GENERAL Δ -ERGODIC THEORY: AN EXTENSION

UDREA PĂUN

A first version of the general Δ -ergodic theory was given in [6]. It has applications to the determination of basis of a strongly Δ -ergodic Markov chain (see [6] and references therein), the perturbed Markov chains (see [7]), the design and analysis of simulated annealing type algorithms (see [8]; for the simulated annealing see also [4], [5], and [9]), the asymptotic behaviour of reliability (see [8]; see also [3]) etc. In this paper we set forth an extension of the general Δ -ergodic theory of finite Markov chains.

AMS 2000 Subject Classification: 60J10.

Key words: finite Markov chain, general Δ -ergodic theory, Δ -ergodic theory, limit Δ -ergodic theory.

1. Δ -ERGODIC THEORY

A first version of the general Δ -ergodic theory was given in [6] (see also [2] on the beginnings of ergodic theory and for some basic results of it). For some applications of it see [6], [7], and [8] (see also [3], [4], [5], and [9]). In this paper we set forth an extension of the general Δ -ergodic theory of finite Markov chains. This more general theory is also called *general* Δ -ergodic theory. It contains: 1) Δ -ergodic theory; 2) limit Δ -ergodic theory; 3) relations between 1) and 2). In this section we deal with Δ -ergodic theory.

Consider a finite Markov chain $(X_n)_{n\geq 0}$ with state space $S = \{1, 2, \ldots, r\}$, initial distribution p_0 , and transition matrices $(P_n)_{n\geq 1}$. We frequently shall refer to it as the (finite) Markov chain $(P_n)_{n\geq 1}$. For all integers $m \geq 0$, n > m, define $P_{m,n} = P_{m+1}P_{m+2} \ldots P_n = ((P_{m,n})_{ij})_{i,j\in S}$. (The entries of a matrix Z will be denoted Z_{ij} .)

Set

 $Par(E) = \{\Delta \mid \Delta \text{ is a partition of } E\},\$

where E is a nonempty set. We shall agree that the partitions do not contain the empty set, except for some cases (if needed) where this will be specified.

Definition 1.1. Let $\Delta_1, \Delta_2 \in Par(E)$. We say that Δ_1 is finer than Δ_2 if $\forall V \in \Delta_1, \exists W \in \Delta_2$ such that $V \subseteq W$.

Write $\Delta_1 \leq \Delta_2$ when Δ_1 is finer than Δ_2 .

REV. ROUMAINE MATH. PURES APPL., 53 (2008), 2-3, 209-226

In Δ -ergodic theory the natural space is $S \times \mathbf{N}$, called *state-time space*. Let $\emptyset \neq A \subseteq S$ and $\emptyset \neq B \subseteq \mathbf{N}$. Let $\Sigma \in \operatorname{Par}(A)$ (equivalently, we can consider a σ -algebra on A (it is known that for any finite σ -algebra \mathcal{F} there exists a finite partition Δ such that $\mathcal{F} = \sigma(\Delta)$, where $\sigma(\Delta)$ is the σ -algebra generated by Δ)). Frequently, when we only use a partition Σ of A, we omit to say this. The three definitions below generalize Definitions 1.2, 1.3, and 1.4 from [6] ([6] corresponds to $\Sigma = (\{i\})_{i \in A}$), respectively.

Definition 1.2. Let $i, j \in S$. We say that i and j are in the same weakly ergodic class on $A \times B$ (or on $A \times B$ with respect to Σ , or on $(A \times B, \Sigma)$ when confusion can arise) if $\forall K \in \Sigma, \forall m \in B$ we have

$$\lim_{n \to \infty} \sum_{k \in K} \left[(P_{m,n})_{ik} - (P_{m,n})_{jk} \right] = 0.$$

Write $i \stackrel{A \times B}{\sim} j$ (with respect to Σ) (or $i \stackrel{(A \times B, \Sigma)}{\sim} j$) when i and j are in the same weakly ergodic class on $A \times B$. Then $\stackrel{A \times B}{\sim}$ is an equivalence relation and determines a partition $\Delta = \Delta (A \times B, \Sigma) = (C_1, C_2, \ldots, C_s)$ of S. The sets C_1, C_2, \ldots, C_s are called *weakly ergodic classes on* $A \times B$.

Definition 1.3. Let $\Delta = (C_1, C_2, \ldots, C_s)$ be the partition of weakly ergodic classes on $A \times B$ of a Markov chain. We say that the chain is weakly Δ -ergodic on $A \times B$. In particular, a weakly (S)-ergodic chain on $A \times B$ is called weakly ergodic on $A \times B$ for short.

Definition 1.4. Let (C_1, C_2, \ldots, C_s) be the partition of weakly ergodic classes on $A \times B$ of a Markov chain with state space S and $\Delta \in Par(S)$. We say that the chain is weakly $[\Delta]$ -ergodic on $A \times B$ if $\Delta \preceq (C_1, C_2, \ldots, C_s)$.

In connection with the above notions and notation we mention some special cases ($\Sigma \in Par(A)$):

1. $A \times B = S \times \mathbf{N}$. In this case we can write ~ instead of $\stackrel{S \times \mathbf{N}}{\sim}$ (or $\stackrel{\Sigma}{\sim}$ instead of $\stackrel{(S \times \mathbf{N}, \Sigma)}{\sim}$) and can omit 'on $S \times \mathbf{N}$ ' in Definitions 1.2, 1.3, and 1.4.

2. A = S. In this case we can write $\stackrel{B}{\sim}$ instead of $\stackrel{S \times B}{\sim}$ (or $\stackrel{(B,\Sigma)}{\sim}$ instead of $\stackrel{(S \times B,\Sigma)}{\sim}$) and can replace $S \times B$ by '(time set) B (with respect to Σ)' (or by ' (B,Σ) ') in Definitions 1.2, 1.3, and 1.4. A special subcase is $B = \{m\} \ (m \geq 0)$; in this case we can write $\stackrel{m}{\sim}$ (or $\stackrel{(m,\Sigma)}{\sim}$) and can replace 'on (time set) $\{m\}$ ' by 'at time m' in Definitions 1.2, 1.3, and 1.4.

3. $B = \mathbf{N}$. In this case we can set $\stackrel{A}{\sim}$ instead of $\stackrel{A \times \mathbf{N}}{\sim}$ (or $\stackrel{(A, \Sigma)}{\sim}$ instead of $\stackrel{(A \times \mathbf{N}, \Sigma)}{\sim}$) and can replace $(A \times \mathbf{N})$ by (state set) A (with respect to Σ)' (or by $((A, \Sigma))$) in Definitions 1.2, 1.3, and 1.4.

PROPOSITION 1.5. Let $\Sigma_1, \Sigma_2 \in Par(A)$ with $\Sigma_1 \preceq \Sigma_2$.

(i) If $i \stackrel{(A \times B, \Sigma_1)}{\sim} j$, then $i \stackrel{(A \times B, \Sigma_2)}{\sim} j$.

(ii) If the Markov chain $(P_n)_{n\geq 1}$ is weakly $[\Delta]$ - or Δ -ergodic on $(A \times B, \Sigma_1)$, then it is weakly $[\Delta]$ -ergodic on $(A \times B, \Sigma_2)$.

Proof. Obvious. \Box

Remark 1.6. For Proposition 1.5 an important case is $\Sigma_1 = (\{i\})_{i \in A}$ and $\Sigma_2 = (A)$. As to (ii) we show that weak Δ -ergodicity on $(A \times B, \Sigma_1)$ does not imply weak Δ -ergodicity on $(A \times B, \Sigma_2)$. For this, let

$$P_n = P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \forall n \ge 1.$$

We take $A = S = \{1, 2\}$, $\Sigma_1 = (\{1\}, \{2\})$, and $\Sigma_2 = (\{1, 2\})$. Then $(P_n)_{n \ge 1}$ is weakly $(\{1\}, \{2\})$ -ergodic $(A \times B = S \times \mathbf{N})$ with respect to Σ_1 and weakly ergodic $(\Delta = (S)$ and $A \times B = S \times \mathbf{N})$ with respect to Σ_2 .

