be the multiplicity of the point xi in the divisor f∗X∞.
The collection of these multiplicities will be denoted α = (α1, . . . , αn).

Definition 1.10. For any given n, β ∈ H+
2 (X) and a collection of non-

negative integers α = (α1, . . . αn) such that
∑

i αi = X · β, we denote by
MX

α (Y, β) the set of isomorphism classes of all stable maps of any level to Y
of class β and whose multiplicities are α.

Theorem 1.11. The spaces MX
α (Y, β) are separated and proper Deligne-

Mumford stacks of expected dimension

vdimMX
α (Y, β) = vdimMn(Y, β) −

∑
αi.

and there is a naturally defined virtual fundamental class [MX
α (Y, β]virt ∈

H∗(MX
α (Y, β)) of this dimension.
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Proof. See [9], [10]. �
Definition 1.12. The projection maps π : Yk → Y give rise to morphisms

π∗ : MX
α (Y, β) →Mn(Y, β)

that collapse all higher levels to the hypersurface X. We denote the image of
this morphism by MX

α (Y, β) and call this the moduli space of collapsed stable
relative maps. Moreover, let α′ = (α, 1, . . . , 1) an n′-tuple of non-zero integers,
and denote the composite map π(n′,n) ◦ π∗ by π(α′,α). This yields a map

π(α′,α) : MX
α′(Y, β) →Mn(Y, β)

that provides us with a well defined moduli space of collapsed stable
relative maps denoted MX

α (Y, β) and a virtual fundamental class on it, for
every n-tuple of positive integers α.

Proposition 1.13. Definitions 1.4 and 1.12 of MX
α (Y, β) agree, and

π∗[MX
α (Y, β)] is a cycle in H∗(MX

α (Y, β)) in the expected dimension.

Proof. See [4]. �
Construction 1.14. Proposition 1.13 allows us to conclude MX

α (Y, β) in-
troduced in Definition 1.4 has the structure of a moduli space that comes
equipped with a virtual fundamental class. In the next chapters we will al-
ways try to reduce ourselves to this definition and when there will be no risk
of confusion we will simply call MX

α (Y, β) the moduli space of stable rel-
ative maps.

Construction 1.15. On these spaces it makes sense to consider two kind of
evaluation maps. We can of course consider the restrictions of the evaluation
maps evi : Mn(Y, β) → X to MX

α (Y, β) ⊂ Mn(Y, β), and moreover for any
αi > 0 the maps

ẽvi : MX
α (Y, β) → X

(C, x1, . . . , xn, f) �→ f(xi).

We will denote these second evaluation maps by ẽvi or by evX,i, and even by
evX when there is no risk of confusion.

Having now well defined virtual fundamental classes, we are ready to
define the various types of Gromov-Witten invariants that we will deal with.

Notation 1.16. Fix an integer 1 ≤ i ≤ n. By the ith psi class, denoted
ψi we understand the first Chern class of the line bundle

Li = σ∗i ωMn+1(Y,β)/Mn(Y,β),

where ωMn+1(Y,β)/Mn(Y,β) denotes the relative dualizing sheaf of the universal
curve, and σi : Mn(Y, β) → Mn+1(Y, β) is the section corresponding to the
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ith marked point (see [4]). It obviously makes sense to intersect with psi
classes both the absolute and the relative moduli spaces Mn(Y, β), respectively
MX

α (Y, β).

Definition 1.17. Let X be a hypersurface of Y . For any cohomology
classes γ1, . . . γn ∈ H∗(Y ), non-negative integers k1, . . . , kn and β ∈ H2(X) we
define the absolute restricted Gromov-Witten invariant on X of class
β, namely,

〈τk1(γ1) · · · τkn(γn)〉Xβ := deg(ψk1
1 · ev∗1γ1 · · · ψkn

1 · ev∗nγn · [Mn(X,β)]virt) ∈ Q

where deg(α) is 0 if α ∈ H∗(Mn(X,β)) is not a 0-dimensional cycle (or equiva-
lently when

∑
i codimγi +ki �= vdim Mn(X,β)) and the degree of α otherwise.

The evaluation maps here, are the evaluations at Y . If ki = 0 for some i we
abbreviate τki

(γi) to γi. A Gromov-Witten invariant is called primary if it
does not contain any psi classes and descendent if it does.

Similarly, for any α = (α1, . . . , αn), any cohomology classes γ1, . . . γn ∈
H∗(Y ) we define the relative restricted Gromov-Witten invariant of
class δ ∈ H2(Y ), namely,

〈τα1
k1

(γ1) · · · ταn
kn

(γn)〉Yδ := deg(ψk1
1 · ev∗1γ1 · · · ψkn

1 · ev∗nγn · [MX
α (Y, δ)]virt) ∈ Q

where as before all the invariants with
∑

i codimγi + ki �= vdimMX
α (Y, β) are

considered to be 0. The evaluation maps are evaluations at Y and this is what
motivates the name “restricted”.

In the above notation let Mn(X, δ) be the disjoint union of all the moduli
spacesMn(X,β) (with possibly different virtual dimensions) such that i∗β = δ.
Then we have an analogue Gromov-Witten invariant on the class

[Mn(X, δ)]virt :=
∑

i∗β=δ

[Mn(X,β)]virt

To distinguish the β-invariant from the δ-invariant of X, we will refer the
absolute invariant of class β ∈ H2(X) as the individual Gromov-Witten
invariant.

Definition 1.18. In the above notation, we consider a non-negative integer
p ≤ n and γ̃1, . . . , γ̃p ∈ H∗(X). Then the (unrestricted) absolute Gromov-
Witten invariant of X of class β is defined as

〈τk1(γ̃1) · · · τkp(γ̃p) · τkp+1(γp+1) · · · τkn(γn)〉Xβ :=

:= deg(ψk1
1 · ẽv∗1γ1 · · · ψkp

p · ẽv∗pγp · · · ψkn
n · ev∗nγn · [Mn(X,β)]virt).

When p = n we have the classical definition and we will call such an invari-
ant the Gromov-Witten invariant of X. Analogously, if p is such that
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α1, . . . αp > 0, we define the (unrestricted) relative Gromov-Witten in-
variant of class δ

〈τα1
k1

(γ̃1) · · · ταp

kp
(γ̃p) · ταp+1

kp+1
(γp+1) · · · ταn

kn
(γn)〉Yδ :=

:= deg(ψk1
1 · ẽv∗1γ1 · · · ψkp

p · ẽv∗pγp · · · ψkn
1 · ev∗nγn · [MX

α (Y, δ)]virt).

When we will need to distinguish β and δ invariants on X we will call the
β-invariants individual invariants.

Notation. When there is no risk of confusion we will omit the superscripts
X or Y in the notation of the absolute respectively relative invariants.

2. THE MAIN THEOREM FOR NEF HYPERSURFACES

In this section we present our main technical result that provides an
effective way of computing the Gromov-Witten invariants of a nef hypersurface
from those of the ambient space. This will be done using Li’s splitting theorem
that reduces the invariants of a variety to invariants of an associated normal
crossing scheme with two components glued along the divisor X. One of these
components is the collapsed moduli space of relative stable maps MX

Γ1
(Y )

and the other will be a the space denoted by MX
Γ2

(P ), with P a projective
line bundle over X. The main theorem will be obtained by projecting stable
curves in P to X.

