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We develop a method for pricing long and short positions in European options
modeled by jump diffusion process (where the jump component of the stock return
represents “non-systematic” risk) inclusive of transaction costs. We compute the
total transaction costs and the turnover for different option types, transaction
cost regimes, and revision interval lengths.
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1. INTRODUCTION

The classical option pricing theory developed by Black and Scholes as-
sumes perfect markets. It relays on the arbitrage argument by which investors
can use a replicating portfolio consisting of (in the case of a call option) a long
position in the risky asset and a short position in bonds to exactly reproduce
the return structure of the option. But this portfolio must be continuously
adjusted, meaning that the weights on the portfolio must be continuously
changed in order to eliminate all the risk from the total position (short a call
option, long in risky asset and short in bonds).

There are two problems with this model. First, it assumes a perfect mar-
ket, and therefore that the rebalancing is costless; if we consider transaction
costs, the constant rebalancing used in the Black–Scholes setup will be infin-
itely costly (no matter how small the transaction costs are) since the diffusion
processes have infinite variation. Second, for the arbitrage theory to be true,
Black and Scholes assumed that the underlying stock price obeys a stochas-
tic process with continuous paths. In many cases (jump-diffusion, Markovian
diffusion, stochastic volatility-stochastic interest rate) we cannot apply their
technique.

A few researchers have addressed the first problem (see, for example, Le-
land [7], Merton [9], and Boyle and Vorst [2]), providing replicating strategies
that provide finite prices in the case when the costs are proportional to the
amount of the transactions.
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Other researchers have addressed the second problem by proposing mod-
els for the price of the underlying security different from (or more general
than) Brownian motion. In particular, Merton [9] introduced the so-called
jump diffusion processes, which include random jumps in price occurring at
random intervals.

In this paper we study the combination of both approaches, developing
a scheme for pricing long and short positions in European options modeled
by jump diffusion process (where the jump component of the stock return
represents “non-systematic” risk) inclusive of transaction costs.

The paper is organized as follows. Section 2 reviews Merton’s results
about option pricing when the returns follow a jump diffusion model, with-
out transaction costs. Section 3 presents the option pricing scheme using a
jump diffusion model inclusive of transaction costs. Section 4 presents some
empirical results about the total transaction costs and turnover, Section 5 in-
cludes some remarks regarding the hedging errors while Section 6 presents the
conclusions of the paper.

2. OPTION PRICING WHEN
THE UNDERLYING STOCK PRICE RETURNS

ARE DISCONTINUOUS: A REVIEW

Merton [9] studied option pricing in the case that the stock price of the
underlying asset can be described as a jump diffusion process. The underlying
stock price returns are a mixture of continuous time processes and a Poisson
process; it can be described by

(1)
dS

S
= (α − λk)dt + σdZ + dq,

where α and σ2 are the instantaneous expected return on the stock respec-
tively the instantaneous variance of the returns, conditional on no arrivals of
important new information (i.e., the Poisson event does not occur); q(t) is an
independent Poisson process; q and Z are also assumed to be independent; λ
is the mean number of arrivals per unit of time, k ≡ Ey(Y −1), where Y −1 is
the random percentage change in the stock price if the Poisson event occurs;
Ey is the expectation operator over the random variable Y .

Equation (1) can be written in a more explicit form as

dS

S
= (α − λk)dt + σdZ,

if the Poisson event does not occur, and

dS

S
= (α − λk)dt + σdZ + Y − 1
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if the Poisson event does occur.
Merton assumed that the jump represents pure non-systematic risk, and

proved that the differential equation that is verified by the option price, when
the dynamics of the stock price is as given above, is

(2)
1
2
σ2S2CSS + (r − λk)SCS + Cτ − rC + λE(C(SY, τ) − C(S, τ)) = 0

subject to the boundary conditions

C(0, τ) = 0, C(S, 0) = max[0, S − P ],

where C(S, τ) is the option price written as a function of the time until expi-
ration and S, P is the exercise price, r is the risk free rate, and the subscripts
represent partial derivatives with respect to the corresponding variable.

It is important to note that even though the jumps represent non-systematic
risk, the jump component does affect the equilibrium option price.

