GENERAL A-ERGODIC THEORY: AN EXTENSION

UDREA PAUN

A first version of the general A-ergodic theory was given in [6]. It has applications
to the determination of basis of a strongly A-ergodic Markov chain (see [6] and
references therein), the perturbed Markov chains (see [7]), the design and analysis
of simulated annealing type algorithms (see [8]; for the simulated annealing see
also [4], [5], and [9]), the asymptotic behaviour of reliability (see [8]; see also [3])
etc. In this paper we set forth an extension of the general A-ergodic theory of
finite Markov chains.
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1. A-ERGODIC THEORY

A first version of the general A-ergodic theory was given in [6] (see also
[2] on the beginnings of ergodic theory and for some basic results of it). For
some applications of it see [6], [7], and [8] (see also [3], [4], [5], and [9]). In this
paper we set forth an extension of the general A-ergodic theory of finite Markov
chains. This more general theory is also called general A-ergodic theory. It
contains: 1) A-ergodic theory; 2) limit A-ergodic theory; 3) relations between
1) and 2). In this section we deal with A-ergodic theory.

Consider a finite Markov chain (X,,), -, with state space S = {1,2,...,r},
initial distribution pg, and transition matrices (P,),,. We frequently shall
refer to it as the (finite) Markov chain (P,), -, . For all integers m > 0, n > m,
define P, , = Ppy1 P2 .. Py = ((Pmn)”)_ The entries of a matrix Z
will be denoted Z;;.)

Set

i,j€8 " (

Par(E) = {A | A is a partition of E},
where FE is a nonempty set. We shall agree that the partitions do not contain
the empty set, except for some cases (if needed) where this will be specified.

Definition 1.1. Let Ay, Ay € Par (E). We say that A; is finer than Ag
it VV € Ay, 3W € Ay such that V C W.
Write A7 < As when Aj is finer than As.
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In A-ergodic theory the natural space is S x N, called state-time space.
Let ) # A C Sand () # B C N. Let ¥ € Par(A) (equivalently, we can consider
a o-algebra on A (it is known that for any finite o-algebra F there exists a
finite partition A such that F = o (A), where o (A) is the o-algebra generated
by A)). Frequently, when we only use a partition ¥ of A, we omit to say this.
The three definitions below generalize Definitions 1.2, 1.3, and 1.4 from [6] ([6]
corresponds to X = ({i}),c4), respectively.

Definition 1.2. Let ¢,5 € S. We say that ¢ and j are in the same weakly
ergodic class on A x B (or on A x B with respect to ¥, or on (A x B, ) when
confusion can arise) if VK € 3, Vm € B we have

Tim ™ (P )it = (Pran) k] = 0.
keK

AXBY) | . . .
Write %P J (with respect to ) (or i (4x5.%) j) when i and j are in

the same weakly ergodic class on A x B. Then AXB s an equivalence relation
and determines a partition A = A(A x B,X) = (C1,Cq,...,Cs) of S. The
sets C1,Cs,...,C5 are called weakly ergodic classes on A X B.

Definition 1.3. Let A = (C1,Cs,...,C5) be the partition of weakly
ergodic classes on A x B of a Markov chain. We say that the chain is weakly
A-ergodic on A x B. In particular, a weakly (S5)-ergodic chain on A x B is
called weakly ergodic on A x B for short.

Definition 1.4. Let (Cy,Cy,...,Cs) be the partition of weakly ergodic
classes on A x B of a Markov chain with state space S and A € Par(S). We
say that the chain is weakly [A]-ergodic on A x B if A < (C1,Cy,...,Cs).

In connection with the above notions and notation we mention some
special cases (X € Par(A)):

1. Ax B =8 x N. In this case we can write ~ instead of “<" (or b
SxN,%
instead of( N )) and can omit ‘on S x N’ in Definitions 1.2, 1.3, and 1.4.

. . . Bx) .
2. A = S. In this case we can write 2 instead of “%” (or (%) instead

S
of ! Xg’z)) and can replace ‘S x B’ by ‘(time set) B (with respect to )’

(or by (B,X)’) in Definitions 1.2, 1.3, and 1.4. A special subcase is B =
(m,X)

{m} (m > 0); in this case we can write ~ (or ~ ~ ) and can replace ‘on (time
set) {m}’ by ‘at time m’ in Definitions 1.2, 1.3, and 1.4.
A
3. B = N. In this case we can set < instead of 2 (or () instead of
A
( XE’E)) and can replace ‘A x N’ by ‘(state set) A (with respect to )’ (or by
‘(A,%)’) in Definitions 1.2, 1.3, and 1.4.
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PROPOSITION 1.5. Let 1,39 € Par (A) with X1 < Xo.

@ 1f i VEP G then ¢ WET

(ii) If the Markov chain (Pp), >, is weakly [A]- or A-ergodic on (A x B,
Y1), then it is weakly [A]-ergodic on (A x B, Xs).

Proof. Obvious. [

Remark 1.6. For Proposition 1.5 an important case is ¥1 = ({i});c4 and
Yo = (A). As to (ii) we show that weak A-ergodicity on (A x B,X;) does not
imply weak A-ergodicity on (A x B, 35). For this, let

0 1
Pn_P_<1 0), Vn > 1.

