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Any variance mixture of Gaussian distributions can be a limit distribution of
trigonometric sums.
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1. INTRODUCTION

It is known that a lacunary sequence {cos 2πnjω} of trigonometric func-
tions has similar property to those of independent random variables when nj

grows rapidly. One of the most famous classical results concerning this phe-
nomenon is probably the following central limit theorem of Salem-Zygmund [1].

Theorem A. Let
(
Ω,F , P

)
be the Lebesgue probability space, i.e., Ω is

the unit interval [ 0, 1 ], F the σ-field consisting of Lebesgue measurable sets,
and P the Lebesgue measure on the unit interval. Suppose that a sequence
{nj} of integers satisfies Hadamard’s gap condition nj+1/nj > q > 1, that a
sequence {aj} of real numbers satisfies

A2
j = (a2

1 + · · ·+ a2
j )/2 →∞ and aj = o(Aj) as j →∞,

and that {αj} is an arbitrary sequence of real numbers. Then the law of the
normalized sum

1
AN

N∑
j=1

aj cos 2πnj(ω + αj)

with respect to the conditioned measure P ( · | B) = P ( · ∩B)/P (B) converges
to the standard Gaussian distribution provided that P (B) > 0.

By the above result, we see that the limit distribution of a normalized
sum of trigonometric functions is always Gaussian under Hadamard’s gap
condition and moderate behaviour of {an}. There have been various attempts
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to prove the central limit theorem under weaker gap conditions. We refer, for
example, to Erdös [2], Takahashi [9], and Fukuyama and Takahashi [3].

By the way, if we do not assume any lacunarity, the limit distribution is
not necessarily Gaussian. Actually, we have the following example of Erdös-
Fortet.

Example B. If {nj} is the set theoretical union {2j−2}j∈N∪ {2j−1}j∈N,
then the law of

1√
N/2

N∑
j=1

cos 2πnjω

converges to the mixture

Q( · ) =
∫ 1

0
N0,(cos πt)2( · ) dt,

of Gaussian distributions, where N0,v denotes the Gaussian distribution with
mean 0 and variance v and, in case v = 0, the delta distribution δ0 with unit
mass at 0.

One can find historical remarks on this example in Salem–Zygmund [8,
II, page 61] Kac [4, pages 646 and 664] and Kac [5].

In this note we prove that the class of limit distributions of non-lacunary
trigonometric sums is rather wide and includes important distributions. To
state this result precisely, we introduce here the notion of variance mixture of
Gaussian distributions.

A probability measure Q is said to be a variance mixture of Gaussian
distributions if there exists a probability distribution F on [ 0,∞) such that

(1.1) Q( · ) =
∫ ∞

0
N0,t( · ) F (dt).

It is known (cf. Kelker [6]) that Q is infinitely divisible if F is infinitely di-
visible, and that all symmetric α-stable distribution, the Cauchy distribution
and all Laplace distributions are variance mixtures of Gaussian distributions.

We are now in a position to state our result.

Theorem 1. For any variance mixture Q of Gaussian distributions, there
exist {aj}, Aj →∞ and {αj} such that the law of

(1.2)
1

AN

N∑
j=1

aj cos 2πj(ω + αj)

on Lebesgue probability space converges weakly to Q. In particular, any symme-
tric stable distribution, including the Cauchy distribution, can be a weak limit.



3 On limit distributions of trigonometric sums 21

2. MIXING CONVERGENCE

We first recall a notion and results concerning mixing convergence of
random variables.

Suppose that the law of a random variable Xn on some probability space
(Ω,F , P ) converges to some distribution Q. This convergence is said to be
mixing if the law of Xn under the conditioned measure P ( · | E) converges
weakly to Q for any E ∈ F with P (E) > 0.

Note that Theorem A states mixing convergence.
The following result (cf. Theorem 4.5 of Billingsley [1]) is essentially due

to Mogyoródi [7].

Theorem C. Suppose that the law of Xn converges to Q and this con-
vergence is mixing. If Yn converges in probability to some random variable Y ,
then the law of (Xn, Yn) converges weakly to the law of (X, Y ), where X is a
random variable independent of Y and distributed as Q.

