ON LIMIT DISTRIBUTIONS OF TRIGONOMETRIC SUMS

KATUSI FUKUYAMA and SHIGERU TAKAHASHI

Any variance mixture of Gaussian distributions can be a limit distribution of trigonometric sums.

AMS 2000 Subject Classification: 60F15, 42A55.

 $Key \ words:$ trigonometric series, variance mixture, central limit theorem.

1. INTRODUCTION

It is known that a lacunary sequence $\{\cos 2\pi n_j\omega\}$ of trigonometric functions has similar property to those of independent random variables when n_j grows rapidly. One of the most famous classical results concerning this phenomenon is probably the following central limit theorem of Salem-Zygmund [1].

THEOREM A. Let (Ω, \mathcal{F}, P) be the Lebesgue probability space, i.e., Ω is the unit interval [0,1], \mathcal{F} the σ -field consisting of Lebesgue measurable sets, and P the Lebesgue measure on the unit interval. Suppose that a sequence $\{n_j\}$ of integers satisfies Hadamard's gap condition $n_{j+1}/n_j > q > 1$, that a sequence $\{a_i\}$ of real numbers satisfies

$$A_j^2 = (a_1^2 + \dots + a_j^2)/2 \to \infty$$
 and $a_j = o(A_j)$ as $j \to \infty$,

and that $\{\alpha_j\}$ is an arbitrary sequence of real numbers. Then the law of the normalized sum

$$\frac{1}{A_N} \sum_{j=1}^N a_j \cos 2\pi n_j (\omega + \alpha_j)$$

with respect to the conditioned measure $P(\cdot | B) = P(\cdot \cap B)/P(B)$ converges to the standard Gaussian distribution provided that P(B) > 0.

By the above result, we see that the limit distribution of a normalized sum of trigonometric functions is always Gaussian under Hadamard's gap condition and moderate behaviour of $\{a_n\}$. There have been various attempts

REV. ROUMAINE MATH. PURES APPL., 53 (2008), 1, 19-24

to prove the central limit theorem under weaker gap conditions. We refer, for example, to Erdös [2], Takahashi [9], and Fukuyama and Takahashi [3].

By the way, if we do not assume any lacunarity, the limit distribution is not necessarily Gaussian. Actually, we have the following example of Erdös-Fortet.

Example B. If $\{n_j\}$ is the set theoretical union $\{2^j - 2\}_{j \in \mathbb{N}} \cup \{2^j - 1\}_{j \in \mathbb{N}}$, then the law of

$$\frac{1}{\sqrt{N/2}} \sum_{j=1}^{N} \cos 2\pi n_j \omega$$

converges to the mixture

$$Q(\,\cdot\,) = \int_0^1 N_{0,(\cos\pi t)^2}(\,\cdot\,)\,\mathrm{d}t,$$

of Gaussian distributions, where $N_{0,v}$ denotes the Gaussian distribution with mean 0 and variance v and, in case v = 0, the delta distribution δ_0 with unit mass at 0.

One can find historical remarks on this example in Salem–Zygmund [8, II, page 61] Kac [4, pages 646 and 664] and Kac [5].

In this note we prove that the class of limit distributions of non-lacunary trigonometric sums is rather wide and includes important distributions. To state this result precisely, we introduce here the notion of *variance mixture of Gaussian distributions*.

A probability measure Q is said to be a variance mixture of Gaussian distributions if there exists a probability distribution F on $[0, \infty)$ such that

(1.1)
$$Q(\cdot) = \int_0^\infty N_{0,t}(\cdot) F(\mathrm{d}t).$$

It is known (cf. Kelker [6]) that Q is infinitely divisible if F is infinitely divisible, and that all symmetric α -stable distribution, the Cauchy distribution and all Laplace distributions are variance mixtures of Gaussian distributions.

We are now in a position to state our result.

THEOREM 1. For any variance mixture Q of Gaussian distributions, there exist $\{a_j\}, A_j \to \infty$ and $\{\alpha_j\}$ such that the law of

(1.2)
$$\frac{1}{A_N} \sum_{j=1}^N a_j \cos 2\pi j (\omega + \alpha_j)$$

on Lebesgue probability space converges weakly to Q. In particular, any symmetric stable distribution, including the Cauchy distribution, can be a weak limit.