We take A =S = {1,2}, 31 = ({1},{2}), and ¥ = ({1,2}). Then (P,),,~,
is weakly ({1}, {2})-ergodic (A x B = S x N) with respect to ¥; and weakly
ergodic (A = (5) and A x B =S x N) with respect to Xs.

The three definitions below generalize Definitions 1.5, 1.6, and 1.7 from
[6], respectively.

Definition 1.7. Let ¢, 5 € S. We say that ¢ and j are in the same uniformly
weakly ergodic class on Ax B (or on Ax B with respect to ¥, or on (A x B, X))
when confusion can arise) if VK € ¥ we have

nh—{go Z [(Pm,n)ilc - (Pm,n)jk] =0
keK

uniformly with respect to m € B.

. u,(AXBS) |
~ J

.. . u,AXB . . . . .
Write i ““~ j (with respect to Y) (ori ) when 7 and j are in

the same uniformly weakly ergodic class on Ax B. Then wXP is an equivalence
relation and determines a partition A = A (A x B, %) = (Uy,Us,...,U;) of S.
The sets Uy, Us, ..., U; are called uniformly weakly ergodic classes on A X B.

Definition 1.8. Let A = (Uy,Us,...,U;) be the partition of uniformly
weakly ergodic classes on A x B of a Markov chain. We say that the chain is
uniformly weakly A-ergodic on A x B. In particular, a uniformly weakly (.5)-
ergodic chain on A x B is called uniformly weakly ergodic on A x B for short.

Definition 1.9. Let (Uy, Us,...,U;) be the partition of uniformly weakly
ergodic classes on A x B of a Markov chain with state space S and A €
Par(S). We say that the chain is uniformly weakly [A]-ergodic on A x B if
A= (U, Us,...,Up).

As for weak A-ergodicity we mention some special cases (X € Par(A)):
u

. . . LSxN b
1. Ax B=S x N. In this case we can write ~ instead of "'~ (or <

instead of u7(SvaN7Z)) and can omit ‘on S x N’ in Definitions 1.7, 1.8, and 1.9.
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B

. . B . S (BX) .
2. A = S.In this case we can write < instead of "~ (or (%) instead

(SxB,% , :
of "X )) and can replace ‘S x B’ by ‘(time set) B (with respect to 3)’ (or

by (B, X)’) in Definitions 1.7, 1.8, and 1.9.
u,AXxN u,(A,X)

. . ,A . ) :
3. B = N. In this case we can write X instead of "~ (or "~ instead

A
of " va’E)) and can replace ‘A x N’ by ‘(state set) A (with respect to ¥)’ (or

by ‘(A,X)’) in Definitions 1.7, 1.8, and 1.9.

PROPOSITION 1.10. Let 1,9 € Par (A) with 31 < Y.

AxB,)Y AxB.,Y
(i) 1 i BT S e, BT

(ii) If the Markov chain (Py), >, is uniformly weakly [A]- or A-ergodic
on (A x B,X4), then it is uniformly weakly [Al]-ergodic on (A x B,%5).

Proof. Obvious. [0
The result below generalizes Proposition 1.8 from [6].

PROPOSITION 1.11. The following statements hold (here we only use a

partition 3 € Par(A)).

Q) If i "R, then i 2P j.

(i) If the chain is uniformly weakly [A]- or A-ergodic on A x B, then it
is weakly [A]-ergodic on A x B.

Proof. Obvious. [

If B is finite this result can be strengthened (the result below is a genera-
lization of Proposition 1.9 from [6]).

PROPOSITION 1.12. Suppose that B is finite.

(i) iu’f}vaj if and only if ; A%B j.

(ii) The chain is uniformly weakly [A]-ergodic on A x B if and only if it
is weakly [A]-ergodic on A x B.

(iii) The chain is uniformly weakly A-ergodic on A X B if and only if it
is weakly A-ergodic on A X B.

Proof. Obvious. [

The above result implies that the case where B is finite is not important.
The two definitions below generalize Definitions 1.10 and 1.11 from [6],
respectively.

Definition 1.13. Let C be a weakly ergodic class on A x B. Let ) # Ag C
P
A for which 3K, Ko, ..., K, € ¥ such that Ag = |J K,. Let 0 # By C B.

u=1

We say that C is a strongly ergodic class on Ay x By with respect to A x B
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(and X) if Vi € C, VK € ¥ with K C Ay, Ym € By the limit

lim 3 (Paa)iy = omic = o (C)
JEK

exists and does not depend on <.
Definition 1.14. Let C be a uniformly weakly ergodic class on A x B.
p
Let @ # Ap C A for which 3K, K»,..., K, € ¥ such that Ay = |J K,. Let

u=1
() # By C B. We say that C is a uniformly strongly ergodic class on Ay x By
with respect to A x B (and X) if Vi € C, VK € ¥ with K C Aj the limit

nh—>rgo Z (Pm,m+n)ij ‘= O0m,K — Om,K (C)
jeK
exists uniformly with respect to m € By and does not depend on .