Define W (S, τ ;P, σ2, r) to be the Black–Scholes formula for the no-jump
(continuous) case. Then

(3) C(S, τ) =
∞∑

n=0

e−λτ (λτ)n

n!
En

[
W (SXne−λkZ , τ ;P, r)

]
,

where X0 ≡ 1, Xn is a random variable which has the same distribution as
the product of n independent random variables distributed identically to Y
defined in (1) and En is the expectation operator over the random variable Xn.

3. OPTION PRICING WITH POSITIVE TRANSACTION
COSTS FOR JUMP DIFFUSION PROCESSES

Consider a portfolio formed with one option and −N shares of stock.
The assumptions of our model are as follows.

• The portfolio is revised every ∆t units of time, where ∆t is a non-
infinitesimal, fixed time-step.

• The stock price S obeys the equation

dS = (α − λk)S dt + σSZ
√

dt + S dq,

where α, λ, k, σ, q are as in equation (1).
• Transaction costs for buying or selling the asset are proportional to the

value of the transaction. For example, if ν shares are bought or sold
at price S, then the transaction costs are ρ|ν|S, where ρ is a constant
depending on the individual investor.

• The source of the jump is a firm- (or even industry-) specific informa-
tion, hence the jump component will represent “non-systematic” risk,
i.e. the jump component is uncorrelated with the market.



352 Oana Mocioalca 4

Theorem 1. A long position in an European option on jump diffusion
inclusive of transaction costs can be priced using Merton’s formula with a
modified variance

σ̂2 = σ2 +
2

∆t
ρE

(∣∣∣∣∆S

S

∣∣∣∣
)

.

Proof. Since S obeys equation (1), the option price C will satisfy an
equation of the same type (when there are jumps in S there are jumps in C),
but with different parameters:

(4)
dC

C
= (αC − λkC)dt + σC dZ + dqC ,

where αC , kC , and σC are defined as in (1) but for the option price C, i.e. αC

is the instantaneous expected return on the option; σ2
C is the instantaneous

variance of the return, conditional on the Poisson event not occurring); qC(t)
is the independent Poisson process with parameter λ, kC ≡ E(YC − 1), where
YC−1 is the random percentage change in the option price if the Poisson event
occurs.

First, observe that if the percentage increase in S is Y , then the percent-
age increase in C is YC = C(SY,t)

C(S,t) . Hence

kC = EYC

[
C(SY, t) − C(S, t)

C(S, t)

]
=

EY [C(SY, t) − C(S, τ)]
C(S, t)

.(5)

Then looking at C as a function C(S, τ) of S and time to expiration τ ,
since the Poisson process has bounded variation, we can apply Ito’s formula
and obtain

(6) dC = Cτdτ + CSdS +
1
2
CSS(dS)2.

Substituting (5) and (6) into (4) yields

(7) αCC = Ct + (α − λk)SCS +
1
2
S2CSSσ2 + λEY [C(SY, t) − C(S, τ)]

and
σCC = SCSσ.

Return now to our hedge portfolio. The only source of uncertainty in the
return is the jump component of the stock. By hypothesis, such components
represent non-systematic risk, hence they are independent of the market, hence
the “beta” of the portfolio is 0. Therefore, the expected return on the portfolio
is equal to the risk free rate of return. If αC is the rate of return on the option,
over the small interval of time ∆t we have

(αCC)∆t − (NαS)∆t = r(C − NS)∆t.
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If we introduce transaction costs, then we have

(8) (αCC)∆t − [(NαS)∆t − E(ρS|ν|)] = r(C − NS)∆t.

Substituting (7) into (8) yields

(Cτ + (α − λk)SCS +
1
2
S2CSSσ2 + λEY [C(SY, t) − C(S, τ)])∆t−(9)

− (NαS)∆t + E(ρS|ν|) = r(C − NS)∆t.

In the continuous case, Black and Scholes derive the number of shares
of stock that will create a risk-less hedge. In the jump case, there is no such
risk-less mix. However, we create a mix which eliminates all systematic risk,
and in that sense, is a hedge. In Lemma 1 bellow we show that the number of
shares for this hedge is equal to CS . Observe that in both cases (the continuous
and the jump case), the number N of shares is equal to the derivative of the
option pricing function with respect to the stock price, but the formulas for
the number of shares are different since the formulas for the option pricing are
different.