The three definitions below generalize Definitions 1.5, 1.6, and 1.7 from [6], respectively.

Definition 1.7. Let $i, j \in S$. We say that i and j are in the same uniformly weakly ergodic class on $A \times B$ (or on $A \times B$ with respect to Σ , or on $(A \times B, \Sigma)$ when confusion can arise) if $\forall K \in \Sigma$ we have

$$\lim_{n \to \infty} \sum_{k \in K} \left[(P_{m,n})_{ik} - (P_{m,n})_{jk} \right] = 0$$

uniformly with respect to $m \in B$.

Write $i \stackrel{u,A \times B}{\sim} j$ (with respect to Σ) (or $i \stackrel{u,(A \times B,\Sigma)}{\sim} j$) when i and j are in the same uniformly weakly ergodic class on $A \times B$. Then $\stackrel{u,A \times B}{\sim}$ is an equivalence relation and determines a partition $\Delta = \Delta (A \times B, \Sigma) = (U_1, U_2, \ldots, U_t)$ of S. The sets U_1, U_2, \ldots, U_t are called *uniformly weakly ergodic classes on* $A \times B$.

Definition 1.8. Let $\Delta = (U_1, U_2, \dots, U_t)$ be the partition of uniformly weakly ergodic classes on $A \times B$ of a Markov chain. We say that the chain is uniformly weakly Δ -ergodic on $A \times B$. In particular, a uniformly weakly (S)ergodic chain on $A \times B$ is called uniformly weakly ergodic on $A \times B$ for short.

Definition 1.9. Let (U_1, U_2, \ldots, U_t) be the partition of uniformly weakly ergodic classes on $A \times B$ of a Markov chain with state space S and $\Delta \in$ $\operatorname{Par}(S)$. We say that the chain is uniformly weakly $[\Delta]$ -ergodic on $A \times B$ if $\Delta \leq (U_1, U_2, \ldots, U_t)$.

As for weak Δ -ergodicity we mention some special cases ($\Sigma \in Par(A)$):

1. $A \times B = S \times \mathbf{N}$. In this case we can write $\stackrel{u}{\sim}$ instead of $\stackrel{u,S \times \mathbf{N}}{\sim}$ (or $\stackrel{u,\Sigma}{\sim}$ instead of $\stackrel{u,(S \times \mathbf{N},\Sigma)}{\sim}$) and can omit 'on $S \times \mathbf{N}$ ' in Definitions 1.7, 1.8, and 1.9.

2. A = S. In this case we can write $\overset{u,B}{\sim}$ instead of $\overset{u,S\times B}{\sim}$ (or $\overset{u,(B,\Sigma)}{\sim}$ instead of $\overset{u,(S\times B,\Sigma)}{\sim}$) and can replace $S \times B$ by '(time set) B (with respect to Σ)' (or by ' (B,Σ) ') in Definitions 1.7, 1.8, and 1.9.

3. $B = \mathbf{N}$. In this case we can write $\overset{u,A}{\sim}$ instead of $\overset{u,A\times\mathbf{N}}{\sim}$ (or $\overset{u,(A,\Sigma)}{\sim}$ instead of $\overset{u,(A\times\mathbf{N},\Sigma)}{\sim}$) and can replace $(A \times \mathbf{N})$ by (state set) A (with respect to Σ)' (or by (A, Σ)) in Definitions 1.7, 1.8, and 1.9.

PROPOSITION 1.10. Let $\Sigma_1, \Sigma_2 \in Par(A)$ with $\Sigma_1 \preceq \Sigma_2$.

(i) If $i \stackrel{u,(A \times B, \Sigma_1)}{\sim} j$, then $i \stackrel{u,(A \times B, \Sigma_2)}{\sim} j$.

(ii) If the Markov chain $(P_n)_{n\geq 1}$ is uniformly weakly $[\Delta]$ - or Δ -ergodic on $(A \times B, \Sigma_1)$, then it is uniformly weakly $[\Delta]$ -ergodic on $(A \times B, \Sigma_2)$.

Proof. Obvious. \Box

The result below generalizes Proposition 1.8 from [6].

PROPOSITION 1.11. The following statements hold (here we only use a partition $\Sigma \in Par(A)$).

(i) If $i \overset{u,A \times B}{\sim} j$, then $i \overset{A \times B}{\sim} j$.

(ii) If the chain is uniformly weakly $[\Delta]$ - or Δ -ergodic on $A \times B$, then it is weakly $[\Delta]$ -ergodic on $A \times B$.

Proof. Obvious. \Box

If B is finite this result can be strengthened (the result below is a generalization of Proposition 1.9 from [6]).

PROPOSITION 1.12. Suppose that B is finite.

(i) $i \stackrel{u,A \times B}{\sim} j$ if and only if $i \stackrel{A \times B}{\sim} j$.

(ii) The chain is uniformly weakly $[\Delta]$ -ergodic on $A \times B$ if and only if it is weakly $[\Delta]$ -ergodic on $A \times B$.

(iii) The chain is uniformly weakly Δ -ergodic on $A \times B$ if and only if it is weakly Δ -ergodic on $A \times B$.

Proof. Obvious. \Box

The above result implies that the case where B is finite is not important. The two definitions below generalize Definitions 1.10 and 1.11 from [6], respectively.

Definition 1.13. Let C be a weakly ergodic class on $A \times B$. Let $\emptyset \neq A_0 \subseteq A$ for which $\exists K_1, K_2, \ldots, K_p \in \Sigma$ such that $A_0 = \bigcup_{u=1}^p K_u$. Let $\emptyset \neq B_0 \subseteq B$. We say that C is a strongly ergodic class on $A_0 \times B_0$ with respect to $A \times B$ (and Σ) if $\forall i \in C$, $\forall K \in \Sigma$ with $K \subseteq A_0$, $\forall m \in B_0$ the limit

$$\lim_{n \to \infty} \sum_{j \in K} (P_{m,n})_{ij} := \sigma_{m,K} = \sigma_{m,K} (C)$$

exists and does not depend on i.

Definition 1.14. Let C be a uniformly weakly ergodic class on $A \times B$. Let $\emptyset \neq A_0 \subseteq A$ for which $\exists K_1, K_2, \ldots, K_p \in \Sigma$ such that $A_0 = \bigcup_{u=1}^p K_u$. Let $\emptyset \neq B_0 \subseteq B$. We say that C is a uniformly strongly ergodic class on $A_0 \times B_0$ with respect to $A \times B$ (and Σ) if $\forall i \in C$, $\forall K \in \Sigma$ with $K \subseteq A_0$ the limit

$$\lim_{n \to \infty} \sum_{j \in K} \left(P_{m,m+n} \right)_{ij} := \sigma_{m,K} = \sigma_{m,K} \left(C \right)$$

exists uniformly with respect to $m \in B_0$ and does not depend on *i*.

In connection with the last two definitions we mention some special cases: 1. $A \times B = A_0 \times B_0$. In this case we can say that C is a *strongly* (respectively, *uniformly strongly*) ergodic class on $A \times B$. A special subcase is $A \times B = A_0 \times B_0 = S \times \mathbf{N}$ and C = S when we can say that the Markov chain itself is *strongly* (respectively, *uniformly strongly*) ergodic.