In connection with the last two definitions we mention some special cases:

1. A x B = Ay x By. In this case we can say that C is a strongly (re-
spectively, uniformly strongly) ergodic class on A x B. A special subcase is
Ax B =Aygx By=5xN and C' = S when we can say that the Markov chain
itself is strongly (respectively, uniformly strongly) ergodic.

2. A= Ap=S. In this case we can say that C is a strongly (respectively,
uniformly strongly) ergodic class on (time set) By with respect to (time set)
B. If B = By, then we can say that C is a strongly (respectively, uniformly
strongly) ergodic class on (time set) B. A special subcase of the case A =
Ap = S and B = By is B = By = {m} when we can say that C is a strongly
(respectively, uniformly strongly) ergodic class at time m.

3. B = By = N. In this case we can say that C'is a strongly (respectively,
uniformly strongly) ergodic class on (state set) Ao with respect to (state set)
A. If A = Ap, then we can say that C is a strongly (respectively, uniformly
strongly) ergodic class on (state set) A.

The result below generalizes Theorem 1.12 from [6].

THEOREM 1.15. The following statements hold (we only use a partition
Y € Par(A)).

(i) If U is a uniformly strongly ergodic class on Ag x By with respect to
A X B, then there exists a (unique) strongly ergodic class C' on Ay X By (with
respect to Ay X By) and XN Ay such that U C C.

(ii) If U is a uniformly strongly ergodic class on A X B, then there exists
a (unique) strongly ergodic class C on A x B such that U C C. Moreover, the
class C cannot include another uniformly strongly ergodic class on A x B. In
other words, a strongly ergodic class on A x B includes at most a uniformly
strongly ergodic class on A x B. If B is finite, then U = C.
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Proof. (i) As U is included in a uniformly weakly ergodic class on Agx By,
there exists a weakly ergodic class C' on Ag x By (see Proposition 1.11(i)) such
that U C C. Obviously, C' is unique since it belongs to a unique partition of
S. But because VK € ¥ with K C Ag, Ym € By, 3¢ € U such that the limit

B 3 (Pl = ok
JEK
exists, we get that C' is a strongly ergodic class on Ay x By.
(ii) The first half is as in (i) with the only difference that U is also a
uniformly weakly ergodic class on A x B. Further, suppose that there exists

another uniformly strongly ergodic class U; on A x B such that Uy C C
(Uﬂ U, = @) Let i € U and 7; € U;. From

> Prmen)iy = D Prmin)iys | < | X (Pmnin)iy = Om i |+
JEK JjEK jEK
Homrx = Y (Pmmin)y,; |, VK €3, ¥m € B, ¥n > 1,
jEK

. u,A . . . .
we get that ¢ P i1. Hence there exists a uniformly strongly ergodic class
V on A x B such that U UU; C V, and we have reached a contradiction.
Obviously, we have U = C when B is finite because of Proposition 1.12(i). O

The two definitions below generalize Definitions 1.13 and 1.14 from [6],
respectively.

Definition 1.16. Consider a weakly (respectively, uniformly weakly) A-
ergodic chain on A x B (with respect to ). We say that the chain is strongly
(respectively, uniformly strongly) A-ergodic on A x B if any C € A is a
strongly (respectively, uniformly strongly) ergodic class on Ax B. In particular,
a strongly (respectively, uniformly strongly) (S)-ergodic chain on A x B is
called strongly (respectively, uniformly strongly) ergodic on A x B for short.

Definition 1.17. Consider a weakly (respectively, uniformly weakly) [A]-
ergodic chain on A x B. We say that the chain is strongly (respectively, uni-
formly strongly) [A]-ergodic on A x B if any C' € A is included in a strongly
(respectively, uniformly strongly) ergodic class on A x B.

Also, in these definitions we can simplify the language when referring to
A and B (and X). These are left to the reader.

PROPOSITION 1.18. Let ¥1,%y € Par(A) with 31 =< Xo. If the chain
(Pn)p>1 is strongly (respectively, uniformly strongly) [A]- or A-ergodic on

(A x B,%q), then it is strongly (respectively, uniformly strongly) [Al]-ergodic
on (A x B,¥s).
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Proof. Obvious. [

Complete A-ergodic problem. It has a ‘weak-strong’ part and one ‘uni-
form weak-uniform strong’. The ‘weak-strong’ part refers to the determination
of all distinct partitions A = A(Ax B,X) 0 # A C S, ¥ € Par(A), and
) # B C N) for which the chain is weakly A-ergodic on A x B (with respect
to ) and the determination, for any C' belonging to these partitions, of the

P
largest, if any, Ag = Ao (C) € Awith Ag = |J Ky, where K1, Ko, ..., K, € ¥,
u=1
and By = By (C) C B for which it is strongly ergodic on Ay x By with respect
to Ax B (and ¥). The ‘uniform weak-uniform strong’ part refers to the deter-
mination of all distinct partitions A = A (A x B, X)) for which the chain is uni-
formly weakly A-ergodic on A x B (with respect to ¥) and the determination,
for any U belonging to these partitions, of the largest, if any, A9 = Ao (U) C A
P
with Ag = |J Ky, where K1, Ky, ..., K, € 3, and By = By (U) C B for which
u=1
it is uniformly strongly ergodic on Ag x By with respect to A x B (and X).

