ON LIMIT DISTRIBUTIONS
OF TRIGONOMETRIC SUMS

KATUSI FUKUYAMA and SHIGERU TAKAHASHI

Any variance mixture of Gaussian distributions can be a limit distribution of
trigonometric sums.
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1. INTRODUCTION

It is known that a lacunary sequence {cos2mn;w} of trigonometric func-
tions has similar property to those of independent random variables when n;
grows rapidly. One of the most famous classical results concerning this phe-
nomenon is probably the following central limit theorem of Salem-Zygmund [1].

THEOREM A. Let (Q,f, P) be the Lebesgue probability space, i.e., ) is
the unit interval [0,1], F the o-field consisting of Lebesgue measurable sets,
and P the Lebesgue measure on the unit interval. Suppose that a sequence
{n;} of integers satisfies Hadamard’s gap condition njii/n; > q > 1, that a
sequence {a;} of real numbers satisfies

A?z(a%—l—---+a?)/2—>oo and aj =o(Aj) asj— oo,
and that {o;} is an arbitrary sequence of real numbers. Then the law of the
normalized sum
1 N

iy Z a;j cos 2mn;(w + a;)

j=1
with respect to the conditioned measure P(- | B) = P(- N B)/P(B) converges
to the standard Gaussian distribution provided that P(B) > 0.

By the above result, we see that the limit distribution of a normalized
sum of trigonometric functions is always Gaussian under Hadamard’s gap
condition and moderate behaviour of {a,}. There have been various attempts
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to prove the central limit theorem under weaker gap conditions. We refer, for
example, to Erdos [2], Takahashi [9], and Fukuyama and Takahashi [3].

By the way, if we do not assume any lacunarity, the limit distribution is
not necessarily Gaussian. Actually, we have the following example of Erdos-
Fortet.

Ezample B. If {n;} is the set theoretical union {27 —2},;enU {2/ —1}en,
then the law of

N
1
CcoS 2N ;jw
VN/2 ; ’

converges to the mixture

1
Q( ’ ) = /0 NO,(COSﬂt)Z( : )dtv

of Gaussian distributions, where Ny, denotes the Gaussian distribution with
mean 0 and variance v and, in case v = 0, the delta distribution §y with unit
mass at 0.

One can find historical remarks on this example in Salem—Zygmund |8,
I, page 61] Kac [4, pages 646 and 664] and Kac [5].

In this note we prove that the class of limit distributions of non-lacunary
trigonometric sums is rather wide and includes important distributions. To
state this result precisely, we introduce here the notion of variance mizture of
Gaussian distributions.

A probability measure @ is said to be a variance mixture of Gaussian
distributions if there exists a probability distribution F' on [0, 00) such that

(1.1) Q) = /0 " Noa( ) F(dt).

It is known (cf. Kelker [6]) that @ is infinitely divisible if F' is infinitely di-

visible, and that all symmetric a-stable distribution, the Cauchy distribution

and all Laplace distributions are variance mixtures of Gaussian distributions.
We are now in a position to state our result.

THEOREM 1. For any variance mixture Q of Gaussian distributions, there
exist {a;j}, Aj — oo and {a;} such that the law of

N

1
(1.2) EZaj cos 27mj (w + )
j=1

on Lebesgue probability space converges weakly to Q. In particular, any symme-
tric stable distribution, including the Cauchy distribution, can be a weak limit.
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2. MIXING CONVERGENCE

We first recall a notion and results concerning mixing convergence of
random variables.

Suppose that the law of a random variable X,, on some probability space
(Q,F, P) converges to some distribution (). This convergence is said to be
mixing if the law of X,, under the conditioned measure P(- | E) converges
weakly to @ for any F € F with P(E) > 0.

Note that Theorem A states mixing convergence.

The following result (cf. Theorem 4.5 of Billingsley [1]) is essentially due
to Mogyorédi [7].

THEOREM C. Suppose that the law of X, converges to (Q and this con-
vergence is mixing. If Y, converges in probability to some random variable Y,
then the law of (X,,Yy) converges weakly to the law of (X,Y), where X is a
random variable independent of Y and distributed as Q.

3. PROOF OF THEOREM 1

We shall construct aj, A; and «; such that @ defined by (1.1) is the limit
of (1.2).

Let g(t) be the generalized inverse of F'(t) and let f(¢) = 1/g(t). Then
f?(t) is a non-negative measurable function satisfying

{te[01]] 2() <2 }] = Flw),
i.e., the law of f2(t) is F. Let us consider a sequence {e}} satisfying
er 10 and e,Vk oo ask — oo

and put

By ={te[0,1]| f(t) >exVk} and f(k)(t):{ g}f% iizgi

If we denote by fﬁ’“) the nth partial sum of the Fourier series of f*), we can
find a sequence {my} of integers such that

17 = £l < e/ Vi,

where || - ||2 denotes the L?[0,1]-norm. We can also find a sequence {n;} of
integers such that

ng +mg < ngyr —mygypr and ngppp > 2ng, k> 1
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Since f*)(t) converges to f(t) for all ¢, and because of the mixing con-
vergence of

cos 2mnt

to the standard normal distribution (cf. Theorem A), by Theorem C the law of

(3.1)

cos 2mnt

on Lebesgue probability space converges weakly to that of f x X, where X is
a standard normal random variable,independent of f. Since the law of f x X
is @, the law of (3.1) converges weakly to Q, too.

We have f*)(t) = f(t) except for finitely many k, and thereby we have

- f(k)(t)}cos 2mngt| <

k t)’ — 0.

Thus, the law of

(3.2) ! Zf(k) (t) cos 2yt

also converges weakly to (). Hence, by the estimate

(k) t)} cos 2mnyt

” Fz{f

2

2

k)

N
1 Z €
k: } COS 27Tnkt“2 7/2 . 7% — 0,

the law of

(3.3) ) cos 2mnyt

converges weakly to Q.
Since f,(fk) (t) is an myth partial sum of the Fourier series of f(*), we can

express it as
mp

FE (&) =" cos2m(jt + ;).
7=0
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Therefore we have

1 &

f,(,f,f (t) cos 2mnyt = 5 Z(cos 2m(ng + j)t + v4) + cos2m(ng — j)t + ;)
§=0
and all frequencies appearing above belong to Iy, = [ng — my,ng + mi] C
[ng — mg,ngr1 — mgy1 — 1]. Note that the Iy are disjoint. Thus we can
define a; and o for j = ny — my, ..., Ng41 — Mmp41 — 1 by the trigonometric
polynomial expansion
Ngp1—mpy1—1

fr(fk) (t) cos 2mngt = Z A, €08 2TM(t + Q).

m=ng—mj
Then (3.3) can be written as

NN41—My41—1

1

\/Tﬂ Z aj COS 27Tjt,

J=1

and we have checked that this converges weakly to ). Since we have the
estimate

m Ne—mi
H(Z_ T )ajcomﬁH < l7®]|, < xR
j=1  j=1 2
for ng —myi < m < ngyp — Mgy, with Ay, = Vk/2 i ng—mi <m <

Ng+1 — Mir1, (1.2) should also converge weakly to @, thus completing the
proof. [
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