2. $A = A_0 = S$. In this case we can say that C is a strongly (respectively, uniformly strongly) ergodic class on (time set) B_0 with respect to (time set) B. If $B = B_0$, then we can say that C is a strongly (respectively, uniformly strongly) ergodic class on (time set) B. A special subcase of the case $A = A_0 = S$ and $B = B_0$ is $B = B_0 = \{m\}$ when we can say that C is a strongly (respectively, uniformly strongly) ergodic class at time m.

3. $B = B_0 = \mathbf{N}$. In this case we can say that C is a strongly (respectively, uniformly strongly) ergodic class on (state set) A_0 with respect to (state set) A. If $A = A_0$, then we can say that C is a strongly (respectively, uniformly strongly) ergodic class on (state set) A.

The result below generalizes Theorem 1.12 from [6].

THEOREM 1.15. The following statements hold (we only use a partition $\Sigma \in Par(A)$).

(i) If U is a uniformly strongly ergodic class on $A_0 \times B_0$ with respect to $A \times B$, then there exists a (unique) strongly ergodic class C on $A_0 \times B_0$ (with respect to $A_0 \times B_0$) and $\Sigma \cap A_0$ such that $U \subseteq C$.

(ii) If U is a uniformly strongly ergodic class on $A \times B$, then there exists a (unique) strongly ergodic class C on $A \times B$ such that $U \subseteq C$. Moreover, the class C cannot include another uniformly strongly ergodic class on $A \times B$. In other words, a strongly ergodic class on $A \times B$ includes at most a uniformly strongly ergodic class on $A \times B$. If B is finite, then U = C. Udrea Păun

Proof. (i) As U is included in a uniformly weakly ergodic class on $A_0 \times B_0$, there exists a weakly ergodic class C on $A_0 \times B_0$ (see Proposition 1.11(i)) such that $U \subseteq C$. Obviously, C is unique since it belongs to a unique partition of S. But because $\forall K \in \Sigma$ with $K \subseteq A_0$, $\forall m \in B_0$, $\exists i \in U$ such that the limit

$$\lim_{n \to \infty} \sum_{j \in K} \left(P_{m,m+n} \right)_{ij} := \sigma_{m,K}$$

exists, we get that C is a strongly ergodic class on $A_0 \times B_0$.

(ii) The first half is as in (i) with the only difference that U is also a uniformly weakly ergodic class on $A \times B$. Further, suppose that there exists another uniformly strongly ergodic class U_1 on $A \times B$ such that $U_1 \subseteq C$ $(U \cap U_1 = \emptyset)$. Let $i \in U$ and $i_1 \in U_1$. From

$$\begin{split} \sum_{j \in K} (P_{m,m+n})_{ij} &- \sum_{j \in K} (P_{m,m+n})_{i_1 j} \right| \leq \left| \sum_{j \in K} (P_{m,m+n})_{ij} - \sigma_{m,K} \right| + \\ &+ \left| \sigma_{m,K} - \sum_{j \in K} (P_{m,m+n})_{i_1 j} \right|, \quad \forall K \in \Sigma, \; \forall m \in B, \; \forall n \geq 1, \end{split}$$

we get that $i \sim^{u,A \times B} i_1$. Hence there exists a uniformly strongly ergodic class V on $A \times B$ such that $U \cup U_1 \subseteq V$, and we have reached a contradiction. Obviously, we have U = C when B is finite because of Proposition 1.12(i). \Box

The two definitions below generalize Definitions 1.13 and 1.14 from [6], respectively.

Definition 1.16. Consider a weakly (respectively, uniformly weakly) Δ ergodic chain on $A \times B$ (with respect to Σ). We say that the chain is strongly
(respectively, uniformly strongly) Δ -ergodic on $A \times B$ if any $C \in \Delta$ is a
strongly (respectively, uniformly strongly) ergodic class on $A \times B$. In particular,
a strongly (respectively, uniformly strongly) (S)-ergodic chain on $A \times B$ is
called strongly (respectively, uniformly strongly) ergodic on $A \times B$ for short.

Definition 1.17. Consider a weakly (respectively, uniformly weakly) $[\Delta]$ ergodic chain on $A \times B$. We say that the chain is strongly (respectively, uniformly strongly) $[\Delta]$ -ergodic on $A \times B$ if any $C \in \Delta$ is included in a strongly
(respectively, uniformly strongly) ergodic class on $A \times B$.

Also, in these definitions we can simplify the language when referring to A and B (and Σ). These are left to the reader.

PROPOSITION 1.18. Let $\Sigma_1, \Sigma_2 \in Par(A)$ with $\Sigma_1 \preceq \Sigma_2$. If the chain $(P_n)_{n\geq 1}$ is strongly (respectively, uniformly strongly) $[\Delta]$ - or Δ -ergodic on $(A \times B, \Sigma_1)$, then it is strongly (respectively, uniformly strongly) $[\Delta]$ -ergodic on $(A \times B, \Sigma_2)$.

Proof. Obvious. \Box

Complete Δ -ergodic problem. It has a 'weak-strong' part and one 'uniform weak-uniform strong'. The 'weak-strong' part refers to the determination of all distinct partitions $\Delta = \Delta (A \times B, \Sigma)$ ($\emptyset \neq A \subseteq S, \Sigma \in Par(A)$, and $\emptyset \neq B \subseteq \mathbf{N}$) for which the chain is weakly Δ -ergodic on $A \times B$ (with respect to Σ) and the determination, for any C belonging to these partitions, of the largest, if any, $A_0 = A_0(C) \subseteq A$ with $A_0 = \bigcup_{u=1}^p K_u$, where $K_1, K_2, \ldots, K_p \in \Sigma$, and $B_0 = B_0(C) \subseteq B$ for which it is strongly ergodic on $A_0 \times B_0$ with respect to $A \times B$ (and Σ). The 'uniform weak-uniform strong' part refers to the determination, for any U belonging to these partitions, of the largest, if any, $A_0 = A_0(C) \subseteq B$ (with respect to Σ) and the determination of all distinct partitions $\Delta = \Delta (A \times B, \Sigma)$ for which the chain is uniformly weakly Δ -ergodic on $A \times B$ (with respect to Σ) and the determination, for any U belonging to these partitions, of the largest, if any, $A_0 = A_0(U) \subseteq A$ with $A_0 = \bigcup_{u=1}^p K_u$, where $K_1, K_2, \ldots, K_p \in \Sigma$, and $B_0 = B_0(U) \subseteq B$ for which it is strongly ergodic to Σ) and the determination, for any U belonging to the partitions, of the largest, if any, $A_0 = A_0(U) \subseteq A$ with $A_0 = \bigcup_{u=1}^p K_u$, where $K_1, K_2, \ldots, K_p \in \Sigma$, and $B_0 = B_0(U) \subseteq B$ for which it is uniformly strongly ergodic on $A_0 \times B_0$ with respect to $A \times B$ (and Σ).

In connection with the above problem we mention the result below (it is a generalization of the result from Remark 1.15 in [6]).

PROPOSITION 1.19. Let $\emptyset \neq A_1, A_2 \subseteq S$ and $\emptyset \neq B_1, B_2 \subseteq \mathbf{N}$. Let $\Sigma_1 \in Par(A_1)$ and $\Sigma_2 \in Par(A_2)$. If $A_1 \subseteq A_2, \Sigma_1 \subseteq \Sigma_2, B_1 \subseteq B_2$, and the chain is weakly (respectively, uniformly weakly) Δ_1 -ergodic on $(A_1 \times B_1, \Sigma_1)$ and weakly (respectively, uniformly weakly) $[\Delta_2]$ - or Δ_2 -ergodic on $(A_2 \times B_2, \Sigma_2)$, then $\Delta_2 \preceq \Delta_1$.