In connection with the above problem we mention the result below (it is

a generalization of the result from Remark 1.15 in [6]).

PROPOSITION 1.19. Let ) # A1, A2 C S and () # By,By C N. Let X1 €
Par (A1) and X9 € Par(Ag). If Ay C Ay,31 C X9, B C B, and the chain
is weakly (respectively, uniformly weakly) Ai-ergodic on (A x B1,%1) and
weakly (respectively, uniformly weakly) [As]- or Ag-ergodic on (Ay X Bg, ¥a),
then Ag < Aj.

Proof. Obvious. [

2. LIMIT A-ERGODIC THEORY

In this section we deal with a generalization of the limit A-ergodic the-
ory from [6]. This generalization will be also called the limit A-ergodic the-
ory. Moreover, we shall indicate some connections between this and A-ergodic
theory.

We shall agree that when writing

lim lim a
U0 vooe  bY?

where a,, € R, Vu,v € N with u > uy, v > v (u) , we assume that Jug > ug
such that

3 lim aye, Yu > ug.
vV—00

As in Section 1, we consider ) # A C S and ¥ € Par(A). The three
definitions below generalize Definitions 2.1, 2.2, and 2.3 from [6], respectively.
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Definition 2.1. Let 7,5 € S. We say that ¢ and j are in the same limit
weakly ergodic class on A (or on A with respect to X, or on (A,X) when
confusion can arise) if VK € ¥ we have

Jm tim S [Pk — (Pran)je] = 0.
keK

1L(AX
Write ¢ < J (with respect to ) (or i AL j) when ¢ and j are in
I,A
the same limit weakly ergodic class on A. Then ~ is an equivalence relation
and determines a partition A = A (A, %) = (L1, Lo, ..., Ly) of S. The sets
Li, Lo, ..., L, are called limit weakly ergodic classes on A.

Definition 2.2. Let A = (L1, Lo, ..., L) be the partition of limit weakly
ergodic classes on A. We say that the chain is limit weakly A-ergodic on A. In
particular, a limit weakly (S)-ergodic chain on A is called limit weakly ergodic
on A for short.

Definition 2.3. Let (L1, La, ..., Ly,) be the partition of limit weakly er-
godic classes on A of a Markov chain with state space S and A € Par(S). We
say that the chain is limit weakly [A} -ergodic on Aif A <X (Ly,Lo,...,Ly).

In the above definitions we have used A only for differing from Section 1,
where we have used A. This section is called ‘Limit A-ergodic theory’, but
not ‘Limit A-ergodic theory’ since the former is simply a generic name.

If A =S then in the above deﬁmtlons we can omit ‘on S’ and can write

L(5,%)
).
PROPOSITION 2.4. Let ¥1,%9 € Par (A) with 31 < Y.

() 1f i VR, then i PORP 5.
(i) If the chain (P, )n21 is limit weakly [A]- or A-ergodic on (A,X1),
then it is limit weakly [A]-ergodic on (A, 3s).

Proof. Obvious. [0

I . l,S X
~ instead of ~ (or ~ instead of ’

The definition below generalizes Definition 2.5 from [6].
Deﬁm’tz’on 2.5. Let 0 # Ay C A for which 3K, Ky, ..., K, € ¥ such that
Ag = U K,. Let L be a limit weakly ergodic class on A. We say that L is a

limit strongly ergodic class on Ay with respect to A (and X) if Vi € L, VK € &
with K C Ag the limit

iy 3Py o = o
jeK

exists and does not depend on 1.
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For simplification, in the above definition we say that L is a limit strongly
ergodic class on A (with respect to ¥) when A = Ay and L is a limit strongly
ergodic class when A = Ag = S.

The two definitions below generalize Definitions 2.6 and 2.7 from [6],
respectively.

Definition 2.6. Let (Py),>; be a limit weakly A-ergodic Markov chain

on A. We say that the chain is limit strongly A-ergodic on A if any L € A is
a limit strongly ergodic class on A.

Definition 2.7. Let (Py),»; be a limit weakly [A]-ergodic Markov chain

on A. We say that the chain is limit strongly [A] -ergodic on A if any L € A
is included in a limit strongly ergodic class on A.

In the last two definitions we can omit ‘on A’ if A = 6S.

PROPOSITION 2.8. Let 31,%9 € Par(A) with 31 < Xo. If the chain
(Pn)p>1 @8 limit strongly [A]- or A-ergodic on (A, %1), then it is limit strongly
[Al-ergodic on (A,%s).