Substituting N = CS into (9) and dividing by ∆t yield

Ct + (r − λk)SCS +
1
2
s2CSSσ2 + λEY [C(SY, t) − C(S, τ)] − rC+(10)

+
1

∆t
E(ρS|ν|) = 0.

Let us look now at the term 1
∆tρS|ν|. We have

ν = CS(S + ∆S, τ + ∆t) − CS(S, τ) =

= CSS(S, τ)∆S+CSt(S, τ)∆t+
1
2
CSSS(S, τ)∆S2+CStS(S, τ)∆S∆t+ · · · .

The dominant term is CSS(S, τ)∆S. This way,

ν = CSS(S, τ)∆S + O(∆t3/2) ≈ CSS(S, τ)∆S

and

1
∆t

ρS|CSS(S, τ)∆S|= 1
∆t

ρ

∣∣∣∣CSS(S, τ)S2 ∆S

S

∣∣∣∣= 1
∆t

ρCSS(S, τ)S2

∣∣∣∣∆S

S

∣∣∣∣ .(11)

To see that the term CSS(S, τ)S2 is positive one should keep in mind that,
as in Merton’s case, the formula for C(S, τ) involves the sum of infinite Black
Scholes formulas for which we know that the second derivative with respect
to S is positive.
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Substituting (11) into (10) we obtain the differential equation that C
must satisfy, inclusive of transaction costs, namely,

1
2
CSSS2

(
σ2 +

2
∆t

ρE

(∣∣∣∣∆S

S

∣∣∣∣
))

+ Ct + (r − λk)SCS − rC+(12)

+ λEY [C(SY, τ) − C(S, τ)] = 0

with the boundary conditions

C(0, τ) = 0, C(S, 0) = Max[0, S − P ].

With the notation

(13) σ̂2 = σ2 +
2

∆t
ρE

(∣∣∣∣∆S

S

∣∣∣∣
)

,

the equation for the value of the option is identical to Merton’s value with
the exception that the actual variance σ2 is replaced by the modified vari-
ance σ̂2. �

Lemma 1. With the above notation, the hedge strategy that eliminates
all systematic risk is N = CS.

Proof. The value of our portfolio is Π = C−NS, hence ∆Π = ∆C−N∆S.
If we substitute (6) in the equation for ∆Π, we obtain

∆Π = ∆t

(
1
2
σ2S2CSS + Cτ

)
+ S(α − λk)(CS − N)∆t+

+σS(CS − N)∆Z + S(CS − N)∆q.

Now, observe that if we take N = CS , then we eliminate the random compo-
nent in the random walk, therefore our strategy must be N = CS. �

If we do the same analysis for a short option, but we change all the
signs with the exception of the transaction cost term, which must always be
subtracted from the return on the portfolio, we obtain the following result.

Corollary 1. A short position in an European option on jump diffu-
sion inclusive of transaction costs can be priced using Merton’s formula with
modified variance

(14) σ̂2 = σ2 − 2
∆t

ρE

(∣∣∣∣∆S

S

∣∣∣∣
)

.

Note that σ̂ is influenced by the size of 1
∆tE

(∣∣∆S
S

∣∣). If it is very high,
then the transaction costs term will overtake the initial variance. This implies
that the costs of rebalancing are too high and that the chosen ∆t is too small
for the initial variance (in a short position one would obtain a negative variance
if this term is too big!). The portfolio is rehedged too often. But if the term
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1
∆tE

(∣∣∆S
S

∣∣) is too small, then the transaction costs will not have a large effect
on σ̂. That happens when ∆t is too large, hence when we do not rebalance
the portfolio enough; ∆t should be decreased in order to minimize the risk. A
difficult question to answer seems to be how to choose ∆t in order to have an
optimal hedge.

4. ESTIMATING TURNOVER AND TRANSACTION COSTS
OF REPLICATING STRATEGIES

We saw in the previous sections that the strategy N = CS with initial cost
C[S0;P, r, σ, λ, k, T ] eliminates the systematic risk when there are no transac-
tion costs, and that the strategy N = ĈS with initial cost Ĉ[S0;P, r, σ̂, λ, k, T ]
eliminates the systematic risk inclusive of transaction costs. Therefore, the
difference Z = |Ĉ0 −C0| between the two initial option prices, where C0 is op-
tion price exclusive of transaction costs, is a measure of the total transaction
costs associated with the hedge strategy. Using an expension of Taylor type
we can approximate Z by

Z = |δC
δσ

(σ − σ̂) + · · · | ≈ 2ρ√
2π

S0N
′(d1)

√
T

1
∆t

E

(∣∣∣∣∆S

S

∣∣∣∣
)

.