Proof. Obvious. \Box

2. LIMIT Δ -ERGODIC THEORY

In this section we deal with a generalization of the limit Δ -ergodic theory from [6]. This generalization will be also called *the limit* Δ -ergodic theory. Moreover, we shall indicate some connections between this and Δ -ergodic theory.

We shall agree that when writing

$$\lim_{u \to \infty} \lim_{v \to \infty} a_{u,v},$$

where $a_{u,v} \in \mathbf{R}$, $\forall u, v \in \mathbf{N}$ with $u \ge u_1$, $v \ge v_1(u)$, we assume that $\exists u_0 \ge u_1$ such that

$$\exists \lim_{v \to \infty} a_{u,v}, \quad \forall u \ge u_0.$$

As in Section 1, we consider $\emptyset \neq A \subseteq S$ and $\Sigma \in Par(A)$. The three definitions below generalize Definitions 2.1, 2.2, and 2.3 from [6], respectively.

215

Udrea Păun

Definition 2.1. Let $i, j \in S$. We say that i and j are in the same limit weakly ergodic class on A (or on A with respect to Σ , or on (A, Σ) when confusion can arise) if $\forall K \in \Sigma$ we have

$$\lim_{m \to \infty} \lim_{n \to \infty} \sum_{k \in K} \left[(P_{m,n})_{ik} - (P_{m,n})_{jk} \right] = 0.$$

Write $i \stackrel{l,A}{\sim} j$ (with respect to Σ) (or $i \stackrel{l,(A,\Sigma)}{\sim} j$) when i and j are in the same limit weakly ergodic class on A. Then $\stackrel{l,A}{\sim}$ is an equivalence relation and determines a partition $\bar{\Delta} = \bar{\Delta}(A, \Sigma) = (L_1, L_2, \dots, L_u)$ of S. The sets L_1, L_2, \dots, L_u are called *limit weakly ergodic classes on* A.

Definition 2.2. Let $\overline{\Delta} = (L_1, L_2, \dots, L_u)$ be the partition of limit weakly ergodic classes on A. We say that the chain is *limit weakly* $\overline{\Delta}$ -ergodic on A. In particular, a limit weakly (S)-ergodic chain on A is called *limit weakly ergodic on* A for short.

Definition 2.3. Let (L_1, L_2, \ldots, L_u) be the partition of limit weakly ergodic classes on A of a Markov chain with state space S and $\overline{\Delta} \in \operatorname{Par}(S)$. We say that the chain is *limit weakly* $[\overline{\Delta}]$ -ergodic on A if $\overline{\Delta} \leq (L_1, L_2, \ldots, L_u)$.

In the above definitions we have used $\overline{\Delta}$ only for differing from Section 1, where we have used Δ . This section is called 'Limit Δ -ergodic theory', but not 'Limit $\overline{\Delta}$ -ergodic theory' since the former is simply a generic name.

If A = S then in the above definitions we can omit 'on S' and can write $\stackrel{l}{\sim}$ instead of $\stackrel{l,\Sigma}{\sim}$ (or $\stackrel{l,\Sigma}{\sim}$ instead of $\stackrel{l,(S,\Sigma)}{\sim}$).

PROPOSITION 2.4. Let $\Sigma_1, \Sigma_2 \in Par(A)$ with $\Sigma_1 \preceq \Sigma_2$.

(i) If $i \stackrel{l,(A,\Sigma_1)}{\sim} j$, then $i \stackrel{l,(A,\Sigma_2)}{\sim} j$.

(ii) If the chain $(P_n)_{n\geq 1}$ is limit weakly $[\Delta]$ - or Δ -ergodic on (A, Σ_1) , then it is limit weakly $[\Delta]$ -ergodic on (A, Σ_2) .

Proof. Obvious. \Box

The definition below generalizes Definition 2.5 from [6].

Definition 2.5. Let $\emptyset \neq A_0 \subseteq A$ for which $\exists K_1, K_2, \ldots, K_p \in \Sigma$ such that $A_0 = \bigcup_{k=1}^{p} K_u$. Let *L* be a limit weakly ergodic class on *A*. We say that *L* is a limit strongly ergodic class on A_0 with respect to *A* (and Σ) if $\forall i \in L, \forall K \in \Sigma$ with $K \subseteq A_0$ the limit

$$\lim_{m \to \infty} \lim_{n \to \infty} \sum_{j \in K} (P_{m,n})_{ij} := \sigma_K = \sigma_K(L)$$

exists and does not depend on i.

For simplification, in the above definition we say that L is a *limit strongly* ergodic class on A (with respect to Σ) when $A = A_0$ and L is a *limit strongly* ergodic class when $A = A_0 = S$.

The two definitions below generalize Definitions 2.6 and 2.7 from [6], respectively.

Definition 2.6. Let $(P_n)_{n\geq 1}$ be a limit weakly Δ -ergodic Markov chain on A. We say that the chain is *limit strongly* $\overline{\Delta}$ -ergodic on A if any $L \in \overline{\Delta}$ is a limit strongly ergodic class on A.

Definition 2.7. Let $(P_n)_{n\geq 1}$ be a limit weakly $[\bar{\Delta}]$ -ergodic Markov chain on A. We say that the chain is *limit strongly* $[\bar{\Delta}]$ -ergodic on A if any $L \in \bar{\Delta}$ is included in a limit strongly ergodic class on A.

In the last two definitions we can omit 'on A' if A = S.

PROPOSITION 2.8. Let $\Sigma_1, \Sigma_2 \in Par(A)$ with $\Sigma_1 \preceq \Sigma_2$. If the chain $(P_n)_{n\geq 1}$ is limit strongly $[\Delta]$ - or Δ -ergodic on (A, Σ_1) , then it is limit strongly $[\Delta]$ -ergodic on (A, Σ_2) .

Proof. Obvious. \Box

Complete limit Δ -ergodic problem. This consists in the determination of all distinct partitions $\overline{\Delta} = \overline{\Delta}(A, \Sigma)$ ($\emptyset \neq A \subseteq S, \Sigma \in Par(A)$) for which the chain is limit weakly $\overline{\Delta}$ -ergodic on A and the determination, for any Lbelonging to these partitions, of the largest, if any, $A_0 = A_0(L) \subseteq A$ with $A_0 = \bigcup_{k=1}^p K_u$, where $K_1, K_2, \ldots, K_p \in \Sigma$, for which it is limit strongly ergodic on A_0 with respect to A. (We say 'Complete limit Δ -ergodic problem', but not 'Complete limit $\overline{\Delta}$ -ergodic problem' since the former is simply a generic name.)

In connection with the above problem, we have the following result (it is a generalization of the result from Remark 2.8 in [6]).

PROPOSITION 2.9. Let $\emptyset \neq A_1, A_2 \subseteq S$. Let $\Sigma_1 \in Par(A_1)$ and $\Sigma_2 \in Par(A_2)$. If $A_1 \subseteq A_2, \Sigma_1 \subseteq \Sigma_2$, and the chain is limit weakly $\overline{\Delta}_1$ -ergodic on (A_1, Σ_1) and limit weakly $[\overline{\Delta}_2]$ - or $\overline{\Delta}_2$ -ergodic on (A_2, Σ_2) , then $\overline{\Delta}_2 \preceq \overline{\Delta}_1$.

Proof. Obvious. \Box

We shall now indicate connections between Δ -ergodic theory and limit Δ -ergodic theory. We begin with the basic result (it is a generalization of Theorem 2.9 from [6]).

THEOREM 2.10. The following statements hold (we only use a partition $\Sigma \in Par(A)$).