Proof. Obvious. [0

Complete limit A-ergodic problem. This consists in the determination
of all distinct partitions A = A(A,%) (0 # A C S, ¥ € Par(A)) for which

the chain is limit weakly A-ergodic on A and the determination, for any L
belonging to these partitions, of the largest, if any, A9 = Ag (L) C A with

P
Ag = U Ky, where K1, Ko, ..., K, € ¥, for which it is limit strongly ergodic
k=1

on Ay with respect to A. (We say ‘Complete limit A-ergodic problem’, but
not ‘Complete limit A-ergodic problem’ since the former is simply a generic
name.)

In connection with the above problem, we have the following result (it is
a generalization of the result from Remark 2.8 in [6]).

PROPOSITION 2.9. Let ) # Ay, Ay € S. Let ¥y € Par(4y) and ¥ €
Par (A2). If A1 C Az, ¥y C ¥, and the chain is limit weakly Aj-ergodic on
(A1,%1) and limit weakly [Ag]- or Ag-ergodic on (Ag,Xs), then Ay =< Aj.

Proof. Obvious. [0

We shall now indicate connections between A-ergodic theory and limit
A-ergodic theory. We begin with the basic result (it is a generalization of
Theorem 2.9 from [6]).

THEOREM 2.10. The following statements hold (we only use a partition
¥ € Par(A)).
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(@) If i 2 4, then i '< j.

(ii) If 4 AxP J, then i % J, if 3m >0 such that B2 {m,m+1,...} (in
particular, if B =N we obtain (i)).

(iii) If the chain is weakly [A]- or A-ergodic on A, then it is limit weakly
[A]-ergodic on A.

(iv) If the chain is weakly [A]- or A-ergodic on A x B, then it is limit
weakly [A]-ergodic on A, if Im > 0 such that B 2 {m,m +1,...} (in partic-
ular, if B =N we obtain (iii)).

Proof. Obviously, (ii)=-(i) and (iv)=-(iii).
(ii) Obvious.
(iv) This follows from (ii). O

Remark 2.11. Theorem 2.10 does not provide a result similar to (iii) and
(iv) in the ‘strong’ case. For this, see Remark 2.10 from [6].

The following result (it is a generalization of Theorem 2.12 from [6]) is
a criterion of strong [A]-ergodicity (respectively, A-ergodicity) when we know
that 3 lim > (Ppn)ij, Vi € S, VK € X, Vm € B.

T jeK

THEOREM 2.12. Consider a Markov chain (P,),~,. Then the chain is
strongly [A]-ergodic (respectively, A-ergodic) on A x B if and only if

(i) it is weakly [A]-ergodic (respectively, A-ergodic) on A X B,
and

(ii) 3 lim ) (Pmun)ij, Vie S, VK € ¥, Vm € B.

n—oo jeK
Proof. Obvious. [

In the theorem below (it is a generalization of Theorem 2.13 from [6])
we give a converse result related to Remark 2.11.

THEOREM 2.13. Consider a Markov chain (Py),~, - If the chain is limit
strongly [A}—ergodio (respectively, A-ergodic) on A (with respect to ¥), then
VB C N with B D {m,m+1,...} for some m >0, 3A = A(Ax B,X) €
Par(S) with A < A such that it is strongly [A]-ergodic (respectively, A-
ergodic) on A X B.

Proof. Obviously, for any A x B and ¥ € Par(A4), 3A € Par(95) such
that the chain is weakly A-ergodic on A x B. As the chain is limit strongly
[A]—ergodic (respectively, A-ergodic) on A4, it is limit weakly [A] -ergodic (re-
spectively, A-ergodic) on A and 3 lim lim Y (Pnn)ij, Vi € S, VK € X.

In the limit weakly [A] -ergodic case, if A A A, it is easy to modify A such
that A < A while in the limit weakly A-ergodic case, by Theorem 2.10, we
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have A < A. From 3 lim > (Ppn)ij, Vi € S, VK € X, Vm > mg (3mg
=0 jeK
(mop > 0) because the chain is finite (see Definitions 2.5, 2.6, and 2.7)), we
have 3 lim ) (Pyp)ij, Vi € S, VK € ¥, YVm > 0. Now, the result follows
N0 Gk

from Theorem 2.12. [

The three results below generalize Theorems 2.14, 2.15, and 2.16 from
[6], respectively.

The first one can be used to show that a chain is weakly A-ergodic on
A x B when we know that it is weakly [A]-ergodic on A x B.

THEOREM 2.14. Consider a Markov chain (P,),~, m > 0, and B 2
{m,m+1,...}. If the chain is -

(1) weakly [A]-ergodic on A x B,
and

(i) limit weakly A-ergodic on A,
then it is weakly A-ergodic on A X B.

Proof. Let A’ € Par(S) such that the chain is weakly A’-ergodic on
A x B. Then, from (i) and (ii) we have A < A’ and A’ < A, respectively.
Consequently, A’ = A. O

The second one is a criterion of strong A-ergodicity.

THEOREM 2.15. Consider a Markov chain (P,),~,, m > 0, and B D
{m,m+1,...}. If the chain is -

(i) weakly [Al-ergodic on A x B,
and

(ii) limit strongly A-ergodic on A,
then it is strongly A-ergodic on A X B.

