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We present a numerical integral method for computing the guided modes in an

optical half coupler in scalar case. This method is based on the integral represen-

tation of the solutions of the problem. We first establish a variational formulation

of our problem. In order to solve it, we introduce a boundary condition on the

transversal section of the half coupler, and approach the variational problem by

problems set in bounded domains. We obtain an algebraic system equivalent to

the approached variational problem. At the end, we give some numerical results.
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1. INTRODUCTION

Our aim is to compute, by a numerical method based on integral rep-
resentation, the propagation of guided modes in an optical half coupler. In
the first part of the paper, starting with the Maxwell equations written in
the scalar case, we establish a variational formulation of our problem under
the weak guidance hypothesis. In the second part, using a classical method
of approximation and replacing the transparent conditions used in [5, 2] by
conditions of Robin type [8, 6], we obtain an algebraic system equivalent to
the variational formulation of the problem. Recall that an optical half cou-
pler is a cylindrical structure formed by a fine core surrounded by a cladding
protective with one face abraded. The abraded face is placed in a liquid (see
Figures 1 and 2).

To formulate the mathematical model of the problem, we assume that the
optical half coupler is infinite along the propagation axis. Under the weakly
guidance hypothesis, the electromagnetic field of a guided mode is transverse
[13, 12]. The transverse component satisfies the two dimensional eigenvalue
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problem:

(1.1)


find β ∈ ]kn3, kn1[ and u ∈ H1(R2), u 6= 0, such that

−∆u− n2k2u = −β2u in Ωi, [u] =
[
∂u

∂ν

]
= 0 on Γi, i = 1, 2, 3,

where
n1 is the refractive index in Ω1,
n2 is the refractive index in Ω2,
n3 is the refractive index in Ω3,
k is the wave (positive) number,
β is the propagation constant,
u is a transversal component of the electromagnetic field,
Ω1 is the transversal section of the fiber core,
Ω2 is the transversal section of the liquid,
Ω3 is the transversal section of the cladding region,
Γ1 = ∂Ω1, Γ2 = ∂Ω2, Γ3 = ∂Ω3 = Γ1 ∪ Γ2.

Fig. 1. An optical half coupler. Fig. 2. Its transversal section.

Problem (1.1) is obtained from the Maxwell system when placed in mode of
weak guidance [14, 7]. Solving this problem means that we find all couples
(β, u), with −β2 an eigenvalue of the operator Ak = ∆ − k2n2 and u the
associated eigenfunction in H1(R2).

Denoting by σess(Ak) the essential spectrum of the operator Ak, we have
the following result from [3, 5]:

Lemma 1.1. For every k > 0 we have

σess = [−k2n2
3,+∞[,
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and for all λ in ]−∞,−k2n2
1[ the operator (Ak−λI) is invertible. Moreover, all

the eigenvalues of the operator Ak are contained in the interval ]−k2n2
1,−k2n2

3[.

2. AN INTEGRO-DIFFERENTIAL SYSTEM
AND A VARIATIONAL FORMULATION

We now show that (1.1) can be written as an integro-differential system.
To do so, we use the following result from [10].

Proposition 2.1. The integral representation of the solutions of problem
(1.1) is given for all y ∈ Ωi with y /∈ Γi by the formula

(2.1) u(y) = −εi

{∫
Γi

Gi(β, x, y)
∂u

∂νx
dγxdx−

∫
Γi

∂Gi

∂νx
(β, x, y)u(x)dγxdx

}
,

where dγx is the surface element on Γi and εi is equal to 1 (resp. −1) if ν is
the outside (resp. inside) unit normal vector to Ωi while Gi, i = 1, 2, 3, are
the Green kernels defined by

G1 = −1
4
Y0(λ1|x− y|), Gi =

1
2π

K0(λi|x− y|), i = 2, 3.

Here λ2
1 = β2 − k2n2

1, λ2
i = k2n2

i − β2, i = 2, 3, and Y0 and K0 are the Bessel
functions from [1].

In the sequel, we use the notation of [7, 5, 2], namely we set

(
u|Γ1 ,

∂u

∂ν

∣∣∣
Γ1

)
= (j1,m1),

(
u|Γ2 ,

∂u

∂ν

∣∣∣
Γ2

)
= (j2,m2).