The percentage change is given by

Percent =
Z

C0
× 100%,

while the turnover estimates are given by

Turnover =
Z

ρS0
.

Note that since Z is given by the difference of two Merton formulas with
different variances, it will be greatly influenced by the quantities influencing
the variances, i.e., the level of the transaction costs ρ as well as the revision
interval environment parameters (r, σ2, k, λ). Note again the importance of
the size of the term 1

∆tE
(∣∣∆S

S

∣∣) in evaluating the size of the transaction costs.
For preparing the tables and charts below we used simulated data with

S0 = 45.41, and T = 1 (1 year to maturity), r = 4.5%, σ = 0.1717, λ = 0.1,
k = 0.05, δ2 = .1, α = .0037. The reason we chose these numbers was because
they model a real stock price of an asset traded on NASDAQ. But since we
could not find a good method for extracting the volatility (in the underlying
asset) which comes from the jumps (the δ) we decided to come up with a
simulation model based on the total volatility.

As in the above formulas, Ĉ0 is the initial option price when the underly-
ing stock price follows a jump diffusion, inclusive of transaction costs while C0
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is the option price when the underlying stock price follows a jump diffusion,
ignoring the transaction costs.

Table 1

Option prices with transaction costs for a short option

P (∆t) ρ C0 Ĉ0 Z % Turnover

43.0000 0.0192 0.0025 5.8754 5.6677 0.2076 3.5336 1.8288
0.0050 5.4468 0.4285 7.2936 1.8874
0.0100 4.9599 0.9155 15.5819 2.0161

0.0385 0.0025 5.7305 0.1449 2.4658 1.2762
0.0050 5.5793 0.2961 5.0391 1.3040
0.0100 5.2553 0.6200 10.5528 1.3654

0.0577 0.0025 5.7583 0.1171 1.9932 1.0315
0.0050 5.6371 0.2383 4.0557 1.0495
0.0100 5.3811 0.4943 8.4132 1.0885

45.0000 0.0192 0.0025 4.6844 4.4455 0.2389 5.0992 2.1041
0.0050 4.1846 0.4998 10.6703 2.2015
0.0100 3.5598 1.1246 24.0064 2.4765

0.0385 0.0025 4.5183 0.1661 3.5466 1.4634
0.0050 4.3420 0.3424 7.3087 1.5079
0.0100 3.9499 0.7345 15.6793 1.6174

0.0577 0.0025 4.5503 0.1341 2.8628 1.1813
0.0050 4.4098 0.2746 5.8626 1.2095
0.0100 4.1050 0.5794 12.3681 1.2759

48.0000 0.0192 0.0025 3.2400 2.9833 0.2568 7.9247 2.2617
0.0050 2.7002 0.5398 16.6594 2.3773
0.0100 2.0036 1.2364 38.1607 2.7228

0.0385 0.0025 3.0616 0.1784 5.5058 1.5714
0.0050 2.8714 0.3686 11.3778 1.6236
0.0100 2.4427 0.7973 24.6089 1.7558

0.0577 0.0025 3.0961 0.1439 4.4421 1.2678
0.0050 2.9446 0.2954 9.1163 1.3009
0.0100 2.6133 0.6267 19.3418 1.3800

In Table 1 we present the option prices for short options whose underlying
stock price obeys a jump diffusion Z, and the turnover for a variety of options,
transaction costs, and revision period assumptions. We used short options
since their behavior is a bit more interesting. If the transaction costs are too
high, the transaction costs term will overtake the variance of the continuous
component. As for the environment, we use the special case when the random
variable Y has a log-normal distribution. If δ2 is the variance of the logarithm
of Y , then

C(S, τ) =
∞∑

n=0

e−λ′τ (λ′τ)n

n!
fn(S, τ),
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where λ′ = λ(1 + k) and fn(S, τ) is the value option, conditional on knowing
that exactly n Poisson jumps will occur during the life of the option. In our
simulation, the time to maturity is one year, and we use three striking prices
P = 43, 45 and 48.