3. PROOF OF THEOREM 1

We shall construct aj , Aj and αj such that Q defined by (1.1) is the limit
of (1.2).

Let g(t) be the generalized inverse of F (t) and let f(t) =
√

g(t). Then
f2(t) is a non-negative measurable function satisfying∣∣{ t ∈ [ 0, 1 ]

∣∣ f2(t) ≤ x
}∣∣ = F (x),

i.e., the law of f2(t) is F . Let us consider a sequence {εk} satisfying

εk ↓ 0 and εk

√
k ↑ ∞ as k →∞

and put

Ek =
{

t ∈ [ 0, 1 ]
∣∣ f(t) > εk

√
k

}
and f (k)(t) =

{
f(t) if t /∈ Ek,

εk

√
k if t ∈ Ek.

If we denote by f
(k)
n the nth partial sum of the Fourier series of f (k), we can

find a sequence {mk} of integers such that∥∥f (k) − f (k)
mk

∥∥
2
≤ εk/

√
k,

where ‖ · ‖2 denotes the L2[ 0, 1 ]-norm. We can also find a sequence {nk} of
integers such that

nk + mk < nk+1 −mk+1 and nk+1 ≥ 2nk, k ≥ 1.
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Since f (k)(t) converges to f(t) for all t, and because of the mixing con-
vergence of

1√
N/2

N∑
k=1

cos 2πnkt

to the standard normal distribution (cf. Theorem A), by Theorem C the law of

(3.1) f(t)× 1√
N/2

N∑
k=1

cos 2πnkt

on Lebesgue probability space converges weakly to that of f ×X, where X is
a standard normal random variable,independent of f . Since the law of f ×X
is Q, the law of (3.1) converges weakly to Q, too.

We have f (k)(t) = f(t) except for finitely many k, and thereby we have∣∣∣∣ 1√
N/2

N∑
k=1

{
f(t)− f (k)(t)

}
cos 2πnkt

∣∣∣∣ ≤ 1√
N/2

N∑
k=1

∣∣f(t)− f (k)(t)
∣∣ → 0.

Thus, the law of

(3.2)
1√
N/2

N∑
k=1

f (k)(t) cos 2πnkt

also converges weakly to Q. Hence, by the estimate∥∥∥∥ 1√
N/2

N∑
k=1

{
f (k)(t)− f (k)

mk
(t)

}
cos 2πnkt

∥∥∥∥
2

≤ 1√
N/2

N∑
k=1

∥∥{
f (k)(t)− f (k)

mk
(t)

}
cos 2πnkt

∥∥
2
≤ 1√

N/2

N∑
k=1

εk√
k
→ 0,

the law of

(3.3)
1√
N/2

N∑
k=1

f (k)
mk

(t) cos 2πnkt

converges weakly to Q.
Since f

(k)
mk (t) is an mkth partial sum of the Fourier series of f (k), we can

express it as

f (k)
mk

(t) =
mk∑
j=0

cos 2π(jt + γj).
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Therefore we have

f (k)
mk

(t) cos 2πnkt =
1
2

mk∑
j=0

(cos 2π(nk + j)t + γj) + cos 2π(nk − j)t + γj)

and all frequencies appearing above belong to Ik = [nk − mk, nk + mk ] ⊂
[nk − mk, nk+1 − mk+1 − 1 ]. Note that the Ik are disjoint. Thus we can
define aj and αj for j = nk −mk, . . . , nk+1 −mk+1 − 1 by the trigonometric
polynomial expansion

f (k)
mk

(t) cos 2πnkt =
nk+1−mk+1−1∑

m=nk−mk

am cos 2πm(t + αm).

Then (3.3) can be written as

1√
N/2

nN+1−mN+1−1∑
j=1

aj cos 2πjt,

and we have checked that this converges weakly to Q. Since we have the
estimate ∥∥∥∥( m∑

j=1

−
nk−mk∑

j=1

)
aj cos 2πjt

∥∥∥∥
2

≤
∥∥f (k)

∥∥
2
≤ εk

√
k

for nk −mk ≤ m < nk+1 −mk+1, with Am =
√

k/2 if nk −mk ≤ m <
nk+1 −mk+1, (1.2) should also converge weakly to Q, thus completing the
proof. �
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