We deal with asymptotic properties of the $[\alpha m]$th order statistic of a type-II progressively censored sample of size m (quantile process) and with the counting process $m^{-1} \sum_{i=1}^{m} 1(X_{i,m,n} \leq t)$, where the $X_{i,m,n}$ are the observed m-sample obtained by progressively censoring from the sample X_1, \ldots, X_n.

AMS 2000 Subject Classification: Primary 60F17, 60G50; Secondary 62G20.

Key words: Progressive censoring, quantile process, counting process.

1. INTRODUCTION

Progressive censoring schemes are very useful in life-test experiments and in clinical studies. Montanari and Cacciari [13] reported results of progressively censored data aging tests on XLPE-insulated cable models under combined thermal-electrical stresses. Bhattacharya [5] gives an example, in a clinical trial study. The monograph of Balakrishnan and Aggarwala [2] (see also [5]) gives an interesting review of the background and of developments in this field. Progressive censoring is a particular model based on order statistics and record values, see for instance [12].

Let X_1, \ldots, X_n be independent and identically distributed (i.i.d.) random lifetimes of n items. A progressive type-II right censored sample may be obtained in the following way: at the time of the first failure, noted $X_{1,m:n}$, r_1 surviving items are removed at random from the $n - 1$ remaining surviving items, at the time of the next failure, noted $X_{2,m:n}$, r_2 surviving items are removed at random from the $n - r_1 - 2$ remaining items, and so on. At the time of the mth failure, all the remaining $r_m = n - m - r_1 - \cdots - r_{m-1}$ surviving items are censored.

Our first result concerns the asymptotic behaviour of the $[\alpha m]$th order statistic of a type-II progressively censored sample of size m (quantile process), defined by $(X_{[\alpha m]:m:n})_{\alpha \in [0,1]}$, where $[x]$ is the greatest integer satisfying $[x] \leq x < [x] + 1$. Our aim is to establish a result of the type

$$\sqrt{m} \left(X_{[\alpha m]:m:n} - u_\alpha \right) = C_\alpha W'(\alpha) + O \left(\delta'_m \right)$$

REV. ROUMAINE MATH. PURES APPL., 53 (2008), 4, 267-275
in probability. Here W' is a standard Brownian motion, u_α is the α-quantile of the distribution function, C_α is an expression depending on α while δ'_m gives the rate of convergence (see our Theorem 2). In order to establish our rate of convergence result (Theorem 2) in Section 2, we begin by establishing in Theorem 1 a result about the associated triangular array resulting from the almost sure (a.s.) representation (see (1) below). Theorem 3 is related to the counting process $m^{-1} \sum_{i=1}^{m} 1(X_{i:n:m} \leq t)$, for which a Poisson approximation is given. Finally, in Theorem 4, we give a result on induced order statistics under progressively type-II censoring scheme applied to the X sample. In Section 2, we make precise the regularity conditions and state our results. Section 3 is devoted to the proof of our results.

2. ASSUMPTIONS AND RESULTS

From now on, we assume that the X_i have a common distribution function F with density f. We denote by λ the hazard rate function, i.e. $\lambda(t) = f(t)/R(t)$, where $R(\cdot) = 1 - F(\cdot)$ is the survival function (reliability function) and $\Lambda(t) = \int_0^t f(x)/R(x)\,dx$ the cumulative hazard rate function. Define $\log n$ as the two-iterated logarithm, with $\log n = \log(n \lor e)$.

Let us first introduce the assumptions under which these asymptotic properties are obtained. All asymptotic results are given for $m \to +\infty$.

A1. $\alpha \in [0, a]$ and $0 < a < 1$.

A2. $(r_i)_{i \geq 1}$ is a bounded sequence of nonnegative integers, $r_i \leq K$ for all $i \geq 1$, such that $\bar{r} = m^{-1} \sum_{i=1}^{m} r_i = r + O\left(\sqrt{\log m}\right)$, where r is a nonnegative number.

A3. τ_1 is a real number such that $F(\tau) < 1$.

A4. Let $G = 1 - R_{\tau+1}$. There exists a real number $\varepsilon \in [0, a)$ such that $G^{-1}([\varepsilon, a]) \subset (c, b) \subseteq \mathbb{R}^+$ and λ is continuous and strictly positive on (c, b).