Proof. From (ii), by Theorem 2.13, 3A’ € Par(S) with A’ < A such
that the chain is strongly A’-ergodic on A x B. It follows that it is weakly
A’-ergodic on A x B. By (i), we have A < A’. Further, by A’ < A and A < A/,
we have A’ = A, i.e., the chain is strongly A-ergodic on A x B. [

The third one is a criterion of strong A-ergodicity when we know that
a chain is strongly A’-ergodic on A x B, where B D {m,m + 1,...} for some
m > 0, but we do not know A’.

THEOREM 2.16. Consider a Markov chain (Py),~,, m > 0, and B D
{m,m +1,...}. If the chain is -

(i) weakly [Al]-ergodic on A X B,

(ii) limit weakly A-ergodic on A,
and
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(iil) strongly A’-ergodic on A x B,
then it is strongly A-ergodic on A X B.

Proof. We have A < A’ from (i) and (iii) and A" < A from (ii) and (iii).
It follows that A’ = A. O

For the generalization of other results from [6], a way is set forth below.
We call it the reduced matriz method.

Let E = (E;j) be a real m x n matrix. Let 0 # U C {1,2,...,m},
0#V C{l,2,...,n}, and ¥ = (K1, Ks,...,K,) € Par (V). Define

_ vV _ vV _
Ev = (Eij)icu, jeqio,.mny B = EBijlicqio,.myjev:  Eu = (Eijliey, jev

(/1
1

: ify=u,
. {v} _ :
Z=Zi)icqr 2, v} je(1 2 pt  LKn = 1

0 if y # x,

vz’y6{172""’p}?

n

Bl = max > [E|

7j=1
(the co-norm of E), and
E*=(E}), El=> By Vie{l,2,....m}, Vje{L,2,...,p}.
keK;
We call ET = (EZ';) the reduced matriz of E (on (V,X); ET = ET (V,X),
i.e., it depends of (V, X)) (if confusion can arise we write E*" or ET(V"¥) instead
of ET)).

The operators (), (-)V, ()f, ()T, and ||| - ||| have the following basic
properties.

PRrROPOSITION 2.17. Let E be a real m x n matriz and F and G two
real n X p matrices. Let ) # U C {1,2,...,m}, 0 #V C {1,2,...,p}, and
Y= (Ky,Ks,...,K;) € Par (V). Then the following statements hold.

(i) (EF), = EyF, (EF)” = EFY, and (EF)}, = EyFV.

(ii) If E,F > 0,U and V are as above, and O #W C {1,2,...,n}, then

(EF), > E Fw, (EF)” > EVEY,, and (EF)}; > E}f FY.

(iii) Ft = FV Z.
(iv) (=F)" = —F*and (F+G)" = F +G*.
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v) (EF)t = EF™.
V1) NE Moo < [FV |0 < WENoo and HIFF Nl = [[|[FYV |||, i F = 0.

Proof. (i) Obvious.
(ii) By (i) we have

(EF)y = EyF > E(‘}VFw, (EF)V = EFY > EWF‘/“//7
and
(EF)}, = EyFV > EY FY..
(iii) Obvious.
(iv) By (iii) we have

()" =(-F)V Z=—-FVZ=—F*
and
(F+Q)"'=(F+@) z2=(F'+G")Z2=F'Z2+G"Z=F"+G".
(v) By (i) and (iii) we have
(EF)" = (EF)Y Z=EF"Z = EF*.
(vi) By (iii) we have
I e = Y 2l < NE o M Z1He = Tl < T1E o
Now, if F' > 0 then we have

q q q |Vl
Il = o= = max 33 (P sy =
1F oo = max p (F7)yj = max > (FVZ)i; = max )ik Zkj
j=1 7=1 7=1 k=1
vi v
— \4 L V \%4
= max > (FY), > Zry = max > (FY) = |[FV]l]..
k=1 j=1 k=1

THEOREM 2.18. Consider a Markov chain (Py),> -
(i) 3A € Par(S) such that the chain is strongly [A]- or A-ergodic on
A x B if and only if 3 lim (P, )" :=1I,,, Ym € B.
n—oo

(ii) 3A € Par(S) such that the chain is limit strongly [A]- or A-ergodic
on A if and only if 3 lim lim (P, )" :=1IL

m—00 N—00

Proof. Obvious. [0

Definition 2.19. Under the conditions of Theorem 2.18 we say that a
strongly [A]- or A-ergodic Markov chain on A x B has limit A if II,,, = A,
Vm € B. We say that II from Theorem 2.18 is the (iterated) limit of limit
strongly [A]- or A-ergodic Markov chain on A.
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The result below generalizes Theorem 2.6 from [8] (see also Theorem 2.27
from [6]).

THEOREM 2.20. Consider a Markov chain (Py),~,. Then the chain is
strongly ergodic on A with limit 11 if and only if it is limit strongly ergodic on
A with limit 11.