2.1. THE SPLITTING THEOREM AND VIRTUAL PUSH-FORWARD

Theorem 2.1.1 (Splitting Theorem). Let Y be a variety and X a codi-
mension-1 subvariety of Y . Let Z be the blow-up of X × P1 in Y × {0}, so
that the general fiber of the projection Z → P1 is isomorphic to X, whereas
the fiber over zero is the normal crossing scheme Y1 := Y ∪X P . Let M be the
moduli space of n-pointed stable maps to Z whose class in a general fiber of the
morphism Z → P1 is a fixed β ∈ H2(Y ). Then M has a projection morphism
to P1 and the general fiber of this morphism is Mn(Y, β).

The moduli space of stable maps to Y1 is expressible as a product of moduli
spaces of maps to Y and P and, moreover, the formula

[Mn(Y, β)]virt =
∑
Γ1,Γ2

m(Γ1Γ2) · [MX
Γ1

(Y )]virt � [MX
Γ2

(P )]virt

holds in H∗(M), where we have used the following notation. The spaces MX
Γ1

(Y )
(respectively MX

Γ2
(P )) are moduli spaces of stable relative maps to X (respec-

tively P ) relative X, where Γ1 (respectively Γ2) denotes the collection of the
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following data:

(i) the number of connected components of the stable relative maps,

(ii) the (non-zero) homology class of all connected components,

(iii) for every connected component a subset of {1, . . . , n} of the marked
points lying on it, where all these points have multiplicity 0,

(iv) for every connected component of class δ a collection of additional

marked points {yi} lying on X with associated positive multiplicities

αi, such that
∑
αi = δ ·X.

The sum in the above formula is taken over all pairs of data (Γ1,Γ2) such that
• the glued stable map is connected and has the correct homology class,

and
• the additional marked points yi are labeled on both the Y and the P

side by the same index set {1, . . . , r} for some r, and the multiplicities αi

associated to these points agree on both sides.
The coefficient m(Γ1Γ2) is defined to be α1···αr

r! . The notation � means
that we take the moduli spaces of collapsed stable relative maps on both sides
and take their fiber product over the r-fold evaluation map to X at the points yi.

We will call the property of the moduli space Mn(Y, β) expressed in the
above formula the “splitting theorem” and we refer to [10] for the proof.

Definition 2.1.2. Let p : M → M ′ be a morphism of moduli spaces
of stable maps. We say that p satisfies the virtual push-forward property
if for any cohomology class γ ∈ H∗(M) that is made up from evaluation
classes, cotangent line classes and classes that are pulled-back from M ′ by p
the following two conditions hold:

• if the dimension of the cycle γ · [M ]virt is bigger than the virtual di-
mension of M ′, then p∗(γ · [M ]virt) = 0;

• if the dimension of the cycle γ · [M ]virt is equal to the virtual dimension
of M ′, then p∗(γ · [M ]virt) = λ[M ′]virt, for some λ ∈ Q .



238 Cristina Manolache 8

Proposition 2.1.3. Let L be a line bundle on a variety X and denote
by P = P(L ⊕ OX) its closure. Let MX

α (P, β) a moduli space of stable maps
relative X∞ = P(L ⊕ 0). Denote the marked points by y1, . . . yN , x1, . . . , xn,
where yi are the points with positive multiplicity and xi are the points with
zero multiplicity (i.e., α = (α1, . . . , αN , 0, . . . , 0)). Let p : M → M be the
morphism that projects the maps in P to X forgets a given set of points and/or
components and stabilizes the result. We assume P is well defined, i.e., that
every component whose homology class β is a multiple of a fiber has at least 3
marked points that are not forgotten by p. Then p satisfies the push-forward
property. If, moreover, L is nef then for any 0 ≤ t ≤ n and any t-tuple
m = (m1, . . . ,mt) with mi ≥ 0,we have

p∗
( t∏

k=1

mk−1∏
j=0

(ev∗kX∞ + jψi) · [M]virt

)
=

=


0 if

t∑
i=1

mi < X∞ · β + 1,( t∏
k=i0

mi−1∏
j=m′

k

(jψi + ev∗kc1(L))
)
· [M ]virt if

t∑
i=1

mi ≥ X∞ · β + 1,

where i0 is the minimum number such that
∑i0

i=1mi > X∞ · β and if m′
i0

:=
X∞ · β −∑i0

i=1mi, then m′ is the t-tuple (m1, . . . ,mi0−1,m
′
i0
, 0, . . . , 0).

Proof. Analogous to Corollary 5.3.3 of [4] from Theorem 5.2.7 and Propo-
sition 5.2.3. �

Corollary 2.1.4. Under the hypothesis of the above theorem we con-
sider MX

α (P ) with possibly no marked points x1, . . . , xn, where α=(α1, 0, . . . , 0)
and β is a multiple of a class of a fiber. Let p : M → X be the obvious pro-
jection morphism. Then for all t-tuples (m1, . . . ,mt) as above we have

p∗

(
t∏

i=1

mi−1∏
k=0

(ev∗iX∞ + kψi) · [M]virt

)
=


0 if

t∑
i=1

m �= α1 − 1 + n,

1
α1

[X] if
t∑

i=1
m = α1 − 1 + n.

Proof. See [4] Proposition 5.2.3 and Corollary 5.3.4. �

2.2. THE MAIN THEOREM FOR NEF HYPERSURFACES

We begin with the description of the set-up. Let first X be a nef hyper-
surface of Y . Let α be an n-tuple of non-negative integers. We define |α| := n



9 Rational Gromov-Witten invariants 239

and
∑
α :=

∑
αi. For 1 ≤ k ≤ n, we write α+ ek for (α1, . . . , αk + 1, . . . , αn)

α ∪ α′ for (α1, . . . , αn, α
′
1, . . . , α

′
m) and α+ α′

k for (α1, . . . , αk + α′
k, . . . , αn).

Definition 2.2.1. Consider MX
α (Y ), β and 1 ≤ k ≤ n. Let t be a non-

negative integer. Choose a partition A = (α(0)
1 , . . . , α

(0)
n ) of α such that α(0)

k ∈
α(0). Let B = (β(0), . . . , β(t)) be a t+ 1-tuple of homology classes with β(0) ∈
H2(X) and β(i) ∈ H2(Y ) \ {0} for i > 0 such that i∗β(0) + β(1) + · · · +
β(t) = β, where i : X ↪→ Y is the inclusion. Finally, choose a t-tuple M =
(m(1), . . . ,m(t)) of positive integers. With these notation we define the moduli
space Dk(Y,A,B,M) to be the fiber product

Dk(Y,A,B,M) := M|α(0)|+t(X,β
(0)) ×Xt

t∏
i=1

Mα(i)∪(m(i))(X,β(i)),

where the map from the first factor to Xr is the evaluation at the last t marked
points, and the map from the second factor to Xr is the evaluation at the last
marked point of each of its factors. We call M|α(0)|+t(X,β

(0)) the internal
component of Dk(Y,A,B,M) and will usually denote it by C(0). Analogously
we call all the other factors inDk(Y,A,B,M) external components, and denote
them C(i) with 1 ≤ i ≤ t. We define the virtual fundamental class to be
m(1)···m(t)

t! times the class induced by the virtual fundamental class of each
factor.