2. MIXING CONVERGENCE

We first recall a notion and results concerning mixing convergence of random variables.

Suppose that the law of a random variable X_n on some probability space (Ω, \mathcal{F}, P) converges to some distribution Q. This convergence is said to be mixing if the law of X_n under the conditioned measure $P(\cdot | E)$ converges weakly to Q for any $E \in \mathcal{F}$ with P(E) > 0.

Note that Theorem A states mixing convergence.

The following result (cf. Theorem 4.5 of Billingsley [1]) is essentially due to Mogyoródi [7].

THEOREM C. Suppose that the law of X_n converges to Q and this convergence is mixing. If Y_n converges in probability to some random variable Y, then the law of (X_n, Y_n) converges weakly to the law of (X, Y), where X is a random variable independent of Y and distributed as Q.

3. PROOF OF THEOREM 1

We shall construct a_j , A_j and α_j such that Q defined by (1.1) is the limit of (1.2).

Let g(t) be the generalized inverse of F(t) and let $f(t) = \sqrt{g(t)}$. Then $f^2(t)$ is a non-negative measurable function satisfying

$$\left|\left\{ t \in [0,1] \mid f^2(t) \le x \right\}\right| = F(x),$$

i.e., the law of $f^2(t)$ is F. Let us consider a sequence $\{\varepsilon_k\}$ satisfying

$$\varepsilon_k \downarrow 0$$
 and $\varepsilon_k \sqrt{k} \uparrow \infty$ as $k \to \infty$

and put

$$E_k = \left\{ t \in [0,1] \mid f(t) > \varepsilon_k \sqrt{k} \right\} \text{ and } f^{(k)}(t) = \left\{ \begin{array}{l} f(t) & \text{if } t \notin E_k, \\ \varepsilon_k \sqrt{k} & \text{if } t \in E_k. \end{array} \right.$$

If we denote by $f_n^{(k)}$ the *n*th partial sum of the Fourier series of $f^{(k)}$, we can find a sequence $\{m_k\}$ of integers such that

$$\left\|f^{(k)} - f^{(k)}_{m_k}\right\|_2 \le \varepsilon_k / \sqrt{k},$$

where $\|\cdot\|_2$ denotes the $L^2[0,1]$ -norm. We can also find a sequence $\{n_k\}$ of integers such that

$$n_k + m_k < n_{k+1} - m_{k+1}$$
 and $n_{k+1} \ge 2n_k$, $k \ge 1$.

Since $f^{(k)}(t)$ converges to f(t) for all t, and because of the mixing convergence of

$$\frac{1}{\sqrt{N/2}} \sum_{k=1}^{N} \cos 2\pi n_k t$$

to the standard normal distribution (cf. Theorem A), by Theorem C the law of

(3.1)
$$f(t) \times \frac{1}{\sqrt{N/2}} \sum_{k=1}^{N} \cos 2\pi n_k t$$

on Lebesgue probability space converges weakly to that of $f \times X$, where X is a standard normal random variable, independent of f. Since the law of $f \times X$ is Q, the law of (3.1) converges weakly to Q, too.

We have $f^{(k)}(t) = f(t)$ except for finitely many k, and thereby we have

$$\left|\frac{1}{\sqrt{N/2}}\sum_{k=1}^{N}\left\{f(t) - f^{(k)}(t)\right\}\cos 2\pi n_{k}t\right| \leq \frac{1}{\sqrt{N/2}}\sum_{k=1}^{N}\left|f(t) - f^{(k)}(t)\right| \to 0.$$

Thus, the law of

(3.2)
$$\frac{1}{\sqrt{N/2}} \sum_{k=1}^{N} f^{(k)}(t) \cos 2\pi n_k t$$

also converges weakly to Q. Hence, by the estimate

$$\left\|\frac{1}{\sqrt{N/2}}\sum_{k=1}^{N}\left\{f^{(k)}(t) - f^{(k)}_{m_{k}}(t)\right\}\cos 2\pi n_{k}t\right\|_{2}$$

$$\leq \frac{1}{\sqrt{N/2}}\sum_{k=1}^{N}\left\|\left\{f^{(k)}(t) - f^{(k)}_{m_{k}}(t)\right\}\cos 2\pi n_{k}t\right\|_{2} \leq \frac{1}{\sqrt{N/2}}\sum_{k=1}^{N}\frac{\varepsilon_{k}}{\sqrt{k}} \to 0$$

the law of

(3.3)
$$\frac{1}{\sqrt{N/2}} \sum_{k=1}^{N} f_{m_k}^{(k)}(t) \cos 2\pi n_k t$$

converges weakly to Q.