9

(i) If $i \stackrel{A}{\sim} j$, then $i \stackrel{l,A}{\sim} j$. (ii) If $i \stackrel{A \times B}{\sim} j$, then $i \stackrel{l,A}{\sim} j$, if $\exists m \ge 0$ such that $B \supseteq \{m, m+1, \ldots\}$ (in particular, if $B = \mathbf{N}$ we obtain (i)).

(iii) If the chain is weakly $[\Delta]$ - or Δ -ergodic on A, then it is limit weakly $[\Delta]$ -ergodic on A.

(iv) If the chain is weakly $[\Delta]$ - or Δ -ergodic on $A \times B$, then it is limit weakly $[\Delta]$ -ergodic on A, if $\exists m \geq 0$ such that $B \supseteq \{m, m+1, \ldots\}$ (in particular, if $B = \mathbf{N}$ we obtain (iii)).

Proof. Obviously, (ii) \Rightarrow (i) and (iv) \Rightarrow (iii). (ii) Obvious.

(iv) This follows from (ii).

Remark 2.11. Theorem 2.10 does not provide a result similar to (iii) and (iv) in the 'strong' case. For this, see Remark 2.10 from [6].

The following result (it is a generalization of Theorem 2.12 from [6]) is a criterion of strong $[\Delta]$ -ergodicity (respectively, Δ -ergodicity) when we know that $\exists \lim_{n \to \infty} \sum_{j \in K} (P_{m,n})_{ij}, \forall i \in S, \forall K \in \Sigma, \forall m \in B.$

THEOREM 2.12. Consider a Markov chain $(P_n)_{n\geq 1}$. Then the chain is strongly $[\Delta]$ -ergodic (respectively, Δ -ergodic) on $A \times B$ if and only if

(i) it is weakly $[\Delta]$ -ergodic (respectively, Δ -ergodic) on $A \times B$,

and

(ii)
$$\exists \lim_{n \to \infty} \sum_{j \in K} (P_{m,n})_{ij}, \forall i \in S, \forall K \in \Sigma, \forall m \in B.$$

Proof. Obvious.

In the theorem below (it is a generalization of Theorem 2.13 from [6]) we give a converse result related to Remark 2.11.

THEOREM 2.13. Consider a Markov chain $(P_n)_{n\geq 1}$. If the chain is limit strongly $|\Delta|$ -ergodic (respectively, Δ -ergodic) on A (with respect to Σ), then $\forall B \subseteq \mathbf{N} \text{ with } B \supseteq \{m, m+1, \ldots\} \text{ for some } m \ge 0, \exists \Delta = \Delta (A \times B, \Sigma) \in$ $\operatorname{Par}(S)$ with $\Delta \preceq \overline{\Delta}$ such that it is strongly $[\Delta]$ -ergodic (respectively, Δ ergodic) on $A \times B$.

Proof. Obviously, for any $A \times B$ and $\Sigma \in Par(A), \exists \Delta \in Par(S)$ such that the chain is weakly Δ -ergodic on $A \times B$. As the chain is limit strongly $|\bar{\Delta}|$ -ergodic (respectively, $\bar{\Delta}$ -ergodic) on A, it is limit weakly $|\bar{\Delta}|$ -ergodic (respectively, $\overline{\Delta}$ -ergodic) on A and $\exists \lim_{m \to \infty} \lim_{n \to \infty} \sum_{j \in K} (P_{m,n})_{ij}, \forall i \in S, \forall K \in \Sigma.$ In the limit weakly $|\Delta|$ -ergodic case, if $\Delta \not\leq \Delta$, it is easy to modify Δ such that $\Delta \preceq \overline{\Delta}$ while in the limit weakly $\overline{\Delta}$ -ergodic case, by Theorem 2.10, we have $\Delta \preceq \overline{\Delta}$. From $\exists \lim_{n \to \infty} \sum_{j \in K} (P_{m,n})_{ij}, \forall i \in S, \forall K \in \Sigma, \forall m \ge m_0 \ (\exists m_0 \ (m_0 \ge 0)$ because the chain is finite (see Definitions 2.5, 2.6, and 2.7)), we have $\exists \lim_{n \to \infty} \sum_{j \in K} (P_{m,n})_{ij}, \forall i \in S, \forall K \in \Sigma, \forall m \ge 0$. Now, the result follows from Theorem 2.12. \Box

The three results below generalize Theorems 2.14, 2.15, and 2.16 from [6], respectively.

The first one can be used to show that a chain is weakly Δ -ergodic on $A \times B$ when we know that it is weakly $[\Delta]$ -ergodic on $A \times B$.

THEOREM 2.14. Consider a Markov chain $(P_n)_{n\geq 1}$, $m\geq 0$, and $B\supseteq \{m, m+1, \ldots\}$. If the chain is (i) weakly $[\Delta]$ -ergodic on $A \times B$,

and

(ii) limit weakly Δ -ergodic on A, then it is weakly Δ -ergodic on $A \times B$.

Proof. Let $\Delta' \in \operatorname{Par}(S)$ such that the chain is weakly Δ' -ergodic on $A \times B$. Then, from (i) and (ii) we have $\Delta \preceq \Delta'$ and $\Delta' \preceq \Delta$, respectively. Consequently, $\Delta' = \Delta$. \Box

The second one is a criterion of strong Δ -ergodicity.

THEOREM 2.15. Consider a Markov chain $(P_n)_{n\geq 1}$, $m\geq 0$, and $B\supseteq \{m,m+1,\ldots\}$. If the chain is

(i) weakly $[\Delta]$ -ergodic on $A \times B$, and

(ii) limit strongly Δ -ergodic on A, then it is strongly Δ -ergodic on $A \times B$.

Proof. From (ii), by Theorem 2.13, $\exists \Delta' \in \operatorname{Par}(S)$ with $\Delta' \preceq \Delta$ such that the chain is strongly Δ' -ergodic on $A \times B$. It follows that it is weakly Δ' -ergodic on $A \times B$. By (i), we have $\Delta \preceq \Delta'$. Further, by $\Delta' \preceq \Delta$ and $\Delta \preceq \Delta'$, we have $\Delta' = \Delta$, i.e., the chain is strongly Δ -ergodic on $A \times B$. \Box

The third one is a criterion of strong Δ -ergodicity when we know that a chain is strongly Δ' -ergodic on $A \times B$, where $B \supseteq \{m, m+1, \ldots\}$ for some $m \ge 0$, but we do not know Δ' .

THEOREM 2.16. Consider a Markov chain $(P_n)_{n\geq 1}$, $m\geq 0$, and $B\supseteq \{m,m+1,\ldots\}$. If the chain is

(i) weakly $[\Delta]$ -ergodic on $A \times B$,

(ii) limit weakly Δ -ergodic on A,

and

(iii) strongly Δ' -ergodic on $A \times B$, then it is strongly Δ -ergodic on $A \times B$.

Proof. We have $\Delta \leq \Delta'$ from (i) and (iii) and $\Delta' \leq \Delta$ from (ii) and (iii). It follows that $\Delta' = \Delta$. \Box

For the generalization of other results from [6], a way is set forth below. We call it *the reduced matrix method*.