In Table 2 we present the same computations as in Table 1 but for a
long option.

Table 2

Option prices with transaction costs for a long option

P (∆t) ρ C0 Ĉ0 Z % Turnover

43.0000 0.0192 0.0025 5.8754 6.0715 0.1962 3.3385 1.7278
0.0050 6.2578 0.3824 6.5087 1.6843
0.0100 6.6055 0.7302 12.4280 1.6080

0.0385 0.0025 6.0146 0.1392 2.3692 1.2262
0.0050 6.1487 0.2733 4.6515 1.2037
0.0100 6.4034 0.5280 8.9874 1.1628

0.0577 0.0025 5.9887 0.1134 1.9296 0.9986
0.0050 6.0987 0.2233 3.8008 0.9835
0.0100 6.3093 0.4340 7.3861 0.9556

45.0000 0.0192 0.0025 4.6844 4.9060 0.2216 4.7311 1.9522
0.0050 5.1137 0.4293 9.1645 1.8908
0.0100 5.4961 0.8117 17.3275 1.7875

0.0385 0.0025 4.8420 0.1576 3.3648 1.3884
0.0050 4.9923 0.3079 6.5734 1.3562
0.0100 5.2746 0.5902 12.5987 1.2997

0.0577 0.0025 4.8129 0.1285 2.7432 1.1319
0.0050 4.9365 0.2521 5.3808 1.1101
0.0100 5.1708 0.4864 10.3830 1.0711

48.000 0.0192 0.0025 3.2400 3.4768 0.2368 7.3084 2.0858
0.0050 3.6977 0.4577 14.1270 2.0159
0.0100 4.1026 0.8626 26.6234 1.8996

0.0385 0.0025 3.4085 0.1685 5.2016 1.4845
0.0050 3.5687 0.3287 10.1451 1.4477
0.0100 3.8683 0.6283 19.3924 1.3837

0.0577 0.0025 3.3775 0.1374 4.2421 1.2107
0.0050 3.5092 0.2692 8.3093 1.1857
0.0100 3.7583 0.5183 15.9968 1.1414

Table 3 shows the difference between the option price in the Black-Scholes
model (denoted by B) and jump diffusion model (denoted by C), with trans-
action costs (the notation will have a hat) and without transaction costs. In
order to account for the influence of the variance on the option price, we con-
sider the stock price variance in the Black Scholes model equal to the total
variance, from the pure diffusion and from the jump of the stock price in the
jump diffusion model, i.e., equal to σ2 + λδ2.
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Table 3

The difference between the Black-Scholes model (B)

and the jump diffusion model (C)

λ (∆t) ρ B − C B̂ − Ĉ %price Ŝpread S̃pread %Spread

0.0500 0.0192 0.0025 0.0766 0.0697 −9.0518 0.5079 0.5224 2.8453
0.0030 0.0684 −10.7003 0.6105 0.6277 2.8261
0.0050 0.0641 −16.3733 1.0269 1.0547 2.7065
0.0100 0.0667 −12.9356 2.1644 2.2050 1.8754

0.0385 0.0025 0.0712 −7.0535 0.3578 0.3688 3.0882
0.0030 0.0702 −8.4056 0.4297 0.4429 3.0791
0.0050 0.0663 −13.5211 0.7193 0.7411 3.0248
0.0100 0.0595 −22.3436 1.4717 1.5118 2.7221

0.1000 0.0192 0.0025 0.1386 0.1249 −9.9353 0.4936 0.5220 5.7577
0.0030 0.1223 −11.7837 0.5932 0.6271 5.7245
0.0050 0.1132 −18.3817 0.9975 1.0525 5.5190
0.0100 0.1111 −19.8950 2.0990 2.1858 4.1332

0.0385 0.0025 0.1280 −7.6977 0.3469 0.3686 6.2500
0.0030 0.1259 −9.1890 0.4166 0.4426 6.2344
0.0050 0.1180 −14.9089 0.6973 0.7402 6.1410
0.0100 0.1028 −25.8480 1.4256 1.5059 5.6269

0.1500 0.0192 0.0025 0.1894 0.1689 −10.8081 0.4797 0.5216 8.7347
0.0030 0.1650 −12.8517 0.5764 0.6265 8.6911
0.0050 0.1508 −20.3364 0.9691 1.0507 8.4221
0.0100 0.1399 −26.1200 2.0360 2.1713 6.6477