Since $f_{m_k}^{(k)}(t)$ is an m_k th partial sum of the Fourier series of $f^{(k)}$, we can express it as

$$f_{m_k}^{(k)}(t) = \sum_{j=0}^{m_k} \cos 2\pi (jt + \gamma_j).$$

Therefore we have

$$f_{m_k}^{(k)}(t)\cos 2\pi n_k t = \frac{1}{2}\sum_{j=0}^{m_k} (\cos 2\pi (n_k + j)t + \gamma_j) + \cos 2\pi (n_k - j)t + \gamma_j)$$

and all frequencies appearing above belong to $I_k = [n_k - m_k, n_k + m_k] \subset [n_k - m_k, n_{k+1} - m_{k+1} - 1]$. Note that the I_k are disjoint. Thus we can define a_j and α_j for $j = n_k - m_k, \ldots, n_{k+1} - m_{k+1} - 1$ by the trigonometric polynomial expansion

$$f_{m_k}^{(k)}(t)\cos 2\pi n_k t = \sum_{m=n_k-m_k}^{n_{k+1}-m_{k+1}-1} a_m \cos 2\pi m (t+\alpha_m).$$

Then (3.3) can be written as

$$\frac{1}{\sqrt{N/2}} \sum_{j=1}^{n_{N+1}-m_{N+1}-1} a_j \cos 2\pi j t,$$

and we have checked that this converges weakly to Q. Since we have the estimate

$$\left\| \left(\sum_{j=1}^{m} - \sum_{j=1}^{n_k - m_k} \right) a_j \cos 2\pi j t \right\|_2 \le \left\| f^{(k)} \right\|_2 \le \varepsilon_k \sqrt{k}$$

for $n_k - m_k \leq m < n_{k+1} - m_{k+1}$, with $A_m = \sqrt{k/2}$ if $n_k - m_k \leq m < n_{k+1} - m_{k+1}$, (1.2) should also converge weakly to Q, thus completing the proof. \Box

Acknowledgement. The authors would like to express their hearty gratitude to Prof. Maejima of Keio University for his helpful comments.

REFERENCES

- [1] P. Billingsley, Convergence of Probability Measures. Wiley, New York, 1968.
- [2] P. Erdös, On trigonometric sums with gaps. Magyar Tud. Akad. Mat. Kutato Int. Közl. 7 (1962), 37–42.
- [3] K. Fukuyama and S. Takahashi, The central limit theorem for lacunary series. Proc. Amer. Math. Soc. 127 (1999), 599–608.
- [4] M. Kac, Probability methods in some problems of analysis and number theory, Bull. Amer. Math. Soc. 55 (1949), 641–665.
- [5] M. Kac, Distribution properties of certain gap sequences. Bull. Amer. Math. Soc. Abstracts 53-7-290 (1947), 746.
- [6] D. Kelker, Infinite divisibility and variance mixtures of the normal distribution. Ann. Math. Statist. 42 (1971), 802–808.

- [7] J. Mogyoródi, A remark on stable sequences of random variables and a limit distribution theorem for a random sum of independent random variables. Acta Math. Acad. Sci. Hungar. 17 (1966), 402–409.
- [8] R. Salem and A. Zygmund, On lacunary trigonometric series, I, II. Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 333–338; 34 (1948), 54–62.
- [9] S. Takahashi, On lacunary trigonometric series. Proc. Japan Acad. 41 (1965), 503-506.

Received 5 March 2007

Kobe University Department of Mathematics Rokko, Kobe, 657-8501, Japan fukuyama@math.kobe-u.ac.jp