X

C(1)

C
(2)

xk

Y

C
(0)

Definition 2.2.2. LetDα,k(Y, β) be the disjoint union of theDk(Y,A,B,M)
for all possible A, B and M satisfying

X · i∗β(0) +
∑

i

m(i) =
∑

α(0).

The virtual fundamental class of Dα,k(Y, β) is defined to be the sum of the
virtual fundamental classes of its components Dk(Y,A,B,M).
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Theorem 2.2.3 (Main theorem for nef hypersurfaces). Let β ∈ H2(Y )
be the class of a curve in Y and α be an n-tuple of non-negative integers such
that

∑
α ≤ X · β + 1. With the notation as above we have

n∏
k=1

αk−1∏
j=0

(ev∗kX + jψk) · [MX
n (Y, β)]virt = [MX

α (Y, β)]virt+

+
n∑

i=1

∑
α′

n∏
k=i

αk−1∏
j=α′

k

(ev∗kX + jψk) · [Dα′,i(Y, β)]virt

in the cohomology group of MX
α (Y, β), where by

∑
i

∑
α′ we mean a sum over

i and over all the n-tuples α′ := (α1, . . . , αi−1, α
′
i, 0, . . . , 0) with 0 ≤ α′

i < αi.

Proof. The idea is to intersect the moduli space [Mn(Y, β)]virt with the
given number of evaluation and psi classes and express the product in terms
of products of evaluation and psi-classes on the virtual classes of the mod-
uli spaces of relative stable maps that appear in the splitting theorem. The
result will then be obtained by projecting stable maps in P down to stable
maps in X and establishing the topological type of the terms with the use of
Proposition 2.1.3 and Corollary 2.1.4.

More precisely, intersecting [Mn(Y, β)]virt with
∏n

k=1

∏αk−1
j=0 (ev∗kX∞ +

jψk) we obtain

(1)
∑
Γ1,Γ2

m(Γ1Γ2) · [MX
Γ1

(Y )]virt �
( n∏

k=1

αk−1∏
j=0

(ev∗kX∞ + jψk) · [MX
Γ2

(P )]virt

)
.

As a remark we see that both spaces MX
Γ1

(Y ) and MX
Γ2

(P ) can describe dis-
connected curves that we will view as products of irreducible curves (which is
a non-trivial property proved in [4], Proposition 5.2.8).

Let us now consider the morphism p : MX
Γ2

(P ) → MΓ(X) that projects
the curves in P to X, where by Γ we denote the combinatorial data de-
termined by MX

Γ2
(P ). The projection obviously forgets fibers in P with no

marked points. By Proposition 2.1.3 we get a non-zero result from such fibers
of degree 1 while, by Corollary 2.1.4, p maps all multiple covers that have
no marked points xi to zero. In case of irreducible curves in MX

Γ2
(P ) that

have marked points xi we distinguish two cases. If the considered irreducible
component, say, C(0)

1 has exactly one point xi for some 1 ≤ i ≤ n and ho-
mology class β̃1 ∈ H2(P ) that is a degree-d multiple cover of a fiber we apply
Corollary 2.1.4 that gives (in terms of Definition 2.2.1) an external component
intersecting X with multiplicity d. Note that by the same Corollary 2.1.4 the
contribution of this invariant comes multiplied with a coefficient of 1. In all
other cases, there is a well defined projection map that allows us to apply
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Proposition 2.1.3. This gives a sum of connected curves with several inter-
nal irreducible components and several external irreducible components glued
to them in such a way that the resulting curve has genus zero (i.e., without
loops). We see that we can obtain such terms with more internal components
only when any two of them are glued to the same external component that
is also glued to at least one curve in MX

Γ2
(P ) that is a fiber without marks.

Indeed, looking at reducible maps in MX
Γ2

(P ) of class β̃ we see that either all
marks lay on a unique internal component, either β̃ contains degree-1 fibers.
Let us assume for a contradiction that we have r components C(0)

1 , . . . , C
(0)
r of

classes β̃1, . . . , β̃r ∈ H2(P ), each with at least one mark on it and r > 1. As
the glued map has to be connected, we observe that the cancellation of one
factor determines the cancellation of the whole term. But each C(i) that is
not a multiple cover with one mark inquires a minimum number of β̃i ·X∞ +1
conditions, which leads to a total number N :=

∑r
i=1 β̃i ·X∞ + r = β̃ ·X∞ + r

that obviously exceeds our number of conditions.

P

X

x x

yyyy

Y

1

2 3 41

2

X

Y

x1 2x

"correction term" "projected correction term"

Actually we have a more precise statement. Let C(0)
1 be an irreducible

component of class β̃(0) that projects down to a curve in X of class β(0) �= 0
and let us denote by

∑
α

(0)
1 the number of conditions corresponding to the

marks lying on C
(0)
1 . By Proposition 2.1.3 we see that the projected curve

will have an internal component of class β(0) intersected with a number of
p :=

∑
α

(0)
1 − β̃(0) · X∞ − 1 conditions corresponding to some |α(0)

1 |-tuple
α′ := (α1, . . . , α

′
i0
, 0, . . . , 0). Let us now consider an additional curve with one

component that is C(0)
1 and a number of p degree-1 fibers each with one marked

point on it with an assigned multiplicity at X∞ of 1, in the MX
Γ2

(P ) part and
with corresponding curves in Y as prescribed in 2.1.1. If we denote the class of
the projection of this curve by β1, one can easily see that X · β1 + 1 =

∑
α

(0)
1 .
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From this we have that X ·β(0) = (
∑
α

(0)
1 − p− 1)−∑mi, or in the notations

of 2.1.3, X · β(0) =
∑
α′ −∑mi.

As it can be easily seen our current result differs slightly from the claim
of the theorem. To see that the two statements agree we proceed by induction
on the number n of marked points xj.

For n = 1 we notice that there is always one internal component and
there are no marked points on the external components. See [4], Remark 5.3.6
for a detailed proof.

For a general n, fixed p and k > p and using the notation of 2.2.1 we
have that any external component of Dα′,i has a smaller number of marks xj

and hence we can apply the induction hypothesis to get
αk−1∏
j=0

(ev∗kX + jψk) · [D(α1,...,α′
i,0,...,0),i(Y, β)]virt =

= [M|α(0)|+t(X,β
(0))]virt ×X [M(α(1)+αk)∪(m(1))]

virt

×Xt−1

t∏
i=2

[Mα(i)∪(m(i))(X,β
(i))]virt+

+[M|α(0)|+t(X,β
(0))]virt ×X (D) ×Xt−1

t∏
i=2

[Mα(i)∪(m(i))(X,β
(i))]virt,

where we denoted by D the additional term of our statement that corre-
sponds to [M(α(1)+αk)∪(m(1))]

virt. With this remark one could see that pushing
1 forward by p one gets precisely the terms in our claim. This completes the
proof. �

Remark 2.2.4. It is proved in [4] that for a very ample hypersurface X
we have the relation

(2) (ev∗X + αkψk) · [Mα(Y, β)]virt = [Mα+ek
(Y, β)]virt + [Dα,k(Y, β)]virt

for all 1 ≤ k ≤ n. It is easily seen that repeated applications of 2 give precisely
the statement of our main theorem. However, the proof of the converse is not
so easy. We cannot deduce this formula directly from our theorem, as we must
a-priori know that [Dα,k(Y, β)]virt have the right dimension. We will not insist
as we do not need the result in this form and since the final results agree we
may still think the main theorem in this form when convenient.