Let $E = (E_{ij})$ be a real $m \times n$ matrix. Let $\emptyset \neq U \subseteq \{1, 2, ..., m\}$, $\emptyset \neq V \subseteq \{1, 2, ..., n\}$, and $\Sigma = (K_1, K_2, ..., K_p) \in Par(V)$. Define $E_U = (E_{ij})_{i \in U, j \in \{1, 2, ..., n\}}, \quad E^V = (E_{ij})_{i \in \{1, 2, ..., m\}, j \in V}, \quad E^V_U = (E_{ij})_{i \in U, j \in V},$ $Z = (Z_{ij})_{i \in \{1, 2, ..., |V|\}, j \in \{1, 2, ..., p\}}, \quad Z^{\{y\}}_{K_x} = \begin{cases} \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix} & \text{if } y = x, \\ 0 & \text{if } y \neq x, \end{cases}$

 $\forall x, y \in \{1, 2, \dots, p\},\$

$$|||E|||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |E_{ij}|$$

(the ∞ -norm of E), and

$$E^+ = (E^+_{ij}), \quad E^+_{ij} = \sum_{k \in K_j} E_{ik}, \quad \forall i \in \{1, 2, \dots, m\}, \ \forall j \in \{1, 2, \dots, p\}.$$

We call $E^+ = (E_{ij}^+)$ the reduced matrix of E (on (V, Σ) ; $E^+ = E^+ (V, \Sigma)$, i.e., it depends of (V, Σ) (if confusion can arise we write E^{+V} or $E^{+(V,\Sigma)}$ instead of E^+)).

The operators $(\cdot)_U$, $(\cdot)^V$, $(\cdot)^V_U$, $(\cdot)^+$, and $||| \cdot |||_{\infty}$ have the following basic properties.

PROPOSITION 2.17. Let E be a real $m \times n$ matrix and F and G two real $n \times p$ matrices. Let $\emptyset \neq U \subseteq \{1, 2, ..., m\}, \ \emptyset \neq V \subseteq \{1, 2, ..., p\}, and$ $\Sigma = (K_1, K_2, ..., K_q) \in Par(V)$. Then the following statements hold. (i) $(EF)_U = E_U F$, $(EF)^V = EF^V$, and $(EF)_U^V = E_U F^V$. (ii) If $E, F \geq 0, U$ and V are as above, and $\emptyset \neq W \subseteq \{1, 2, ..., n\},$ then $(EF)_U \geq E_U^W F_W, \ (EF)^V \geq E^W F_W^V, and \ (EF)_U^V \geq E_U^W F_W^V.$

(iii)
$$F^+ = F^V Z$$
.

(iv) $(-F)^+ = -F^+ and (F+G)^+ = F^+ + G^+.$

(v) $(EF)^+ = EF^+$. (vi) $|||F^+|||_{\infty} \le |||F^V|||_{\infty} \le |||F|||_{\infty}$ and $|||F^+|||_{\infty} = |||F^V|||_{\infty}$ if $F \ge 0$. *Proof.* (i) Obvious.

(ii) By (i) we have

$$(EF)_U = E_U F \ge E_U^W F_W, \quad (EF)^V = EF^V \ge E^W F_W^V,$$

and

$$(EF)_U^V = E_U F^V \ge E_U^W F_W^V.$$

(iv) By (iii) we have

$$(-F)^{+} = (-F)^{V} Z = -F^{V} Z = -F^{+}$$

and

$$(F+G)^{+} = (F+G)^{V} Z = (F^{V}+G^{V}) Z = F^{V} Z + G^{V} Z = F^{+} + G^{+}.$$

(v) By (i) and (iii) we have

$$(EF)^{+} = (EF)^{V} Z = EF^{V} Z = EF^{+}.$$

(vi) By (iii) we have

$$\begin{split} \big| \big\| F^+ \big\| \big|_\infty &= \big| \big\| F^V Z \big\| \big|_\infty \leq \big| \big\| F^V \big\| \big|_\infty |\| Z \||_\infty = \big| \big\| F^V \big\| \big|_\infty \leq |\| F \||_\infty \,. \end{split}$$
 Now, if $F \geq 0$ then we have

$$|||F^+|||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^q (F^+)_{ij} = \max_{1 \le i \le n} \sum_{j=1}^q (F^V Z)_{ij} = \max_{1 \le i \le n} \sum_{j=1}^q \sum_{k=1}^{|V|} (F^V)_{ik} Z_{kj} =$$
$$= \max_{1 \le i \le n} \sum_{k=1}^{|V|} (F^V)_{ik} \sum_{j=1}^q Z_{kj} = \max_{1 \le i \le n} \sum_{k=1}^{|V|} (F^V)_{ik} = |||F^V|||_{\infty}. \quad \Box$$

THEOREM 2.18. Consider a Markov chain $(P_n)_{n\geq 1}$.

(i) $\exists \Delta \in \operatorname{Par}(S)$ such that the chain is strongly $[\Delta]$ - or Δ -ergodic on $A \times B$ if and only if $\exists \lim_{n \to \infty} (P_{m,n})^+ := \prod_m, \forall m \in B$. (ii) $\exists \Delta \in \operatorname{Par}(S)$ such that the chain is limit strongly $[\Delta]$ - or Δ -ergodic

(ii) $\exists \Delta \in \operatorname{Par}(S)$ such that the chain is limit strongly $[\Delta]$ - or Δ -ergodic on A if and only if $\exists \lim_{m \to \infty} \lim_{n \to \infty} (P_{m,n})^+ := \Pi$.

Proof. Obvious. \Box

Definition 2.19. Under the conditions of Theorem 2.18 we say that a strongly $[\Delta]$ - or Δ -ergodic Markov chain on $A \times B$ has limit Λ if $\Pi_m = \Lambda$, $\forall m \in B$. We say that Π from Theorem 2.18 is the *(iterated) limit* of limit strongly $[\Delta]$ - or Δ -ergodic Markov chain on A.

221

The result below generalizes Theorem 2.6 from [8] (see also Theorem 2.27 from [6]).

THEOREM 2.20. Consider a Markov chain $(P_n)_{n\geq 1}$. Then the chain is strongly ergodic on A with limit Π if and only if it is limit strongly ergodic on A with limit Π .

Proof. " \Rightarrow " If the chain is strongly ergodic on A with limit Π then, by Theorem 2.18, $\lim_{n\to\infty} (P_{m,n})^+ = \Pi$, $\forall m \ge 0$ ($\Sigma \in \operatorname{Par}(A)$). It follows that $\lim_{m\to\infty} \lim_{n\to\infty} (P_{m,n})^+ = \Pi$, i.e., the chain is limit strongly ergodic on A with limit Π .

"⇐" If the chain is limit strongly ergodic on A with limit Π then, by Theorem 2.18, $\exists m_0 \geq 0$ such that $\exists \lim_{n \to \infty} (P_{m,n})^+, \forall m \geq m_0$, and

$$\lim_{m \to \infty} \lim_{n \to \infty} \left(P_{m,n} \right)^+ = \Pi$$

Further, by Proposition 2.17(v), $\exists \lim_{n \to \infty} (P_{m,n})^+, \forall m \ge 0$. Now, we show that $\lim_{n \to \infty} (P_{m,n})^+ = \Pi, \forall m \ge 0$. Setting $Q_m = \lim_{n \to \infty} (P_{m,n})^+, \forall m \ge 0$, we have

$$\left\| \left\| (P_{m,n})^{+} - \Pi \right\| \right\|_{\infty} = \left\| \left\| P_{m,k} (P_{k,n})^{+} - P_{m,k} \Pi \right\| \right\|_{\infty} \le$$

$$\leq |||P_{m,k}|||_{\infty} |||(P_{k,n})^{+} - \Pi|||_{\infty} = |||(P_{k,n})^{+} - \Pi|||_{\infty} \leq$$

 $\leq \left| \left\| (P_{k,n})^+ - Q_k \right\| \right|_{\infty} + \left| \left\| Q_k - \Pi \right\| \right|_{\infty}, \quad \forall k, m, n, \ 0 \leq m < k < n,$ which implies

$$\limsup_{n \to \infty} \left| \left\| (P_{m,n})^+ - \Pi \right\| \right|_{\infty} \le \left| \left\| Q_k - \Pi \right\| \right|_{\infty}, \quad \forall k, m, \ 0 \le m < k.$$