Now, we introduce some useful notation. Let $(\alpha_{jm}^m)_{1 \leq j \leq m}$ be a triangular array of non-negative integers defined by $\alpha_{1m}^m = m$, $\alpha_{jm}^m = r_j + \cdots + r_m + m - j + 1$ for $2 \leq j \leq m - 1$, and $\alpha_{mm}^m = r_m + 1$. Denote by u_α the α-quantile of the distribution function G, $u_\alpha = G^{-1}(\alpha)$, where G^{-1} is taken in the generalized inverse sense ($G^{-1}(x) = \inf\{y : G(y) > x\}$) when G is not invertible.

Finally, we recall the almost sure representation given in [2]: there exists a triangular array $(Z_{jm}^m)_{1 \leq j \leq m}$ of i.i.d. exponentially distributed random variables with mean 1 such that

$$\Lambda(X_{i:m:n}) = \sum_{j=1}^{i} \frac{Z_{jm}^m}{\alpha_{jm}^m} \quad \text{a.s.}$$
Theorem 1. Under assumptions A1–A4 and in a probability space $(\Omega_0, \mathcal{F}_0, P_0)$ rich enough containing all random variables and processes that we need, we have

$$\left| \sum_{j=1}^{[am]} \tilde{Z}_j^{(m)} - 1 - \frac{W'\left(\frac{a(1-a)}{a(1-a)}\right)}{\theta_m(a)} \right| = O \left(\frac{\delta_m}{\theta_m(a)} + \frac{1}{m} \right)$$

in probability, where W' is a standard Brownian motion, $\theta_m(a) = \sqrt{1/(\sum_{k=1}^{[am]} (\alpha_k^n)^{-2})}$ and δ_m is a non-increasing positive sequence such that $\delta_m = o(\sqrt{m})$ as $m \to \infty$.

Remark 2.1. On account of the a.s. representation (1), we have to deal with the triangular array $(Z_j^{(m)})_{1 \leq j \leq m}$ of i.i.d. exponentially distributed random variables with mean 1. In Theorem 1, we write $\tilde{Z}_j^{(m)}$ in place of $Z_j^{(m)}$ because the probability space $(\Omega_0, \mathcal{F}_0, P_0)$ is a common probability space where $\tilde{Z}_j^{(m)}$ and W' are well defined. In the proof of Theorem 1 (see Fact 4), we justify the existence of this space by standard arguments.

Theorem 2. Under the assumptions of Theorem 1, we have

$$\sqrt{m} \left(X_{[am]:m:n} - u_m \right) = \frac{\sqrt{a}}{(r+1)\lambda(u_m)} W'(\alpha) + O \left(\frac{\delta_m + 1}{m} \right)$$

in probability, where $\{W'(t), 0 \leq t \leq 1\}$ is a standard Brownian motion.

In the next theorem, we are concerned with the behaviour of the counting process

$$N_m(t) = \frac{1}{m} \sum_{i=1}^{m} 1(X_{i,m:n} \leq t), \quad t \geq 0.$$

Our result is based on a Poisson approximation for the empirical distribution function. Roughly speaking, our result can be seen as a corollary of Lemma 3.1 of [11].

Theorem 3. If the assumptions of Theorem 1 are satisfied, then we can define Poisson processes $M_m(x)$ with $E[M_m(x)] = x$ such that

$$\sup_{0 \leq t < \infty} \left| N_m(t) - \frac{M_m(t)}{M_m(m)} \right| = O \left(\sqrt{\frac{\log_2 m}{m}} \right)$$

in probability.

Let $(X_i, Y_i), i = 1, 2 \ldots$, be independent copies of $(X, Y) \in \mathbb{R}^+ \times \mathbb{R}^+$. Suppose a progressively censored scheme is adopted for the X-sample and let

\[Y_{1:n}, \ldots, Y_{m:n} \] the corresponding values of \(Y \). The random variables \(Y_{i:n} \), \(i = 1, \ldots, m \), are called induced order statistics (cf. [4] and [8] for instance).