Remark 2.2.5. In our attempt of computing Gromov-Witten invariants
of X in terms of Gromov-Witten invariants of Y , we will apply Theorem 2.2.3
with suitable α. The strategy is now obvious. We impose multiplicities
α1, . . . , αn at the marked points at X with α such that

∑
α = X · β + 1.

Then the moduli space MX
α (Y, β) we obtain on the right hand side will be
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empty and we will be left with an invariant on Y on the left hand side, and
with contributions from various Dα′,k(Y, β) on the right hand side. It was
proved in [4] (using the version of the main theorem of Section 2) that the
terms coming from Dα′,k(Y, β) are as follows: one term M|α|+t(X,β(0)) with
i∗β(0) = β and invariants on X and Y with smaller β or smaller number of
points, where by smaller β we will mean smaller d := i∗β (i is the inclusion
of Y in Pr). This will allow the computation of Gromov-Witten invariants
of X in terms of invariants on Y and recursively known invariants on X. It
can be easily seen that the same arguments are valid in our case, too. In
fact, this is the reason why we preferred to state our main theorem without
introducing new spaces with more internal components. We conclude that the
main theorem 2.2.3 allows the computation of Gromov-Witten invariants of X
supposing we know the invariants of Y . As before, on the right hand side we
have a sum of terms one of which being the space we want [M|α|(X,β(0))]virt.
We will call correction terms all other terms is the sum.

3. COMPUTING GROMOV-WITTEN INVARIANTS

In this section we will try to apply the main theorem recursively to
reconstruct the invariants of an s-codimensional subvarietyX of a variety Z. In
order to do this we need to overcome the following difficulty: not all the classes
in H∗(X) are pullbacks of classes in H∗(Z), which essentially means that the
main theorem does not provide all the unrestricted invariants we need. We
will see that even if we wish to compute an invariant with all the cohomology
classes being pullbacks of cohomolohy classes in Y , some new invariants will
appear from the algorithm, having any number of such “unwanted” classes.

From now on, we will consider any codimension-1 subvariety X of a
variety Y respects the hypothesis of the main theorem. We will denote by i all
the inclusion maps that will appear between different varieties.

3.1. AN ALGORITHM

Definition 3.1.1. Let X be a projective variety. A subring R ⊆ H∗(X)
is called self-dual if the restriction of the cohomological Poincaré pairing to R
is nondegenerate.

Construction 3.1.2. Let Z be a variety of complex dimension r, X a
subvariety of Z and i : X ↪→ Z the inclusion morphism between them to-
gether with its pullback morphism induced in the cohomology rings T = H∗Z,
S = H∗X

i∗ : T → S.
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If R = i∗T , the image of T by i∗ is self-dual in S, then we denote by R⊥ the
the orthogonal complement of R in S, with respect to the Poincaré pairing.
Moreover, if i∗ : S → T is the pushforward morphism, then we have i∗γ =
0, ∀γ ∈ R⊥. Indeed, let γ ∈ R⊥ ∩ Sk, where Sk is the graded part of k-
codimensional cocycles in Z. If {b1, . . . bn} is a basis of T r−k, then

bi · (i∗(γ)) = i∗(i∗(bi) · γ) = 0, ∀i = 1, . . . , n.

If i∗(γ) is non-zero, then the intersection product on T would be degenerate,
which contradicts the Poincaré duality theorem (see [6]).

Setting 3.1.3. Let (X,Y,Z) a triple of varieties with the following pro-
perties:

(i) X ↪→ Y ↪→ Z ↪→ PN with dimZ = dimY + 1 = dimX + 2
and X in Y respects the conditions of the main theorem;

(ii) i∗H∗(Z) is self-dual in H∗(X);

(iii) i∗ induces an isomorphism between H2(Y ) and H2(Z).

Let us now explain the terminology and notation. By degree-d curves in Z
(and analogously in X or Y ) we will mean curves in Z of class δ with δ such
that i∗δ = dHN−1, where this time i is the inclusion of Z in PN and H the
class of a hyperplane in PN . Sometimes we will write this as i∗δ = d for short.

Remark 3.1.4. Before stating our main technical result, let us take a
closer look at condition (iii) in the above setting. By Poincaré duality we
have H2(X) � H2(Y ) (as Q-vector spaces). However, not any divisor on X

is a pull-back of a divisor on Y . Let for example X := P̃2 be P2 blown up in
one point included in Y := P2 × P1. Let us assume for a contradiction that
E, the exceptional divisor on X is the pull-back of some divisor on Y . Then
by the projection formula we have i∗(i∗D · E) = D · i∗E. But E · E = −1 in
H∗(X) while H∗(Y ) � K[s,t]

(s3,t2)
, and one can easily see that there are no negative

intersection products of effective cycles.
For a converse statement we observe that in case i∗ : H∗(Y ) → H∗(X)

is an isomorphism and X defines an ample line bundle generated by global
sections on Y , any ample divisor on X is the complete intersection of X with
some divisor on Y . This follows immediately from the Kodaira vanishing
theorem and the exact sequence

0 → H0(X, i∗OY (−X)) → H0(X, i∗OY ) → H0(X,OX ) → H1(X, i∗OY (−X)).

Proposition 3.1.5. Let X, Y , Z as in Setting 3.1.3 and α = (α1, . . . , αn)
an n-tuple of positive integers such that α1 > 0.

(i) Assume γ̃1 is a cycle in the orthogonal complement H∗(Z)⊥ of i∗H∗(Z)
in H∗(X). If X ∈ i∗H2(Z) then the relative 〈τα1

k1
(γ̃1)τα2

k2
(γ2) · · · ταn

kn
(γn)〉Yδ and
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the absolute 〈τk1(γ̃1)τk2(γ
′
2) · · · τkm(γ′m)〉Xδ1 Gromov-Witten invariants vanish

for any δ, δ1 ∈ H2(Z) and any γ2, . . . , γn, γ
′
2, . . . , γ

′
n ∈ H∗(Z).

(ii) If i∗H(Z) is self-dual in H∗(Y ) and γ̃1 is a class in the orthogo-
nal complement H∗(Z)⊥ of i∗H∗(Z) in H∗(Y ), then with the above notation
the relative 〈τα1

k1
(γ̃1)τα2

k2
(γ2) · · · ταn

kn
(γn)〉Zδ and the absolute 〈τk1(γ̃1)τk2(γ

′
2) · · ·

τkm(γ′m)〉Yδ1 Gromov-Witten invariants vanish.