Since $\lim_{m \to \infty} Q_m = \Pi$, we have

$$\limsup_{n \to \infty} \left| \left\| (P_{m,n})^+ - \Pi \right\| \right|_{\infty} \le \inf_{k > m} \left| \left\| Q_k - \Pi \right\| \right|_{\infty} = 0, \quad \forall m \ge 0.$$

Therefore, $\lim_{n\to\infty} (P_{m,n})^+ = \Pi$, $\forall m \ge 0$, i.e., the chain is strongly ergodic on A. \Box

PROPOSITION 2.21. Let $(P_n)_{n\geq 1}$ and $(P'_n)_{n\geq 1}$ be two Markov chains. Then

$$\left| \left\| (P_{m,n})^{+} - (P'_{m,n})^{+} \right\| \right|_{\infty} \leq \\ \leq \left| \left\| P_{m,n} - P'_{m,n} \right\| \right|_{\infty} \leq \sum_{u=1}^{n-m} \left| \left\| P_{m+u} - P'_{m+u} \right\| \right|_{\infty}, \quad \forall m, n, \ 0 \leq m < n.$$

Proof. The first inequality follows from Proposition 2.17 (iv) and (vi) while the second one follows directly by induction (see also Proposition 3.11 from [6]). \Box

Definition 2.22 ([7]). Let $(P_n)_{n\geq 1}$ and $(P'_n)_{n\geq 1}$ be two Markov chains. We say that $(P'_n)_{n\geq 1}$ is a perturbation of the first type of $(P_n)_{n\geq 1}$ if

$$\sum_{n\geq 1} \left| \left\| P_n - P'_n \right\| \right|_{\infty} < \infty$$

The result below generalizes Theorem 1.43 from [7]. (In fact, Theorem 1.43 (with a different proof) is due to J. Hajnal (see [1]).)

THEOREM 2.23. Let $(P_n)_{n\geq 1}$ be a Markov chain and $(P'_n)_{n\geq 1}$ a perturbation of the first type of it. Then $\exists \Delta \in \operatorname{Par}(S)$ such that $(P_n)_{n\geq 1}$ is strongly Δ -ergodic on A if and only if $\exists \Delta' \in \operatorname{Par}(S)$ such that $(P'_n)_{n\geq 1}$ is strongly Δ' -ergodic on A.

Proof. By symmetry, it is sufficient to suppose that $(P_n)_{n\geq 1}$ is strongly Δ -ergodic on A and prove that $\exists \Delta' \in \operatorname{Par}(S)$ such that $(P'_n)_{n\geq 1}$ is strongly Δ' -ergodic on A.

First, we show that $((P'_{m,n})^+)_{n>m}$ is a Cauchy sequence, $\forall m \ge 0$. Let $m \ge 0$. We have

$$\begin{split} \left| \left\| (P'_{m,n})^{+} - (P'_{m,n+p})^{+} \right\| \right|_{\infty} &= \left| \left\| P'_{m,t}(P'_{t,n})^{+} - P'_{m,t}(P'_{t,n+p})^{+} \right\| \right|_{\infty} \leq \\ &\leq \left| \left\| P'_{m,t} \right\| \right|_{\infty} \left| \left\| (P'_{t,n})^{+} - (P'_{t,n+p})^{+} \right\| \right|_{\infty} = \left| \left\| (P'_{t,n})^{+} - (P'_{t,n+p})^{+} \right\| \right|_{\infty} \leq \\ &\leq \left| \left\| (P'_{t,n})^{+} - (P_{t,n})^{+} \right\| \right|_{\infty} + \left| \left\| (P_{t,n})^{+} - (P_{t,n+p})^{+} \right\| \right|_{\infty} + \\ &+ \left| \left\| (P_{t,n+p})^{+} - (P'_{t,n+p})^{+} \right\| \right|_{\infty} \leq \\ \end{split}$$

 $\leq 2 \sum_{k \geq t+1} \left| \left\| P_k - P'_k \right\| \right|_{\infty} + \left| \left\| (P_{t,n})^+ - (P_{t,n+p})^+ \right\| \right|_{\infty}, \quad \forall n, t, \ m < t < n, \ \forall p \geq 0.$

Let $\varepsilon > 0$. Then $\exists t_{\varepsilon} > m$ such that

$$2\sum_{k\geq t+1} \left| \left\| P_k - P'_k \right\| \right|_{\infty} < \frac{\varepsilon}{2}, \quad \forall t \geq t_{\varepsilon}.$$

Because $((P_{u,v})^+)_{v>u}$ is convergent, $\forall u \geq 0$ (see Theorem 2.18(i)), it is a Cauchy sequence, $\forall u \geq 0$. Hence $\exists n_{\varepsilon} > t_{\varepsilon}$ such that

$$\left|\left|\left|\left(P_{t_{\varepsilon},n}\right)^{+}-\left(P_{t_{\varepsilon},n+p}\right)^{+}\right|\right|\right|_{\infty}<\frac{\varepsilon}{2},\quad\forall n\geq n_{\varepsilon},\ \forall p\geq 0.$$

Further, it follows that $\exists n_{\varepsilon} > m$ such that

$$\left| \left\| (P'_{m,n})^+ - (P'_{m,n+p})^+ \right\| \right|_{\infty} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \quad \forall n \ge n_{\varepsilon}, \ \forall p \ge 0$$

(this is equivalent to $\lim_{n\to\infty} \left((P'_{m,n})^+ - (P'_{m,n+p})^+ \right) = 0$ uniformly with respect to $p \ge 0$), i.e., $\left((P'_{m,n})^+ \right)_{n>m}$ is a Cauchy sequence, therefore is convergent.

Now, by Theorem 2.18(i), $\exists \Delta' \in \operatorname{Par}(S)$ such that the chain $(P'_n)_{n \geq 1}$ is strongly Δ' -ergodic on A. \Box

The result below generalizes Theorem 1.28 from [7].

THEOREM 2.24. Let $(P_n)_{n>1}$ be a strongly Δ -ergodic Markov chain on A and $(P'_n)_{n\geq 1}$ a perturbation of the first type of it.

(i) $(P_n)_{n\geq 1}$ is limit weakly $\overline{\Delta}$ -ergodic on A if and only if $(P'_n)_{n\geq 1}$ is limit weakly $\overline{\Delta}$ -ergodic on A.

(ii) $\lim_{m \to \infty} \lim_{n \to \infty} (P_{m,n})^+ = \Pi \text{ if and only if } \lim_{m \to \infty} \lim_{n \to \infty} (P'_{m,n})^+ = \Pi.$ (iii) $(P_n)_{n \ge 1}$ is limit strongly $\overline{\Delta}$ -ergodic on A with (iterated) limit Π if and only if $(P'_n)_{n>1}$ is limit strongly $\overline{\Delta}$ -ergodic on A with (iterated) limit Π .