0.0385 0.0025 0.1736 −8.3353 0.3365 0.3684 9.4855
0.0030 0.1705 −9.9635 0.4040 0.4423 9.4651
0.0050 0.1585 −16.2716 0.6762 0.7394 9.3429
0.0100 0.1341 −29.1853 1.3813 1.5012 8.6765

0.2000 0.0192 0.0025 0.2033 −11.7147 0.4663 0.5212 11.7733
0.0030 0.1982 −13.9577 0.5603 0.6260 11.7219
0.0050 0.1789 −22.3313 0.9418 1.0492 11.4051
0.0100 0.1567 −31.9741 1.9752 2.1599 9.3517

0.0385 0.0025 0.2096 −8.9998 0.3264 0.3681 12.7932
0.0030 0.2055 −10.7691 0.3919 0.4420 12.7692
0.0050 0.1896 −17.6781 0.6558 0.7387 12.6255
0.0100 0.1554 −32.5176 1.3387 1.4973 11.8477

First, we observed that all the price percentage changes are negative,
where

%price = [Ĉ − B̂ − (C − B)]/(C − B),

which means that the difference between the option prices is higher when the
transaction costs are ignored than when they are not ignored. Then we observe
a decrease in B̂ − Ĉ as well as an increase in the absolute value of the the
percentage change, with the increase of transaction costs. That means that the
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transaction costs effect is higher in the jump diffusion case than in the Black-
Scholes case. We observe that both B̂ − Ĉ and B − C increase dramatically
with λ, while the percentage change is decreasing with λ, which means that the
transaction costs accentuates the influence of λ on the option prices. Table 3
also gives us the size of the spread of the option prices (the price of a long
option minus the price of a short option) in both models Black-Scholes and
the jump diffusion.

Now, we present several plots in which are described the behavior of
the option prices with transaction costs in the jump diffusion case as well as
the behavior of the total transaction costs-spread (the difference between the
price of a long option and the price of a short option) in the same case, as
well as the difference between the option prices in the jump diffusion case
and in the Black-Scholes model, with the change of different parameters. In
Figure 1 we plotted the price of a short option in the jump diffusion model as
a function of the transaction costs ρ for different adjustment times ∆t. We see
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Fig. 1. Ĉ versus ρ for different (∆t). Co Hat stands for the option price
with no transaction costs.

a rapid decrease in Ĉ with the increase in ρ. Moreover, we observe that as ∆t
decreases, the level of the transaction costs for which the option price cannot
be computed (because σ̂ would be negative) is decreasing. For example, if we
readjust the portfolio monthly we can allow the transaction costs to be even
larger than 3%, while if we readjust the portfolio daily the transaction costs
cannot be higher than .6%. In Figure 2 we present the change in the spread
of the option price, with the level of the transaction costs. In contrast with
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Fig. 2. The spread (difference between the price on a long position and
the price in a short position) of an option on jump diffusion, versus ρ for

different (∆t).

Figure 1, here the spread increase sharply with the transaction costs. The
highest increase we see in the spread if the portfolio is adjusted daily.

In Figure 3 we kept all the parameters of the option constant and we vary
the interval ∆t of adjustment for the replicating portfolio, and we observe an
increase in the option price and a decrease in spread as ∆t increases.
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Figure 4 shows a decrease with ρ in the difference between the option
prices in the two models, but an increase with ∆t. We also observe that there
is a value for ρ which, if reached, the differences increase dramatically and are
not monotone anymore.
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In Figure 5 we plotted Ĉ and C̃ against the adjustment interval ∆t for
the replicating portfolio, and observe that Ĉ converges to Ĉ0 faster than C̃
converges to C̃0 as ∆t increases, which means that the transaction costs have
a stronger effect on the option prices in the jump diffusion model.

5. HEDGING ERRORS

We prove that errors in hedging, after the transaction costs, are in ex-
pectation of order O((∆t)1/2), meaning that for very small ∆t they could be
ignored.

Theorem 2. Let Ĉ be Merton’s price using the modified variance σ̂2.
The replicating strategy N = ĈS and M = Ĉ − ĈSS will lead, in expectation,
to errors in hedging of order O((∆t)1/2), inclusive of transaction costs.