Proof. “=" If the chain is strongly ergodic on A with limit II then, by
Theorem 2.18, lim (P, ,)" = II, Vm > 0 (X € Par(A)). It follows that
n—oo

lim lim (P,,)" = II, ie., the chain is limit strongly ergodic on A with
m—00 N—0o0
limit II.
“«<" If the chain is limit strongly ergodic on A with limit II then, by
Theorem 2.18, Imgy > 0 such that 3 lim (P, )", Ym > mg, and
n—oo

lim lim (Pp,)" =1L

m—00 N—00
Further, by Proposition 2.17(v), 3 lim (P,,»)", Ym > 0. Now, we show that
n—oo
lim (Py,,)t =11, Vm > 0. Setting Q;, = lim (P, )", Vm > 0, we have
n—oo

n—oo

110Pa)™ = T[] o = [P (Pen)™ = PnalT] [ <

< 1Pkl 1 CPen)™ =Tl = [ (Pn)™ =TI} <
< H}(Pkn)Jr - kaoo +|Qr — ||| oo, VE,m,n, 0 <m <k <n,
which implies
limsup |||(Prpn)™ = 10|, <@k —l|, Vk,m, 0<m <k.

Since lim @,, = II, we have
m—0oQ

limsup ||| (Pn,n) " = T|[, < inf [[|Qx —Tl|e =0, ¥m >0.

Therefore, lim (Pm’n)Jr = II, Ym > 0, i.e., the chain is strongly ergodic

n—oo

on A. O

PROPOSITION 2.21. Let (P,),~; and (P))n>1 be two Markov chains.
Then B

P = (Pl <

S H‘Pm,n_P;n,

n—m
e € B~ Pl o, 0<m <.
u=1

Proof. The first inequality follows from Proposition 2.17 (iv) and (vi)
while the second one follows directly by induction (see also Proposition 3.11
from [6]). O
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Definition 2.22 ([7]). Let (P),>; and (P},)n>1 be two Markov chains.
We say that (P,)n>1 is a perturbation of the first type of (Pn),> if

D2 = Pall] o < oo

n>1

The result below generalizes Theorem 1.43 from [7]. (In fact, Theo-

(
rem 1.43 (with a different proof) is due to J. Hajnal (see [1]).)
(P))n>1 a pertur-
bation of the first type of it. Then A €Par(S) such that (P,),>; is strongly
A-ergodic on A if and only if A" € Par(S) such that (Pn)n21 is strongly
A’-ergodic on A.

[
THEOREM 2.23. Let (Py),>, be a Markov chain and

Proof. By symmetry, it is sufficient to suppose that (), is strongly
A-ergodic on A and prove that JA’ € Par(S) such that (P)),,>; is strongly
A’-ergodic on A.

First, we show that ((P7’n7n)+)n>m is a Cauchy sequence, Vm > 0. Let
m > 0. We have

11CPmn)" = Frnnsn) o = W Prs (Frn)™ = Bt (Phni) || <
<|lPm t!H 1P * = () *H!oo = IFLa) ™ = Pl Ml <

< |PL)T = (Pea) | + 11 (Pen)™ = (Prnn) | o +
+ [||(Pingp) ™ — (Pt,,n+p)+moo =

<2 > |1Pe=Pill A (Pen) T = (Prmap) |l YRot, m <t <n, Vp>0.
E>t+1
Let € > 0. Then dt. > m such that

2 Y (1A Bl <5 et
k>t+1

Because ((Pu7v)+)v>u is convergent, Vu > 0 (see Theorem 2.18(i)), it is a
Cauchy sequence, Yu > 0. Hence dn. > t. such that

H’<Pt€7n)+ - (Pt&n"l‘p)—’—‘”oo < E? Vn Z Ne, Vp Z 0

2
Further, it follows that 3dn. > m such that
e €
‘H Pr/nnerJr‘H <§+§:E, Vnzna, VPZO
(this is equivalent to lim ((P;, )" — (P}, ,1,)") = 0 uniformly with respect
n— 00 ’

top > 0), ie., ((P,’n7n)+)n>m is a Cauchy sequence, therefore is convergent.

Now, by Theorem 2.18(i), A’ € Par (S) such that the chain (P)),>1 is
strongly A’-ergodic on A. [
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The result below generalizes Theorem 1.28 from [7].

THEOREM 2.24. Let (P,),>; be a strongly A-ergodic Markov chain on
A and (P})n>1 a perturbation of the first type of it.

(1) (Pn),> is limit weakly A-ergodic on A if and only if (P),>, is limit
weakly A-ergodic on A.

(i) lim lim (Ppyn)t =11 if and only if lim lim (P, n)+ =1L

m—00 N—00 -~ m—00 Nn—00 ’

(iil) (Pn),>; is limit strongly A-ergodic on A with (iterated) limit 11 if

and only if (P},),> is limit strongly A-ergodic on A with (iterated) limit TI.

. .. . . . LA
Proof. (i) Let 4,5 € S. Then the conclusion is equivalent to i ~ j for
. o LA .- .
(Pn)p>1 if and only if i ~ j for (P})n>1. By symmetry, it is sufficient to prove

that ¢ lr’éj for (P))p>1 when i lr’éj for (P,),~; - By Proposition 2.21 we have

lim Timsup ||| (Pmn)™ = (Br,0) |||, = 0.

m—oo n_00

(In [7] we proved that 3 lim Hle,n - P n”’ , Vm > 0; the problem whether
n—oo ’ o0
3 1im | ||(Prnn)™ = (Phy) ||, ¥m > 0, is left to the reader.)