By using the potential trace formulas of simple and double layers from
[10], and writing the tangential components of the electromagnetic field along
the interfaces core-cladding and cladding-liquid in the integral form, we asso-
ciate with problem (1.1) the integro-differential system:

(2.2)

{
find β ∈ ]kn3, kn1[ and Φ = (Φ1,Φ2) ∈ V1 × V2 such that

AβΦ = A1
βΦ1 + A2

βΦ2 = 0 in V ′
1 × V ′

2 ,
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where Φ1 = (j1,m1), Φ2 = (j2,m2). The operators A1
β and A2

β are defined by

A1
βΦ1 =



∫
Γ1

{
∂G1

∂νy
+

∂G3

∂νy

}
m1dγx +

∂

∂νy

(∫
Γ1

{
∂G1

∂νx
+

∂G3

∂νx

}
j1(x)dγx

)
−

∫
Γ2

∂G3

∂νy
m1dγx −

∂

∂νy

(∫
Γ2

∂G3

∂νx
j1(x)dγx

)
∫

Γ1

{G1 + G3}m1dγx +
(∫

Γ1

{
∂G1

∂νy
+

∂G3

∂νy

}
j1(x)dγx

)
−

∫
Γ2

G3m1dγx −
∫

Γ2

∂G3

∂νx
j1(x)dγx


and

A2
βΦ2 =



∫
Γ2

{
∂G2

∂νy
+

∂G3

∂νy

}
m2dγx +

∂

∂νy

(∫
Γ2

{
∂G2

∂νx
+

∂G3

∂νx

}
j2(x)dγx

)
+

∫
Γ1

∂G3

∂νy
m2dγx +

∂

∂νy

(∫
Γ1

∂G2

∂νx
j2(x)dγx

)
∫

Γ2

{G2 + G3}m2dγx +
(∫

Γ2

{
∂G2

∂νy
+

∂G3

∂νy

}
j2(x)dγx

)
+

∫
Γ1

G3m2dγx +
∫

Γ1

∂G3

∂νx
j2(x)dγx


.

In (2.2), V1 and V2 are the functional spaces defined by

V1 = H1/2(Γ1)×H−1/2(Γ1), V2 = H1/2(Γ3)×H−1/2(Γ3)

and V ′
i , is the dual space of Vi (i = 1, 2).
It is classical that the operator Aβ is linear and continuous from V to

V ′, where V = V1 × V2 and V ′ is the dual space of V (we refer the reader to
[5, 7] for details).

We now associate with the operator Aβ the real symmetric bilinear form
aβ(· , ·) defined as

aβ(· , ·) = 〈AβΦ,Ψ〉V ′×V , ∀Φ ∈ V, ∀Ψ ∈ V,

where 〈· , ·〉 stands for the dual product.

Remark 2.2. It is easily seen that aβ(· , ·) is symmetric and continuous
on V × V .

Remark 2.3. The bilinear form aβ(· , ·) represents the reaction in the
sense of Rumsey [11] of the current Φ = (j,m) on the test current Ψ = (j′,m′)
(see for more details [11, 7]).
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Then the following variational problem associated with (2.2) character-
izes the determination of the guided modes in an optical half-coupler under
weakly guidance assumptions:

(2.3) find β ∈ ]kn3, kn1[ and Φ ∈ V such that aβ(Φ,Ψ) = 0, ∀Ψ ∈ V,

where for all Φ = ((j1,m1), (j2,m2)) ∈ V and Ψ = ((j′1,m
′
1), (j

′
2,m

′
2)) ∈ V

we have

aβ(Φ,Ψ) =
∫

Γ1

∫
Γ1

(
G1 + G2

)
m1m

′
1dγxdγy +

∫
Γ1

∫
Γ2

(∂G1

∂νx
+

∂G2

∂νx

)
j1m

′
1dγxdγy

−
∫

Γ1

∫
Γ2

G2 m2 m′
1 dγxdγy −

∫
Γ1

∫
Γ2

∂G2

∂νx
j2m

′
1dγxdγy

+
∫

Γ1

∫
Γ1

(∂G1

∂νy
+

∂G2

∂νy

)
m1j

′
1dγxdγy +

∫
Γ1

∂

∂νy

[ ∫
Γ1

(∂G1

∂νx
+

∂G2

∂νx

)
j1dγx

]
j′1dγy

−
∫

Γ1

∫
Γ2

∂G2

∂νy
m2j

′
1
dγxdγy −

∫
Γ1

∂

∂νy

[ ∫
Γ2

∂G2

∂νx
j2dγx

]
j′1dγy

−
∫

Γ2

∫
Γ1

G3m1m
′
2
dγxdγy −

∫
Γ2

∫
Γ1

∂G2

∂νx
j1m

′
2
dγxdγy

+
∫

Γ2

∫
Γ2

(∂G2

∂νy
+

∂G3

∂νy

)
m2j

′
2
dγxdγy +

∫
Γ2

∂

∂νy

[ ∫
Γ2

(∂G2

∂νx
+

∂G3

∂νx

)
j2dγx

)
j′2dγy

−
∫

Γ2

∫
Γ1

∂G2

∂νy
m1j

′
2dγxdγy −

∫
Γ2

∂

∂νy

( ∫
Γ2

∂G2

∂νx
j1dγx

)
j′2dγy.