Proof. First we compute the error in hedging ∆E over the interval ∆t:

∆E = ∆Ĉ − ∆P − TC,

where
∆P = N∆S + Mr∆t + O((∆t)2),

is the change in the portfolio value. The transaction costs are

TC = ρ|∆N(S + ∆S)|,
and the change in the option price is

∆Ĉ = Ĉ(S + ∆S, τ + ∆t) − Ĉ(S, τ).

Substituting N = ĈS and M = Ĉ − ĈSS we obtain

∆P = ĈSS

(
∆S

S

)
+ (Ĉ − ĈSS)r∆t + O((∆t)2),

and also

TC =
1
2
ρ|(ĈS(S + ∆S, τ + ∆t) − ĈS(S, τ))(S + ∆S)| =

=
1
2
ρĈSSS2

∣∣∣∣∆S

S

∣∣∣∣ + O((∆t)3/2).

We obtained the last equality by applying (11) and the fact that ĈSSS2

as well as ĈSSs, ĈSt and ∆S are O((∆t)1/2) (see Lemma 3). Also, using the
Taylor expansion we obtain

∆Ĉ = ĈSS

(
∆S

S

)
+

1
2
ĈSSS2

(
∆S

S

)2

+ Ĉt + O((∆t)3/2).
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Substituting the last three equations into the expression of ∆E and using
equation (12) yield

1
2
ĈSSS2

(
∆S

S

)2

− (Ĉ − ĈSS)r∆t + Ĉt∆t − 1
2
ρĈSSS2

∣∣∣∣∆S

S

∣∣∣∣+
+O((∆t)3/2) =

1
2
ĈSSS2

[
σ2∆t −

(
∆S

S

)2]
+ λkSCS∆t−

− λEY [C(SY, τ) − C(S, τ)] + O((∆t)3/2).

Taking the expectation and observing that E[(∆S
S )2] is O(∆t) and that

E
(
λkSCS∆t − λEY [C(SY, τ) − C(S, τ)]

)
= 0, we obtain E(∆E) = O(∆3/2).

Since the errors in hedging are not correlated over intervals of time we conclude
that the edging error over the whole period of time is O((∆t)1/2).

We also observe that var(∆E) = O((∆t)2) and, similarly, we conclude
that the total variance is O(∆t). �

Lemma 2. The terms ĈSSS2, ĈSSS, and ĈSt are O((∆t)1/2).

Proof. We start with showing that σ̂2 − σ2 is O((∆t)−1/2). Indeed,
computing E

(∣∣∆S
S

∣∣) we obtain

E

(∣∣∣∣∆S

S

∣∣∣∣
)

=
∞∑

n=0

E (|(α − λk)∆t + σ∆Z + n∆t|)P (q(t) = n)

=
∞∑

n=0

E (|(α − λk)∆t + σ∆Z + n∆t)|) e−λ∆t(λ∆t)n

n!

=
1√
2π

∞∑
n=0

e−λ∆t(λ∆t)n

n!

∫ ∞

−∞
|σ
√

∆tx + (n − λk)∆t|e−x2

2 dx.

Hence

lim
∆t→0

[
1

∆t
E

(∣∣∣∣∆S

S

∣∣∣∣
)
· ((∆t))

1
2

]
=

=
1√
2π

lim
∆t→0

1√
∆t

( ∞∑
n=0

e−λ∆t(λ∆t)n

n!

∫ ∞

−∞
|σ
√

∆tx + (n − λk)∆t|e−x2

2 dx

)
=

=
1√
2π

lim
∆t→0

(
e−λ∆t

√
∆t

∫ ∞

−∞
|σ
√

∆tx − λk∆t|e−x2

2 dx+

+
1√
∆t

∞∑
n=1

e−λ∆t(λ∆t)n

n!

∫ ∞

−∞
|σ
√

∆tx + (n − λk)∆t|e−x2

2 dx

)
.
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We observe that both terms of the limit above are finite. In fact,

1√
2π

lim
∆t→0

e−λ∆t

√
∆t

∫ ∞

−∞
|σ
√

∆tx − λk∆t|e−x2

2 dx =

=
1√
2π

lim
∆t→0

∫ ∞

−∞
|σx − λk

√
∆t|e−x2

2 dx =
σ√
2π

∫ ∞

−∞
|x|e−x2

2 dx < ∞.