Set \(m(x) = E[Y|X = x] \), \(\sigma^2(x) = \text{Var}(Y|X = x) \), \(\beta(x) = E[(Y - m(x))^4|X = x] \), and define

\[
A_m(t) = m^{-1/2} \sum_{i=1}^{m} (Y_{i:n} - m(X_{i:n})) 1(X_{i:n} \leq t), \quad t \geq 0.
\]

Theorem 4. Under the assumptions of Theorem 1, let \(\sigma^2(x) \) be of bounded variation and \(\beta(x) \) bounded. Then we can define Poisson processes \(M_m(x) \) with \(E[M_m(x)] = x \) and Brownian motions \(W_m \) such that

\[
\sup_{t \geq 0} |A_m(t) - W_m(G_m(t))| \to 0 \quad (6)
\]
in probability, where

\[
G_m(t) = (M_m(m))^{-1/2} \int_0^{1-R_{r+1}(t)} \sigma^2(s) dM_m(m s).
\]

3. **Proofs**

Proof of Theorem 1. Keeping in mind approximations results for triangular arrays given in [10], set

\[
\alpha_m \xi_j^{(m)} = \theta_m(a)(\tilde{Z}_j^{(m)} - 1) \quad \text{with} \quad \theta_m(a) = \sqrt{1/\sum_{k=1}^{[am]} (\alpha_k^{m})^{-2}}.
\]

Define the polygonal process \(\tilde{S}_{(m)}(t) \) by

\[
S_{(m)}(t) = \sum_{k=1}^{r} \xi_k^{(m)} + \frac{t - t_{m,r}}{t_{m,r+1}} \xi_{r+1}^{(m)},
\]

where \(0 < r < [am] \) and \(t_{m,r} = \sum_{k=1}^{r} \sigma_{m,k}^{2} \) for \(1 \leq r \leq [am] \), with \(t_{m,[am]} = \alpha_{[1-a]}^{m} \) for \(a \in [0, a] \) and \(m \) large enough (see Lemma 1 of [1]).

Under our assumptions, we have the following facts:

Fact 1. From \(m - k + 1 \leq \alpha_k^m \leq (K + 1)(m - k + 1) \), for \(k \leq am \) we have \(\alpha_k^m \geq (1 - a)m \) which yields

\[
\frac{am}{(1 - a)^2 m^2} \geq \sum_{j=1}^{[am]} \frac{1}{(\alpha_k^m)^2}.
\]

Fact 2. From Fact 1, for

\[
B_{m,j} = \alpha_j^m \sqrt{\sum_{k=1}^{[am]} \frac{1}{(\alpha_k^m)^2}}
\]
we have
\[(8) \quad c\sqrt{m} \leq B_{m,j} \leq \frac{(K + 1)\sqrt{am}}{(1 - \alpha)} ,\]
where \(c\) is a constant > 0.

Fact 3. For a random variable \(Z\) with exponential law of mean 1, we have
\[(9) \quad P\left(\frac{Z - 1}{B_{m,j}} \leq x\right) = \left(1 - e^{-(1+xB_{m,j})}\right)1(1 + xB_{m,j} \geq 0),\]
where \(1(\cdot)\) stands for the indicator function.

Fact 4. The result
\[(10) \quad L_m(\delta) = \sum_{j=1}^{k_m} E\left[\hat{\xi}_{j}^{(m)} 1(\hat{\xi}_{j}^{(m)} > \delta)\right] \rightarrow 0 \text{ as } m \rightarrow \infty \]
corresponds to Condition (C) in Corollary 4 of [10].

By using Fact 3, the moment part of (10) can be evaluated as
\[
E\left\{\left(\frac{Z - 1}{B_{m,j}}\right)^2 1(|Z - 1| > \delta B_{m,j})\right\} = \\
\int_{\mathbb{R}} B_{m,j}x^2 e^{-(1+xB_{m,j})}1(1 + xB_{m,j} \geq 0) 1(|x| > \delta) \, dx.
\]
Then we have to consider the following two cases:
\[
I = \int_{\mathbb{R}} \frac{B_{m,j}x^2}{e^{(1+xB_{m,j})}}1(1 + xB_{m,j} \geq 0) 1(x > \delta) \, dx = e^{-1} \int_{\delta B_{m,j}}^{+\infty} \frac{t^2 e^{-t}}{(B_{m,j})^2} \, dt,
\]
\[
II = \int_{\mathbb{R}} \frac{B_{m,j}x^2}{e^{(1+xB_{m,j})}}1(1 + xB_{m,j} \geq 0) 1(x < -\delta) \, dx \leq \\
\leq \int_{0}^{1-\delta B_{m,j}} \left(\frac{u - 1}{B_{m,j}}\right)^2 e^{-u} \, du.
\]
Using (8), we have \(1 - \delta B_{m,j} \leq 1 - \min_{1 \leq j \leq [am]} B_{m,j} \delta \leq 1 - c\delta \sqrt{m}\), hence \(II \rightarrow 0\).

Let us now evaluate \(I\). The sum term is bounded by \(\delta^2 \sum_{j=1}^{[am]} e^{-\delta \sqrt{m}}\), which goes to 0 by the integral test, so (10) is obtained by (8).