Finally, in order to get rid of the hyper-singular integrals in the formula
above, we use (cf. for instance, [10]) the classical formula∫

Γi

∂

∂νy

( ∫
Γi

∂Gi

∂νx
φidγx

)
φ′idγy = −

∫
Γi

∫
Γi

Gi
∂φ

∂s

∂φ′

∂s
dγxdγy+

+λ2
i

∫
Γi

∫
Γi

Giφiφ
′
idγxdγy,

for all φi and φ′i in H1/2(Γi), i = 1, 2.

3. NUMERICAL APPROXIMATION AND RESULTS

To solve the variational problem (2.3), we adopt a classical method of
Galerkin type. This allows us to reduce the resolution of (2.3) to an algebraic
system. To do so, we first approach the core-cladding interface Γ1 by a closed
polygonal curve Γh

1 . We then truncate the liquid-cladding interface Γ2 and
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approach it by a closed polygonal curve Γh
2 . We take

u + β
∂u

∂ν
= 0

on the extremities of Γh
2 (see Figure 3). This procedure is inspired by [8, 6].

Second, in order to be able to make the computations, we introduce the
vector spaces

V h
i = W h

i,1 ×W h
i,2, i = 1, 2,

where W h
i,1, i = 1, 2 is a vector space of finite dimension of functions defined

on Γh
i and piecewise affine; W h

i,2, i = 1, 2, is a vector space of finite dimension
of functions defined on Γh

i and piecewise constant; Γh
1 is the boundary of the

polygon approximating Γ1; Γh
2 is the interface Γ2 truncated and approximated.

Obviously, V h
i , i = 1, 2, is a vector subspace of Vi.

Finally, set V h = V h
1 × V h

2 which is a vector subspace of finite dimen-
sion 4N .

Fig. 3. Approximated interfaces of the optical half coupler.

We now associate with the variational problem (2.3) a variational prob-
lem posed in finite dimension. By using an inner Galerkin approximation
method, the solutions of this finite dimensional problem will approach the
solutions of the variational problem. In conclusion, we are lead to solve the
algebraic system

(Mh) find β ∈ ]kn3, kn1[; Ih ∈ Rh and Ih 6= 0, such that Ah (βh) · Ih = 0,

where Ah (βh) is a symmetric matrix.
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4. NUMERICAL RESULTS

In all numerical experiences, we compute the normalized propagation
constant defined by

bh =
β2

h − n2
3k

2

(n2
1 − n2

3)
.

It is clear that bh ∈ ]0, 1[.
Next, we do not give the number of waves k, but use the standardized

frequency given by ν =
√

k2 a (n2
1 − n2

3).
To validate our method we used the data

(5.1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n1 = 1.5085
n2 = 1.50
n3 = 1.50
a = 1.
D = 2Π

d/a = 1.5
ν = 2.

N = 50,

where a is the radius of the core of the half coupler, d the coupling distance
and 2D the truncation distance (see Figure 3). We found bh = 0.416, that is
the value of the constant propagation associated with the principal mode. It
is the same analytic value of the constant of propagation that the one given
by Marcus [9].

In Figures 4a and 4b we present the current Ih on the half-coupler inter-
faces, and in Figure 5 the electromagnetic field uh in the transversal section
of the half coupler.

Fig. 4a. The current Ih

(
i.e., u and ∂u

∂ν

)
on Γ1

h.
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Fig. 4b. The current Ih

(
i.e., u and ∂u

∂ν

)
on Γ2

h.

Fig. 5. The electromagnetic field uh in the transversal section of the optical half coupler.

bh in function of coupling d/a. bh in function of truncation distance 2D.

Fig. 6.



9 A numerical integral method for computing the guided modes 295

We also studied the dependence of the constant of propagation of the
first mode (principal mode) on the coupling and truncation distance. The
results are given in Figure 6.
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