Proof. We prove the first statement while the second part will follow by
exactly the same arguments. The idea is to make induction on d := i∗δ and
n in that order for the relative invariant and on d1 := i∗δ1 for the absolute
invariant. More precisely, we assume the statement to be true for all relative
invariants having

• smaller d or,
• the same d and smaller n,

and at the same time for all absolute invariants having
• smaller d1 < d.
For d = 1, n = 1, we compute the invariant by applying the main theorem

twice. We start with the moduli space M1(Z, δ) of 1-pointed curves of class
δ in Z with i∗δ = 1, and increase the multiplicity s at Y until the space
MY

s (Z, δ) becomes empty. Applying the theorem for M1(Y, δ) as before, we
obtain the class of the space MX

α1
(Y, δ) without correction terms as

[MX
α1

(Y, δ)]virt =
α1∏
j=0

(ẽv∗1X + jψ)[M1(Y, δ)]virt =(3)

=
α1∏
j=0

s1∏
i=0

(ẽv∗1X + jψ)(ev∗1Y + iψ)[M1(Z, δ)]virt,

where we have denoted by ẽv the evaluation at Y . Intersecting with evaluations
at all the γ’s and psi-classes, we remark that all the evaluation maps at Y
occurring in (3), except the first one, can by replaced by evaluations at Z as
we are left only with evaluations ẽv∗Xk = ev∗γ, for some γ ∈ H∗(Z) and any
k. What we have to do now is to intersect the whole equation with ev∗X γ̃1 and
the right hand side is zero as it contains

(4) ev∗Y ẽv∗Xev∗X γ̃1 = ev∗Y ẽv∗(i∗γ̃1) = ev∗(i∗γ̃1).

For d1 = 0 we use

(5) [Mn(X, 0)]virt = ev∗1X[Mn(Z, 0)]virt.

On the right hand side we have ev∗X γ̃ev
∗
1X = ev∗1(i∗γ̃), and this vanishes as

before.
For the general statement we proceed as before with the only difference

that the correction terms will be nontrivial. Supposing we want to compute
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the invariant for the given α, the main theorem yields
n∏

i=0

αi−1∏
j=0

(ẽv∗iX + jψ)[Mn(Y, δ)]virt = [MX
α (Y, δ)]virt + (correction 1).

Consider first the case where the point x1 lies in the internal component
of the correction term, that is Mr(X, δ1). Note that the left hand side will
vanish as before by (4). The external components of this correction term
have either smaller d, either smaller n. Using the induction hypothesis the
whole invariant will be zero whenever the diagonals will contribute a class
from H∗(Z)⊥. Therefore the diagonals will not contribute classes H∗(Z)⊥ to
the internal component either, and what is left to prove is that the invariant
on X with one class from H∗(Z)⊥ vanishes.

If the point x1 lies on one external component say C1, then the only
chance to have a non zero invariant is to have a class from H∗(Pr)⊥ at the
diagonal. This turns again to the invariant on X with one class from H∗(Z)⊥.

Let us now prove the statement for the invariants of X. But again by
the main theorem, an invariant on [Mr(X, δ1)] can be written as an invariant
of Y minus a product of invariants coming from a correction term

(6)
s2−1∏
j=0

(ẽv∗1X + jψ)[Mr(Y, δ1)]virt = [Mr(X, δ1)]virt + (correction 2).

Intersecting (6) with γ̃1, γ2, . . . , γn and psi-classes the left hand side of equation
(6) is zero by equation (4), while the correction term of (6) has x1 on the
internal component and external components in degree at most d1. Hence,
the invariant on X form (correction 2) will have exactly one class in H∗(Z)⊥
and since its degree is d2 < d1, it vanishes by induction. �

Corollary 3.1.6. Assume (i) and (ii) in Proposition 3.1.5. Let sY the
minimum intersection product of a curve in Z with Y and sX the minimum
intersection product of a curve in Y with X. Then the (absolute) Gromov-
Witten invariants of X with at most s := min(sY , sX) evaluation classes from
X can be computed recursively from the invariants of Z.

Proof (Compare to [4], Proposition 2.5.9). We follow the arguments in
the proof of Proposition 3.1.5. The only thing we need to remark is that
there will be no “unwanted” classes from the diagonal. Let us examine again
the equations, considering we have evaluations at X at the first s points,
m1 = Y · δ+ 2− s, m2 = X ·β+ 2− s, where β is the class of a degree-δ curve
in Y , i.e., i∗β = δ. In both cases we have m1,m2 ≥ 0, by our assumption. So,

(7) ev∗2Y · · · ev∗sY
m1∏
j=0

ev∗1(Y + jψ) = [Mr(Z, δ1)]virt
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ẽv∗2X · · · ẽv∗sX
m2∏
j=0

(ẽv∗1X + jψ)[Mr(Y, δ)]virt =(8)

= [Mr(X, δ)]virt + (correction 2).

Equation (8) is obtained from (7) by intersecting it with evaluations atX. This
is allowed, as in (correction 1) all the first s points are imposed to lie in Y .
In the same way, in (correction 2) the first s marks belong to X and it makes
sense to intersect (8) with evaluations atX. Now, putting (7) and (8) together,
the left hand side will be known by the same (4). In both (correction 1) and
(correction 2) there will be no class from H∗(Z)⊥ by Proposition 3.1.5 and
therefore all the invariants will be known recursively. Indeed, all the external
components have at most s classes from X because we must have at least
one point from the first s on the internal component and this leaves us with
a number of s − 1 points plus one from the diagonal. The invariant from
the internal component cannot have more than s evaluations at classes from
H∗(Z)⊥ either. The case where these additional classes could arise could only
be from the diagonal with an external component having none of the first s
marks, but then it vanishes.
This completes the proof. �

Remark 3.1.7. By [11] the condition i∗H∗(Z) is self-dual in H∗Y is sat-
isfied if Y is a very ample hypersurface of Z.

Definition 3.1.8. Let X, Z satisfy condition (ii) of Setting 3.1.3. We say
that a sequence of varieties Y1, . . . Yn such that X ↪→ Y1 · · ·Yn ↪→ Z with each
variety having codimension 1 in the one sitting after it in the above row, has
the property () if H2(Y1) = · · · = H2(Yn) = H2(Z), i∗H∗(Z) is self-dual in
H∗(Yi) and Yi ∈ i∗H∗(Z) ⊆ H∗(Yi+1), for any i = 1, . . . , n.

Corollary 3.1.9. Let a sequence of varieties Y1, . . . , Yn with (), and Yi

satisfy (i) and (ii) of Proposition 3.1.5 for every i = 1, . . . , n. If sX , sYi are de-
fined as before, then the invariants of X with at most s := min(sX , sY1, . . . , sYn)
classes in H∗(Z)⊥ can be computed recursively from those of Z.

Proof. The proof is analogous to the proofs of Proposition 3.1.5 and
Corollary 3.1.6. However, we cannot deduce the statement for Yj from that
of Yj+1, because we did not impose the condition i∗H∗(Yj+1) self-dual in
H∗(Yj). �

Remark 3.1.10. As we did not impose H2(X) to be i∗H∗(Z) the invariant
that we compute will actually be a sum of invariants of X. More precisely,
M(X, δ) =

∑
i∗β=δ M(X,β). In a number of cases the individual invariant

will turn out to be a known invariant, and it will be analyzed explicitly in
next section.
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3.1.1. Reconstructing Gromov-Witten invariants from those of Pr.
The most natural question when reconstructing Gromov-Witten invariants of
a variety X from a bigger variety is “When can we reconstruct the invariants
of X from those of Pr?”. We will see that Pr behaves nicely and has the
self-duality property for any subvariety, but the condition () on the interme-
diary varieties Yi will turn to be strong enough to allow only computations of
invariants of complete intersections.