By (7) and Corollary 4 of [10], we have \(PS_{(m)}|B(C[0,1]) \rightarrow W|B(C[0,1])\). On account of this last argument, the probability space \((\Omega_0, \mathcal{F}_0, P_0)\) exists and is well defined (see Theorem 11.7.1 of [9]). In that space, we can define \(\hat{S}_m\) and a standard Wiener process \(W\) such that \(PS_m = P_0\hat{S}_m\) and \(W' = W\) in law, with \(d(\hat{S}_m, W') \rightarrow 0\) both in probability and a.s.
Fact 5. By [9], there exist positive numbers $\delta_m \to 0$ such that $
ho(PS(m), W) \leq \delta_m$, i.e., where $\rho(\cdot, \cdot)$ stands for the Prohorov distance which associates a metric with weak convergence.

This last inequality yields
\[
\left| \sum_{j=1}^{[am]} \frac{\tilde{Z}_j^{(m)}}{\alpha_j^{m}} - W' \left(\frac{\alpha(1-a)}{a(1-a)} \right) \right| = O \left(\frac{\delta_m}{\theta_m(a)} + \frac{1}{m} \right),
\]
in probability, where the rate of convergence is obtained as in the proof of Theorem 11.7.1 of [9], which completes the proof.

\[\square\]

Proof of Theorem 2. By (1) and Assumption A4, Λ^{-1} admits a first order Taylor expansion. Then we have
\[
X_{[am];m} \overset{a.s.}{=} \Lambda^{-1} \left(\Lambda(u_\alpha) + \sum_{j=1}^{[am]} \frac{\tilde{Z}_j^{(m)}}{\alpha_j^{m}} - \Lambda(u_\alpha) \right)
\]
\[
= \Lambda^{-1} (\Lambda(u_\alpha)) + \frac{\beta_{[am]}}{\Lambda^{-1}(\Lambda(\phi_m))},
\]
where $\beta_{[am]} = \sum_{j=1}^{[am]} \frac{Z_j^{(m)}}{\alpha_j^{m}} - \Lambda(u_\alpha)$ and ϕ_m is such that $\Lambda(\phi_m)$ belongs to the segment with extremities $\Lambda(u_\alpha)$ and $\Lambda(u_\alpha) + \beta_{[am]}$.

It is sufficient to study the asymptotic behaviour of $\beta_{[am]}$. We have
\[
\sqrt{m} \beta_{[am]} = I^{(m)} + II^{(m)} + III^{(m)}
\]
with
\[
I^{(m)} = \sqrt{m} \sum_{j=1}^{[am]} \frac{\tilde{Z}_j^{(m)} - 1}{\alpha_j^{m}},
\]
\[
II^{(m)} = \sqrt{m} \sum_{j=1}^{[am]} \frac{1}{\alpha_j^{m}} - \frac{1}{(r+1)(m-j+1)} = o(1)
\]
and
\[
III^{(m)} = \sqrt{m} \left(\sum_{j=1}^{[am]} \frac{1}{(r+1)(m-j+1)} - \Lambda(u_\alpha) \right) = O \left(\frac{1}{m} \right),
\]
where the $o(\cdot)$ and $O(\cdot)$ terms are obtained by Corollary 1 of [1] under Assumptions A1–A4. Moreover, $I^{(m)}/\sqrt{m}$ is given by (2). Then we can write
\[
\sqrt{m} \beta_{[am]} = \frac{\sqrt{m} W' \left(\frac{\alpha(1-a)}{a(1-a)} \right)}{\theta_m(a)} + O \left(\delta_m + \frac{1}{m} \right).
\]
in probability and, by (12),
\[\sqrt{m} \left(X_{[m]} - u_\alpha \right) = \sqrt{m} W \left(\frac{\alpha(1-\alpha)}{\theta_m(a)\lambda(u_\alpha)} \right) + O \left(\delta_m + \frac{1}{m} \right) \]
in probability, with
\[\frac{\sqrt{m}}{\theta_m(a)} \to \sqrt{\frac{a}{(1+r)^2(1-a)}}, \]
which completes the proof. □

Proof of Theorem 3. As in [6], let us define the counting process
\[\hat{N}_m(t) = \frac{1}{m} \sum_{i=1}^{m} 1(\hat{Y}_{i:m} \leq \Lambda(t)), \quad t \geq 0, \]
where
\[\hat{Y}_{i:m} = \sum_{j=1}^{i} Z_j^{(m)} \frac{1}{(r+1)(m-j+1)}, \quad 1 \leq i \leq m. \]

Remark 3.1. In [6] it was stated that the \(\hat{Y}_{i:m} \) have the same distribution as an order statistic of an \(m \)-sample of exponential random variables of mean \(1/(r+1) \).