Proof. (i) Let $i, j \in S$. Then the conclusion is equivalent to $i \stackrel{l,A}{\sim} j$ for $(P_n)_{n\geq 1}$ if and only if $i \stackrel{l,A}{\sim} j$ for $(P'_n)_{n\geq 1}$. By symmetry, it is sufficient to prove that $i \stackrel{\overline{l},A}{\sim} j$ for $(P'_n)_{n\geq 1}$ when $i \stackrel{l,A}{\sim} j$ for $(P_n)_{n\geq 1}$. By Proposition 2.21 we have

$$\lim_{m \to \infty} \limsup_{n \to \infty} \left| \left\| (P_{m,n})^+ - (P'_{m,n})^+ \right\| \right|_{\infty} = 0.$$

(In [7] we proved that $\exists \lim_{n \to \infty} ||P_{m,n} - P'_{m,n}||_{\infty}, \forall m \ge 0$; the problem whether $\exists \lim_{n \to \infty} \left| \left\| (P_{m,n})^+ - (P'_{m,n})^+ \right\| \right\|_{\infty}, \forall m \ge 0, \text{ is left to the reader.} \right)$ Now, from

$$\left| \sum_{k \in K} \left[(P'_{m,n})_{ik} - (P'_{m,n})_{jk} \right] \right| \leq \left| \sum_{k \in K} \left[(P'_{m,n})_{ik} - (P_{m,n})_{ik} \right] \right| + \left| \sum_{k \in K} \left[(P_{m,n})_{ik} - (P_{m,n})_{jk} \right] \right| + \left| \sum_{k \in K} \left[(P_{m,n})_{jk} - (P'_{m,n})_{jk} \right] \right| \leq \left| \sum_{k \in K} \left[(P_{m,n})_{ik} - (P_{m,n})_{jk} \right] \right| + \left| 2 \left| \left\| (P_{m,n})^{+} - (P'_{m,n})^{+} \right\| \right|_{\infty}, \quad \forall m, n, \ 0 \leq m < n, \ \forall K \in \Sigma, \right|$$

we have

$$\lim_{m \to \infty} \lim_{n \to \infty} \sum_{k \in K} \left[(P'_{m,n})_{ik} - (P'_{m,n})_{jk} \right] = 0, \quad \forall K \in \Sigma$$

 $(\exists \lim_{n \to \infty} \sum_{k \in K} [(P'_{m,n})_{ik} - (P'_{m,n})_{jk}], \forall m \ge m_0 \ (m_0 \ge 0), \forall K \in \Sigma, \text{ because of}$

the hypothesis and Theorem 2.23), i.e., $i \stackrel{l,A}{\sim} j$ for $(P'_n)_{n \ge 1}$. (ii) By symmetry, it is sufficient to prove that $\lim_{m \to \infty} \lim_{n \to \infty} \lim_{n \to \infty} (P'_{m,n})^+ = \Pi$ when $\lim_{m\to\infty} \lim_{n\to\infty} (P_{m,n})^+ = \Pi \ (\exists \lim_{n\to\infty} (P'_{m,n})^+, \forall m \ge m_0 \ (m_0 \ge 0))$, because of the hypothesis and Theorem 2.23). Obviously, this follows from

$$\left\| (P'_{m,n})^{+} - \Pi \right\|_{\infty} \leq \left\| \left\| (P'_{m,n})^{+} - (P_{m,n})^{+} \right\|_{\infty} + \left\| \left\| (P_{m,n})^{+} - \Pi \right\|_{\infty} \right\|_{\infty}, \quad \forall m, n, \ 0 \leq m < n.$$

(iii) This follows from (i) and (ii) (see also Theorem 2.18 and Definition 2.19). $\hfill\square$

Finally, we give an example.

Example 2.25. Let

$$P_n = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \frac{1}{4} & \frac{2}{4} & \frac{1}{4} & 0 \end{pmatrix} := P, \quad \forall n \ge 1$$

Let $\Sigma_1 = (\{i\})_{i \in \{1,2,3,4\}}$ and $\Sigma_2 = (\{1,2\},\{3\},\{4\})$ $(\Sigma_1, \Sigma_2 \in Par(\{1,2,3,4\}))$. Because

$$P^{n} = \begin{cases} P & \text{if } n \text{ is odd} \\ P^{2} & \text{if } n \text{ is even,} \end{cases}$$

where

$$P^{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \frac{2}{4} & \frac{1}{4} & \frac{1}{4} & 0 \end{pmatrix},$$

the chain $(P_n)_{n\geq 1}$ is weakly $(\{i\})_{i\in\{1,2,3,4\}}$ -ergodic and is not strongly $(\{i\})_{i\in\{1,2,3,4\}}$ -ergodic with respect to Σ_1 $(A \times B = \{1,2,3,4\} \times \mathbf{N})$ and strongly $(\{1,2\},\{3\},\{4\})$ -ergodic with respect to Σ_2 .

Now, consider the chain

$$P'_{n} = \begin{pmatrix} \frac{1}{n^{2}} & 1 - \frac{1}{n^{2}} & 0 & 0\\ 1 - \frac{1}{n^{2}} & 0 & 0 & \frac{1}{n^{2}}\\ 0 & \frac{1}{2n^{2}} & 1 - \frac{1}{n^{2}} & \frac{1}{2n^{2}}\\ \frac{1}{4} - \frac{1}{4n^{2}} & \frac{2}{4} - \frac{1}{4n^{2}} & \frac{1}{4} - \frac{1}{4n^{2}} & \frac{3}{4n^{2}} \end{pmatrix}, \quad \forall n \ge 1.$$

The chain $(P'_n)_{n\geq 1}$ is a perturbation of the first type of $(P_n)_{n\geq 1}$. It follows from Theorem 2.23 that $\exists \Delta' \in \operatorname{Par}(\{1,2,3,4\})$ such that $(P'_n)_{n\geq 1}$ is strongly Δ' -ergodic with respect to Σ_2 because $(P_n)_{n\geq 1}$ is strongly $(\{1,2\},\{3\},\{4\})$ ergodic with respect to Σ_2 . In particular, this implies that $\exists \lim_{n\to\infty} \sum_{k\in K} (P'_{m,n})_{ik}$, $\forall i \in \{1, 2, 3, 4\}, \forall K \in \Sigma_2.$ Hence $\exists \lim_{n \to \infty} P(X'_n \in K), \forall K \in \Sigma_2, \text{ where } (X'_n)_{n \ge 0}$ is a chain with state space $\{1, 2, 3, 4\}$ and transition matrices $(P'_n)_{n \ge 1}$. Further, by Theorem 2.24, $(P'_n)_{n \ge 1}$ is limit strongly $(\{1, 2\}, \{3\}, \{4\})$ -ergodic with respect to Σ_2 and has (iterated) limit

$$\Pi = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{3}{4} & \frac{1}{4} & 0 \end{pmatrix}$$

because $(P_n)_{n\geq 1}$ is limit strongly $(\{1,2\},\{3\},\{4\})$ -ergodic with respect to Σ_2 and has limit Π above.

REFERENCES

- J. Hajnal, Weak ergodicity in non-homogeneous Markov chains. Proc. Cambridge Philos. Soc. 54 (1958), 233–246.
- [2] M. Iosifescu, *Finite Markov Processes and Their Applications*. Wiley, Chichester & Editura Tehnică, Bucharest, 1980; corrected republication by Dover, Mineola, N.Y., 2007.
- [3] M.V. Koutras, On a Markov chain approach for the study of reliability structures. J. Appl. Probab. 33 (1996), 357–367.
- [4] P.J.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications. D. Reidel, Dordrecht, 1987.
- [5] W. Niemiro, Limit distributions of simulated annealing Markov chains. Discuss. Math. Algebra Stoch. Methods 15 (1995), 241–269.
- [6] U. Păun, General Δ-ergodic theory of finite Markov chains. Math. Rep. (Bucur.) 8(58) (2006), 83–117.
- [7] U. Păun, Perturbed finite Markov chains. Math. Rep. (Bucur.) 9(59) (2007), 183-210.
- [8] U. Păun, Δ-ergodic theory and simulated annealing. Math. Rep. (Bucur.) 9(59) (2007), 279–303.
- [9] G. Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo Methods: A Mathematical Introduction, 2nd Edition. Springer-Verlag, Berlin, 2003.

Received 26 March 2007

"Gheorghe Mihoc-Caius Iacob" Institute of Mathematical Statistics and Applied Mathematics Calea 13 Septembrie nr. 13 050711 Bucharest 5, Romania paun@csm.ro