Now, from
o Prin = Br)ie] | <D0 [(Prn)ik = (Prn)g] |+
keK keK
+ Z [(Pm,n)zk - (Pm,n)jk:| + Z [(Pm,n)jk - ( r/n,n)jk] <

keK keK

<

Z [(Pm,n)zk - (Pm,n)jk]

keK

+

+2 H‘(P7n7n)Jr — (Pé%n)ﬂHoo, Ym,n, 0<m<n, VK € X,
we have

Jim lim Y [(Py, )i — (Pra)je] =0, VK €3
keK
(3 lim Y [(Phn)ik — (Ph)ik], Ym > mg (mg > 0), VK € X, because of
n—00 Lok ’ ’
the hypothesis and Theorem 2.23), i.e., @ W j for (P)n>1.

(ii) By symmetry, it is sufficient to prove that lim lim (P )T =
m—00 Nn—00 ’
when lim lim (P, )" =1I (3 lim (P}, )", Vm > mqy (mg > 0), because of
n—o00 ’

m—00 N—00
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the hypothesis and Theorem 2.23). Obviously, this follows from
[[Pr) ™ =T < [(Pru) ™ = (Prn) "] o +
+ H‘(Pm,n)+ — HWOO, Ym,n, 0 <m <n.

(iii) This follows from (i) and (ii) (see also Theorem 2.18 and Defini-
tion 2.19). O

Finally, we give an example.

Ezample 2.25. Let

0O 1 0 O
1 0 0 O
Po=| o o0 1 0 |=P =1
1 2 1
i1 10

Let X1 = ({i})i€{172’3’4} and Yo = ({1,2},{3},{4}) (£1,%2 € Par ({1, 2,3,4})).
Because
" { P ifnisodd
pP" =

P? if n is even,

where

P? =

BN O O
= O = O
= —_- O O
oS O OO

the chain (F),>; is weakly ({i});c(134)-ergodic and is not strongly
({})ieq1,2,3,4y-ergodic with respect to £1 (Ax B = {1,2,3,4}xN) and strongly
({1,2},{3},{4})-ergodic with respect to Xs.

Now, consider the chain

1 1

L 1-L 0 0

1— 5 0 0 =

/ n n

P, = , Vn>1.

0 1 1—- L L
2n? n? 2n2
i1 2_ 1 1_ 1 3
4 4n2 4 4n2 4 4n2 4n?

The chain (P},)n>1 is a perturbation of the first type of (F,),, . It follows
from Theorem 2.23 that JA" € Par ({1,2,3,4}) such that (P,),,-, is strongly
Al-ergodic with respect to ¥y because (F,),>; is strongly ({1,2},{3},{4})-

ergodic with respect to Xo. In particular, this implies that 3 lim (P;l ”)zk ,
0 ke ’
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Vi€ {1,2,3,4}, VK € ¥y. Hence 3 lim P (X], € K), VK € X9, where (X))~
n—oo =

is a chain with state space {1,2,3,4} and transition matrices (P)),>1. Fur-
ther, by Theorem 2.24, (P)),>1 is limit strongly ({1, 2}, {3}, {4})-ergodic with
respect to X9 and has (iterated) limit

=

= — O O
o O oo

Bl O ==

because (Py),,~; is limit strongly ({1,2}, {3}, {4})-ergodic with respect to X
and has limit II above.

REFERENCES

[1] J. Hajnal, Weak ergodicity in non-homogeneous Markov chains. Proc. Cambridge Philos.
Soc. 54 (1958), 233-246.

[2] M. Iosifescu, Finite Markov Processes and Their Applications. Wiley, Chichester & Edi-
tura Tehnica, Bucharest, 1980; corrected republication by Dover, Mineola, N.Y., 2007.

[3] M.V. Koutras, On a Markov chain approach for the study of reliability structures. J.
Appl. Probab. 33 (1996), 357-367.

[4] P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications.
D. Reidel, Dordrecht, 1987.

[6] W. Niemiro, Limit distributions of simulated annealing Markov chains. Discuss. Math.
Algebra Stoch. Methods 15 (1995), 241-269.

[6] U. Paun, General A-ergodic theory of finite Markov chains. Math. Rep. (Bucur.) 8(58)
(2006), 83-117.

[7] U. Piun, Perturbed finite Markov chains. Math. Rep. (Bucur.) 9(59) (2007), 183-210.

[8] U. Paun, A-ergodic theory and simulated annealing. Math. Rep. (Bucur.) 9(59) (2007),
279-303.

[9] G. Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo Methods: A
Mathematical Introduction, 2nd Edition. Springer-Verlag, Berlin, 2003.

Received 26 March 2007 “Gheorghe Mihoc—Caius lacob” Institute
of Mathematical Statistics and Applied Mathematics
Calea 18 Septembrie nr. 13
050711 Bucharest 5, Romania
paun@csm.ro