In order to prove our result we establish the following facts.

Fact 6. Having in mind Remark 3.1, we can rewrite (13) as
\[\hat{N}_m(\tau) = \frac{1}{m} \sum_{i=1}^{m} 1(U_{i:m} \leq \tau), \]
where \(\tau = 1 - \exp \{ (r+1)\Lambda(t) \} \), \(t \geq 0 \), and the \(U_{i:m} \) are the order statistics of an \(m \)-sample of uniformly distributed on \([0,1]\) random variables (see [2] about monotone transformations in this context).

On account of the above transformation, we can also rewrite (4) as
\[N_m(\tau) = \frac{1}{m} \sum_{i=1}^{m} 1(V_{i:m} \leq \tau), \]
where \(1 - \exp \{ (r+1)Y_{i:m} \} = V_{i:m} \) with \(Y_{i:m} = \Lambda(X_{i:m}) \) \(i = 1, \ldots, m \).

Fact 7. By Lemma 3.1 of [11] and (14), we can define Poisson processes \(M_m(\tau) \) with \(E[M_m(\tau)] = \tau \) such that
\[P \left(\sup_{0 \leq \tau \leq 1} \left| \frac{\hat{N}_m(\tau) - M_m(\tau)}{M_m(m)} \right| > \frac{1}{m} (x + c \log m) \right) \leq \exp (-cx) \]
for all \(x > 0 \).
Fact 8. On account of Assumption A2, we can mimic the proof of Proposition 3 of [6], but we use the law of the iterated logarithm instead of the strong law of large numbers, to get

$$\sup_{0 \leq t \leq \tau_1} \left| \hat{N}_m(t) - N_m(t) \right| = O \left(\sqrt{\frac{\log 2}{m}} \right)$$

in probability.

Facts 6, 7 and 8 suffice to establish (5).

Proof of Theorem 4. Consider the monotone transformations defined in (14) and for $0 \leq t \leq 1$ consider

$$S_m([mt]) = m^{-1/2} \sum_{i=1}^{[mt]} (Y_{i;m:n} - m(U_{i;m:n})), \quad k = 1, \ldots, m.$$

Sums of conditional independent random variables can be represented by Brownian motion at stopping times. This is proved in [3] by applying the Skorokhod embedding theorem. Then we obtain the representation of $S_m([mt])$ by $W_m(t)$ in some common probability space. Further, we have

$$\sup_{0 \leq t \leq 1} \left| W_m \left(\int_0^t \sigma^2(s) dN_m(s) \right) - M_m^{-1/2} W_m \left(\int_0^t \sigma^2(s) dM_m(s) \right) \right| \leq I + II,$$

where

$$I = \sup_{0 \leq t \leq 1} \left| W_m \left(\int_0^t \sigma^2(s) dN_m(s) \right) - W_m \left(\int_0^t \sigma^2(s) d\hat{N}_m(s) \right) \right|$$

and

$$II = \sup_{0 \leq t \leq 1} \left| W_m \left(\int_0^t \sigma^2(s) d\hat{N}_m(s) \right) - M_m^{-1/2} W_m \left(\int_0^t \sigma^2(s) dM_m(s) \right) \right|,$$

where without loss of generality we have considered $t = \tau$ (see (14)).

Remark by using (16) that

$$\sup_{0 \leq t \leq 1} \left| \int_0^t \sigma^2(s) dN_m(s) - \int_0^t \sigma^2(s) d\hat{N}_m(s) \right| \leq C \sup_{0 \leq t \leq 1} \left| N_m(t) - \hat{N}_m(t) \right| \leq 1,$$

where C is a constant.

Since σ^2 is of bounded variation, we apply Lemma 1.1.1 of [7] to get $I \to 0$. In the same way as in Lemma 3.2 of [11], we obtain that $II \to 0$ in probability.
REFERENCES

Received 26 October 2007
Revised 30 January 2008

Université de Technologie de Compiègne
L.M.A.C.
B. P. 529, 60205 Compiègne Cedex, France

and

Université de Pau
L.M.A.
B. P. 1155, 64013 Pau Cedex, France