Lemma 3.1.11. Let X ↪→ Pr be any s-codimensional variety in the pro-
jective space and consider the ring R = i∗H∗(Pr) ⊆ H∗(X) induced in coho-
mology by the pullback of the inclusion map. Then R is self-dual and it has
exactly one generator in each (even) dimension.

Proof. Let γ ∈ R a cocycle. Then there exists a cocycle in H∗(Pr) such
that γ is its pullback. Let us assume for simplicity that γ = i∗(Hk) for some
0 < 2k ≤ 2(r − s), where H ∈ H2(Pr) is the class of a hyperplane in Pr.
We have by the definition of the intersection product that i∗(i∗(Hr−s−k)) =
Hr−s−kX is a non-zero cocycle in H∗(Pr), which means that i∗(Hr−s−k) has
to be nonzero in H∗(X) . Intersecting γ with i∗(Hr−s−k) and pushing forward
we get again a non-zero cocycle by the formula

i∗(i∗(Hk) · i∗(Hr−s−k)) = Hki∗(i∗(Hr−s−k)) = Hk ·Hr−s−kX.

This proves the first part of the statement. The second is just as easy: i∗(Hk)
is a non-zero cocycle in Hk(X), for any 0 ≤ 2k ≤ 2(r − s). �

Remark 3.1.12. Condition () reads H2(Y1) = · · · = H2(Yn) = H2(Pr) =
Q. This implies that the class of Yi on Yi+1 will always be a pull-back of a
class of a divisor of Pr and the same for X in Y1. By Corollary 3.1.9 we will
be able to compute the invariants of any complete intersection of dimension
at least 2. Conversely, any Y1 in Pr for which we can find a sequence with ()
is a complete intersection (see [8]).

Remark 3.1.13. For complete intersections there is a very short proof us-
ing the Lefschetz Hyperplane Theorem. Let us argue again in codimension 2,
as the general proof will work exactly the same. The only “new” cohomology
that we can encounter is in the middle dimension, but it is immediate from [4],
Lemma 2.5.5 that we cannot have non-zero invariants with exactly one such
class in (correction 2). The m := middle + 1-cohomology will not be a prob-
lem either, because Hm(X) = Q by Poincaré duality, and by Lemma 3.1.11,
Hm(X) = i∗Hm(Pr). The drawback of this proof in Chow groups is that
there is no analogous Lefschetz theorem (unless we use identification theo-
rems between Chow groups and cohomology); A1(X) � A1(Y ), when X is a
hyperplane section of Y , is a theorem of S. Lefschetz and A. Grothendieck, but
no analogous statement for Chow groups has been proved yet in full generality.
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3.2. THE GENERAL CASE

So far we have only considered the case H2(Y ) = H2(Z). In general,
things get quickly complicated: we will need to compute individual invariants
and moreover, we will have “unwanted” evaluation classes in the invariant
coming from the correction term. In the end, both situations will lead to
the same difficulty, that we will not overcome completely, even under stronger
conditions. However, we will try along this section to compute the invariants in
low degree. Some cases of varieties X, for which some of the Gromov-Witten
invariants can be reconstructed from those of Z, will be analyzed further,
though no closed-form result can be stated.

Proposition 3.2.1. Let a sequence of varieties Y := Y0 ↪→ Y1 · · ·Yn ↪→
Z such that the sequence Y1, . . . , Yn have property () and the class of Y in Y1

be the pull-back of a divisor class in Z. Suppose X ↪→ Y is the intersection of
Y with a hypersurface in Z. Then the δ-invariants of X can be computed for
any degree d curves δ in H2(Z) such that d ≤ sX .

Proof. By Corollary 3.1.9 the invariants of Y can be computed and using
the hypothesis d ≤ sX no more than sX classes from H∗(Z)⊥ will appear in
correction 2 from diagonals. Let us now prove that the individual invariants
will do no harm in this case. For a fixed δ ∈ H2(Z), let {β1, . . . , βm} the set
of all homology classes in H2(Y ) such that i∗(βi) = δ, for all i ∈ {1, . . . ,m}.
By our assumption we can write X = i∗(γ), for some γ ∈ H2r−2(Z) and by
the projection formula we have

i∗(i∗(γ) · β) = γ · i∗β = γ · δ.
This means that the curves of class βi intersect X with the same multiplicity
m, independent of i. By the adjunction formula, KY is a pull-back of a
divisor in Z, which yields KY · β is independent of i. This means that the
dimension of M|α|(Y, βi) is also independent of i, hence for a fixed α we have
dim[MX

α (Y, βi)]virt = dim[M|α|(Y, βi)]virt + |α| −∑α, which is independent
of i, too.

Supposing we want to compute an n-point invariant the next step is to
apply as usual the main theorem, starting with the moduli space of n-pointed
class-δ curves in Z, Mn(Z, δ). Thus,

(9)
∏

i

∏
j

(ev∗i Y + jψ)[Mn(Pr, d)]virt =
∑

i∗(β)=d

[Mn(Y, β)]virt + (correction)

(10)
∏

i

∏
j

(ev∗iX + jψ)[Mn(Y, β)]virt = [Mn(X,β)]virt + (correction β)
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Let us now look at correction β, having in mind that we have a decomposition
β = β(0) + β(1) + · · · + β(t), where β(0) is the class of the internal component
and β(1), . . . , β(t) those of the external ones. Each β(i) comes equipped with
a δ(i), that is the degree of its push-forward in Z, as before. Observing that
in (9) we have a sum over all β such that i∗β = δ, and for each β we have in
(correction β) all the possible decompositions, we can conclude that the final
correction term that we get from (9) and (10) is a sum of products of invariants
of class δ(i). This is because for a given tuple (δ(0), . . . , δ(t)) we are allowed to
take the same r-tuple M = (m(1), . . . ,m(t)), and therefore the factor m(1)···m(1)

t!
that appears in every (correction β) will be the same for all β corresponding
to (δ(0), . . . , δ(t)). By the first part of the proof, in the invariant coming from
any of the components of the correction term, there will be classes from the
diagonal, independent of β(i) for the given δ(i). To conclude, the δ invariant
can be computed. �

Lemma 3.2.2. Let Y be a variety with H2(Y ) �= H2(Z). Then for any β ∈
H2(Y ) the individual β-invariants can be reconstructed from the δ-invariants
of Y .

Proof. Let {l1, . . . , ln} a basis of H2(Y ) and consider the set {β1, . . . βm},
of all the distinct homology classes of Y such that i∗βi = d, for a given
δ ∈ H2(Z). As these sets are finite, it makes sense to consider the number
t(δ) := [ m

n−1 ].
Now, to compute the individual invariants, we proceed as follows: add t

points and impose them to belong to divisor classes, that we denoteD1, . . . ,Dt.
In the equation we obtain, the left hand side will be the d-invariant, and on
the right hand side we will have a sum of invariants with various β, namely,

〈D1 · · ·Dtτk1(γ1)τk2(γ2) · · · τkn(γn)〉Yδ =(11)

=
∑

i∗β=δ

D1 · β · · ·Dt · β〈τk1(γ1)τk2(γ2) · · · τkn(γn)〉Yβ .