On the other hand, we have

1√
2π

lim
∆t→0

1√
∆t

∞∑
n=1

e−λ∆t(λ∆t)n

n!

∫ ∞

−∞
|σ
√

∆tx + (n − λk)∆t|e−x2

2 dx =

=
1√
2π

lim
∆t→0

e−λ∆t
∞∑

n=1

(λ∆t)n

n!

∫ ∞

−∞
|σx + (n − λk)

√
∆t|e−x2

2 dx.

Then we observe that

lim
∆t→0

∞∑
n=1

(λ∆t)n

n!

∫ ∞

−∞
|σx + (n − λk)

√
∆t|e−x2

2 dx

is bounded, hence the above limit equals 0 and we conclude that σ̂2 − σ2 is
O(∆t−1/2). To prove that the previous term is bounded, observe that

lim
∆t→0

∞∑
n=1

(λ∆t)n

n!

∫ ∞

−∞
|σx + (n − λk)

√
∆t|e−x2

2 dx ≤

≤ lim
∆t→0

∞∑
n=1

(λ∆t)n

n!

∫ ∞

−∞
σ|x|e−x2

2 dx+

+ lim
∆t→0

∞∑
n=1

(λ∆t)n

n!

∫ ∞

−∞
λk

√
∆te−

x2

2 dx+

+ lim
∆t→0

∞∑
n=1

(λ∆t)n

n!
n
√

∆t

∫ ∞

−∞
e−

x2

2 dx,

and each of the three terms of the sum is bounded.
Next, observe that if we denote by Vn = SXne−λkτ , then we have

S2ĈSS(S, τ) =
∞∑

n=0

Pn(τ)En

{
V 2

n WVnVn(Vn, τ ;P, σ̂2, r)
}

.

This is because C verifies the same SPDE as in Merton’s model, but with the
modified σ̂ instead of σ. So, we replace σ by σ̂ in (3) and obtain the above
equation. But, as

V 2
n WVnVn(Vn, τ ;P, σ̂2, r) =

VnN ′(d̂1)
σ̂(T − τ)1/2

=
Vne−

1
2
d̂2
1√

2πσ̂(T − τ)
,
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it is enough to prove that each of the V 2
n WVnVn is O((∆t)1/2) in order to

conclude that ĈSSS2 is O((∆t)1/2). But

N ′(d̂1) =
1√
2π

e−1/2d̂2
1 ,

and

d̂1 =
ln Vn

P + (r + 1/2σ̂2)(T − τ)
σ̂(T − τ)1/2

.

Therefore d̂1 is O(σ̂) hence O((∆t)−1/2) and N ′(d̂1) is O(exp(−1/2(∆t)−1)).
It follows that ĈSSS2 is O(exp(−1/2(∆t)−1)(∆t)1/2), which is O((∆t)1/2).

The proof of ĈSSS and ĈSt being O((∆t)1/2) is similar. �

6. CONCLUDING REMARKS

We developed a method for computing the price of an option when the
underlying asset returns follow a jump-diffusion model, inclusive of transaction
costs. The formula holds when the jump component of the model represents
non-systematic risk. The strategy depends on the level of transaction costs,
the revision interval of the replicating portfolio and all the parameters of the
jump diffusion. The zero-transaction costs option price lies between the long
option and short option price inclusive of transaction costs. Observe that our
model is consistent with the other models. If ρ is 0 (no transaction costs), we
get the same equation Merton obtained for pricing an option whose underlying
stock price obeys a jump diffusion process. In the case of λ = 0, but ρ �= 0 (no
jumps, but the transaction costs are not ignored), we obtain the same equation
Leland obtained when he priced an option, inclusive of transaction costs, since
the infinite sum from the solution reduces to one term that does not depend
on λ. When both λ and ρ are 0 (no jumps and no transaction costs), we obtain
Black-Scholes formula. Moreover, we observed that keeping all the parameters
constant, just by adding some jumps in the underlying stock price the effect
of transaction costs is higher.

It would be interesting to see which one of the two models (the Black-
Scholes or the jump diffusion), inclusive of transaction costs, is a better model.
For that we would need to look at data on option prices over the years and
see which model fits better the data.
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