Finding divisors that each cancels a number of n−1 invariants in the sum, we
will be left for the last divisor Dt with at most n terms in our equation. These
terms cannot be pairwise linearly dependent, since the push-forward of any βi

is imposed to have degree d. This shows that Dt can be chosen to cancel all
the terms but the one we wish. �
3.2.1. A few reconstruction cases. We are now ready to compute Gromov-
Witten invariants of a variety X ↪→ Y ↪→ Z from the invariants of Z, provided
of course that the invariants of Y can be reconstructed from those of Z as
prescribed in Corollary 3.1.9 and Lemma 3.2.2. For this, we must take care of
a few aspects. This time, the class of X on Y will no longer be a pullback of a
cycle in Pr and, therefore, each evaluation at ẽv∗iX will inquire an evaluation
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ev∗i Y . We will try here to reduce the number of evaluations at classes of
X, that will appear from what we called “correction 2”, but dropping the
condition H2(Y ) = H2(Z), we will not be able to compute all the invariants
of X, even if we consider more special cases. For simplicity, we will analyze
in detail only the 1-point invariants of X.

Case 3.2.3. If H∗(X) is generated by divisors, then we can apply the
reconstruction theorem with a few decorations (see [11]). First, we must assure
that the algorithm can also be applied for the β-invariants, β being this time
a class of Y . Let us briefly recall how the proof works and, at the same time,
notice the differences.

◦ Reduce all the descendant n-point invariants to primary or 2-point
invariants, whenever n ≥ 3, using the topological recursion relations. A δ-
invariant δ ∈ H2(X) of X will be on the left hand side with coefficient 1, and
all we have to do is to sum up over all δ such that i∗δ = β.

◦ Reduce all the primary n-point invariants with n ≥ 3 to two point
invariants by the WDVV equations. As before, we just have to sum up. We
can formally write ∑

i∗δ=β

∑
δ1+δ2=δ

=
∑

i∗δ1=β1
i∗δ2=β2

β1+β2=β

.

◦ Compute the descendent 2-point invariants by adding a point and using
the divisor equation. This will lead to primary invariants. The δ-invariant we
want is multiplied with D · δ. We can compute the β-invariant by choosing
the divisor D to be the hyperplane section.

◦ Compute the primary δ 2-point invariants from the δ 1-point invariants
by adding a point and using again the WVDD equations. However, the β-
invariants with 2 divisor classes, cannot be reduced to β-invariants with one
point.

To conclude, we can only reduce to 2-point invariants.

Case 3.2.4. Another idea could be to assume −KX ≥ 0. All conditions
coming from the diagonals will have to be divisor classes (see [4]). This means
that it will be sufficient to compute the 1-point invariants.

Case 3.2.5. In full generality, we need to reconstruct the individual in-
variants. Let us assume we need an n-pointed invariant of class δ, and by this
we mean an invariant with n classes in H(Z)⊥. We say δ1 ≤ δ if the degree
of δ1 is smaller than that one of δ. Now, if the finite set of positive integers
{t(δ1)| δ1 ≤ δ} is bounded by N , then we can compute the invariants having
N + n ≤ min(sX , sY ).
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3.3. ENUMERATIVE APPLICATIONS

We will now apply our methods to compute Gromov-Witten invariants
of 2-codimensional subvarieties of Pr by reducing them to invariants of Pr that
we can compute. As mentioned before, the computations may take place both
in cohomology and Chow groups. We will use Chow groups, as we will not
be using any special results from cohomology theories; everything will work
identically in cohomology.

In all the computations below, we use the computer program GROWI
(see [5]) to evaluate the invariants of Pr or the invariants of hypersurfaces in
Pr with all the evaluations at Pr.

Example 3.3.1. LetX be the degree-9 threefold in P5, that is the complete
intersection of two hypersurfaces Y1, Y2 in P5, each of degree 3. We have
KX = 0, and dim[M0,0(X, d)]virt = 0. Let us first count lines. To compute the
invariants in degree 1 we start with the moduli space M1(P5, 1) of 1-pointed
lines in P5 and raise the multiplicities in two steps, first using the main theorem
for Y1 in P5, and then for X in Y1. Note that there can be no correction terms
from reducible curves in any of our cases. Every external component has
positive degree, which means that the internal component must be in degree
0, and that there is only one external component. But this cannot happen
unless there are at least two marks on the contracted component. This shows
that there will be no correction terms in our computation. The number of
lines in X is now given by raising the multiplicity at the mark point from 0
to 4 that brings us to the number of lines in Y1, and then from 0 to 4, to get
[M1(X, 1)]virt. What we have to do next is to fix the mark and intersect with
a hyperplane class. So,

〈H〉X1 = deg

(
ev∗Xi

∗H ·
3∏

i=0

(ev∗Y1
X + iψ) · [M1(Y1, 1)]virt

)
=

= deg

(
ev∗H

3∏
i=0

(ev∗Y2 + iψ) ·
(

3∏
i=0

(ev∗Y1 + iψ) · [M1(P5, 1)]virt

))
=

= deg

(
ev∗H

3∏
i=0

(ev∗3H + iψ) ·
3∏

i=0

(ev∗3H + iψ) · [M1(P5, 1)]virt

)
=

= 1053.

Let us now turn to conics. We start with the 15 dimensional moduli
space M1(P5, 2). To reach the space M1(Y1, 2), we have to increase the multi-
plicity from 0 to 7. As before, we impose multiplicities at X until MX

1 (Y, 2)
becomes empty or, more precisely, as deg(X · i∗(2H)) = 6, we have to raise the
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multiplicity at the marked point x1 from 0 to 7. First, we decide which cor-
rection terms will appear. In our first step we may have correction terms with
one or two external components of degree one, i.e. a moduli space MY1

m (P5, 1).
The class [M1(P5, 1)]virt has dimension 9, and we have that H6 = 0 in P5.
This means that m must be at least 4. But if we have a degree 0 internal
component, it means that the multiplicity at Y1 of this component must be at
least 9, and if we have a degree-1 internal component, the multiplicity should
again be at least 8. This shows us that we will have no correction term from
this first step.

Increasing the multiplicity at X on Y1, we will have as before external
components MX

m (Y1, 1) of virtual dimension −KY1 · i∗H + (4 − 3) + 1 −m =
3 + 1 + 1 − m = 5 − m. This shows that we cannot have m = 1, because
this will mean to have 4 conditions from the diagonal, which is impossible,
X being of dimension 3. Thus we can only have correction terms in the last
three steps. As proved in our algorithm, these correction terms will be known
recursively. Indeed, the degree-0 internal component will be computable as an
intersection product on X, the degree-1 internal component will be reduced
using the divisors, and the fundamental class axioms to the degree-1 Gromov-
Witten invariant, while the external components will be 1-pointed lines that
can be obtained without correction terms. The left hand side of the main
theorem leads to

deg

(
ev∗H ·

6∏
i=0

(ev∗Y2 + iψ) ·
6∏

i=0

(ev∗Y1 + iψ)[M1(P5, 2)]virt

)
=

1916541
4

.

Let us evaluate the correction term (A). By Proposition 3.1.5, we will
have no classes from H∗(P5)⊥. The contribution from the external invariants
is 〈τ2(H3)〉Y1

1 · 〈τ2(H3)〉Y1
1 . Analyzing one more closely we have

〈τ2(H3)〉Y1
1 = deg(ev∗1H

3ev∗1Y2(ev∗1Y2 + ψ)[M1(Y1, 1)]virt) =

= 9 · 〈H5〉Y1
1 + 3 · 〈H4ψ〉Y1

1 = 54.

The internal component is a moduli space M3(X, 0) that receives 1
9 times the

fundamental class of X from the diagonal at both node points. Therefore the
invariant given by the internal component of this correction term is

I =
4
2
· 1
92

· deg(ev∗1H · (ev∗1Y2 + 5ψ) · (ev∗1Y2 + 6ψ)[M3(X, 0)]virt) =

=
4
2
· 1
92

· deg(ev∗1H · (ev∗1Y2 + 5ψ) · (ev∗1Y2 + 6ψ)ev∗1X[M3(P5, 0)]virt) =

= deg
(

2
81

·H · 3H · 3H ·X
)

=
2
81

· deg(H · 3H · 3H · 9H2) = 2.

In the same way, we have (B) = 46656, (C) = 93312, (D) = 4
3 · 1053,
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(In the picture we have symbolically represented Y1 by a 3-dimensional space
and X by a plane. The numbers written next to each component lying in Y
are the multiplicities at X . The marked point on a node is in fact a degree-0
component with 3 marked points mapping to X .)

(E) = 1
3 · 1053, that lead to a Gromov-Witten invariant

〈H〉X2 =
1916541

4
− (A) − (B) − (C) − (D) − (E) =

423549
4

.

Now, we apply a more general formula (see [13]) that relates n0,d := 〈 〉Xd , the
Gromov-Witten invariant with no marked points of the Calabi-Yau manifold
X, and the number N0,d of degree-d curves lying in X, namely,

n0,d =
∑
k|d

N0,d/k

k3
.

The number we get in this way is N0,2 = 423549
8 − 1053

8 = 52812.

Example 3.3.2. With the notation above, let us look now at an example
with H2(Y ) �= Q. Let Y be the quadric surface in P3, X the twisted cubic
(that defines a very ample divisor on Y ) and let us compute the number of
lines in Y that are tangent to X at one point. This is one of the easiest
examples where one can see how to compute individual invariants and how to
reduce unrestricted invariants to restricted ones, so let us do the computations
in detail. More precisely, A1(Y ) � QL1 ⊕ QL2 where we denoted by L1, L2
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the classes of the two lines generating A1(Y ). By [7], KY = −2L1−2L2, hence
dim [M1(Y,L1)]virt = dim [M1(Y,L2)]virt = 2. This yields

(12) deg([MX
2 (Y, 1)]virt) = deg([MX

2 (Y,L1)]virt) + deg([MX
2 (Y,L2)]virt).

Let us compute I := deg([MX
2 (Y,L1)]virt), the first term of (12) without

correction terms, noting that [X] = 2L1 + L2:

I = deg(ẽv∗1X(ẽv∗1X + ψ)[M1(Y,L1)]virt)

= deg(ẽv∗2L2ẽv
∗
1X(ẽv∗1X + ψ)[M2(Y, 1)]virt)

= deg(ẽv∗2L2(ẽv∗14L1 · L2 + ẽv∗1(2L1 + L2)ψ)[M2(Y, 1)]virt)

= 〈(4L1 · L2)L2〉Y1 + 〈τ1(2L1 + L2)L2〉Y1
We now apply the main theorem starting with M2(P3, 1) and raising the mul-
tiplicities m1, m2 at both marked points until m1 + m2 = 3. We will get
[M2(Y, 1)]virt without correction terms, namely,

[M2(Y, 1)]virt = ev∗1Y (ev∗1Y + ψ)ev∗2Y [M2(P3, 1)]virt.

Altogether,

I = deg((ẽv∗12i
∗H2+ẽv∗1(2L1 + L2)ψ)ẽv∗2L2ev

∗
1Y (ev∗1Y +ψ)ev∗2Y [M2(P3, 1)]virt)

= deg((ev∗14H
3 + ev∗13H

2ψ)(ev∗1Y + ψ)ev∗2H
2[M2(P3, 1)]virt)

= 10〈τ1(H3)H2〉P3

1 + 3〈τ2(H2)H2〉P3

1 = 4.

In the same way, we see that

J := deg([MX
2 (Y,L2)]virt = 〈(4L1 · L2)L1〉Y1 + 〈τ1(2L1 + L2)L1〉Y1 = I

and this yields deg([MX
2 (Y, 1)]virt) = 2I = 8.

Going further with this example, we will compute the number of con-
ics in Y intersecting X with multiplicity 4. We have deg [M1(Y, 2L1)]virt =
dim [M1(Y, 2L2)]virt = dim [M1(Y,L1 + L2)]virt = 4. As before, the left hand
side of the theorem yields

(13) (L) :=
3∏

i=0

(ẽv∗1X + iψ)
4∏

j=0

(ev∗1Y + jψ) · [M1(P3, 2)]virt =
33
2
.

We now look at the correction terms appearing at both steps. We see that
M1(Y, 2) is obtained without correction terms by raising the multiplicity at Y
from 0 to 5. Applying the main theorem for M1(Y, 2), we get two correction
terms (A), (B) with a contracted component and two external components,
each intersecting X with multiplicity 1, and respectively 1 and 2. Even if X
is not a hyperplane section of Y , we have only degree-0 internal components,
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and thus it is not needed to compute individual Gromov-Witten invariants.
Therefore, from the correction term we have the invariant

(A) :=
1
2
· 1
9
〈X̃ · ĩ∗H〉Y1 〈1i∗X1〉X0 〈X̃ · ĩ∗H〉Y1 =

1
2
〈L̃1 · L2〉Y1 〈1i∗X1〉X0 〈L̃1 · L2〉Y1 .

The internal component gives

〈1i∗X1〉X0 = deg(ev∗X i
∗X[M3(X, 0)]virt) = deg(ev∗Y Xev

∗
YX[M3(Y, 0)]virt)

= deg(ev∗Y 4L1 · L2[M3(Y, 0)]virt) = 4,

hence the first correction term is

(14) (A) =
1
2
· 〈L̃1 · L2〉Y1 · 4 · 〈L̃1 · L2〉Y1 = 4 · 2 = 8.

In the same way, the external component of (B) intersecting X with multi-
plicity 2 is E := ẽv1X(ẽv∗1X+ψ)

∏2
j=0(ev

∗
1Y + jψ) · [M1(P3, 1)]virt. This gives

the term (B) as

(B) := 2 · E · 〈H11〉X0 · 〈L̃1 · L2〉Y1 = 2 · 2 · 1 · 2 = 8.

Then by (13) and (14) we have the desired invariant (L)− (A)− (B) = 1
2 . As

in the previous example, the invariant is non-enumerative because of multiple
covers.
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