LOCAL TRAJECTORIES ON KLEIN SURFACES

MONICA ROŞIU

The main purpose of this paper is to give a way to define and investigate the local trajectory structure of a N-quadratic differential on a Klein surface.

AMS 2000 Subject Classification: 30F50.

Key words: Klein surface, N-meromorphic quadratic differential.

The local trajectory structure can be studied on a Klein surface (X, A) itself, but in this paper this is done in terms of the lifts to the double covering.

Let (X, A) be a Klein surface, where X is a surface and A is a maximal dianalytic atlas on X, such that A does not contain any analytic subatlas. There exists the orientable two-sheeted covering (O_2, k) of X, where k is an antianalytic involution of O_2 , without fixed points. Let \hat{X} be the universal covering of X, G the group of covering transformations of X and G_1 the subgroup of G consisting of all conformal covering transformations. Then there exist the corresponding canonical covering projections $p: \hat{X} \to O_2, q: O_2 \to X$ and $\pi: \hat{X} \to X$. Also, \hat{X}/G_1 is canonically identified with $O_2, \hat{X}/G$ is canonically identified with X, and X will be also identified with the orbit space O_2/H , where H is the group consisting of the identity of O_2 and k, under the usual composition of functions (see [3]).

For every $T \in G_1$, define

$$h_{T,U} = \left(q_{|U} \circ p_{|T(\widehat{U})}\right)^{-1} : \widetilde{U} \to T(\widehat{U}),$$

where \widehat{U} is a fixed component of $p^{-1}(U)$, so that $p_{|\widehat{U}} : \widehat{U} \to U$ and $q_{|U} : U \to \widetilde{U}$ are homeomorphisms.

For every $S \in G \setminus G_1$, define

$$g_{S,U} = \left(q_{|k(U)} \circ p_{|S(\widehat{U})}\right)^{-1} : \widetilde{U} \to S(\widehat{U})$$

Therefore, $A = A_1 \cup A_2$, where

 $A_1 = \left\{ (\widetilde{U}, h_{T,U}, T(\widehat{U})) \mid \ \widetilde{U} \text{ is a parametric disk on } X \text{ as before, } T \in G_1 \right\}$

REV. ROUMAINE MATH. PURES APPL., 54 (2009), 5-6, 541-547

 $A_2 = \{ (\widetilde{U}, g_{S,U}, S(\widehat{U})) \mid \widetilde{U} \text{ is a parametric disk on } X \text{ as before, } S \in G \setminus G_1 \},$ is a dianalytic atlas on X (see [4]).

For convenience of notation, the points and the curves in O_2 and X will be identified with their images in the Euclidean plane, through the corresponding charts.

If \widetilde{U} is a parametric disk on X, then $q^{-1}(\widetilde{U}) = \{U, k(U)\}$ is a pair of k-symmetric disks on O_2 . Thus, for the local study of the meromorphic quadratic differentials on O_2 , it is natural to consider restrictions $U \cup k(U)$. Since k is an involution without fixed points, one can suppose that $U \cap k(U) = \emptyset$.

Let $Q^2(O_2)$ be the vectorial space of the meromorphic quadratic differentials on (O_2, A_1) and $\overline{Q^2(O_2)}$ the vectorial space of the meromorphic quadratic differentials on (O_2, A_2) , that is, the vectorial space of the antimeromorphic quadratic differentials on (O_2, A_1) (see [5]).

THEOREM 1. There is an isomorphism K between $Q^2(O_2)$ and $\overline{Q^2(O_2)}$.

Proof. Let z be the local parameter on U and w the local parameter on k(U). If φ is not holomorphic, namely, it has at least a pole, then $z \in U$ means z is not a pole of φ . Let $\Phi \in Q^2(O_2)$ with the local representation

$$\Phi_{|U\cup k(U)} = \begin{cases} \varphi(z) dz^2 & \text{if } z \in U, \\ \widehat{\varphi}(w) dw^2 & \text{if } w \in k(U) \end{cases}$$

where φ and $\widehat{\varphi}$ are meromorphic functions on U, respectively k(U). Then the symmetry k will induce the isomorphism $K: Q^2(O_2) \to \overline{Q^2(O_2)}$ defined as

$$K(\Phi)_{|U\cup k(U)} = (\Phi \circ k)_{|U\cup k(U)} = \begin{cases} \widehat{\varphi}(k(z)) \mathrm{d}k(z)^2 & \text{if } z \in U, \\ \varphi(k(w)) \mathrm{d}k(w)^2 & \text{if } w \in k(U). \end{cases}$$

Thus,

$$K(\Phi)_{|U\cup k(U)} = \begin{cases} \widehat{\varphi}(k(z)) \left(\frac{\partial k}{\partial \overline{z}}(z)\right)^2 \mathrm{d}\overline{z}^2 & \text{if } z \in U, \\ \\ \varphi(k(w)) \left(\frac{\partial k}{\partial \overline{w}}(w)\right)^2 \mathrm{d}\overline{w}^2 & \text{if } w \in k(U). \end{cases}$$

because k is an antianalytic function.

Let $\tilde{\Phi}$ be an *N*-meromorphic quadratic differential on *X*, with $\tilde{\Phi} \neq 0$, i.e., there is a meromorphic quadratic differential Φ on O_2 such that

$$\Phi_{|\tilde{U}} = \Phi_{|U} + K(\Phi)_{|U} = \Phi_{|U} + (\Phi \circ k)_{|U}$$

for every \widetilde{U} a parametric disk on X, where $\widetilde{U} = q(U) = q(k(U))$ (see [4]).

and

The local representation of $\widetilde{\Phi}$ with respect to a parameter $\widetilde{z} \in \widetilde{U}$, where $q^{-1}(\widetilde{z}) = \{z, k(z)\}, \varphi$ and $\widehat{\varphi}$ are meromorphic functions with respect to z, respectively k(z), is $\widetilde{\Phi}(\widetilde{z}) = \varphi(z) dz^2 + \widehat{\varphi}(k(z)) dk(z)^2$ (see [5]). \Box

THEOREM 2. If $A = \{(\widetilde{U}_i, h_i, V_i) \mid i \in I\}$ is a dianalytic atlas on X, the following assertions are equivalent.

(1) There exists an N-meromorphic quadratic differential $\tilde{\Phi}$ on X.

(2) There exists a family of mappings $\widetilde{\varphi}_A = \{\widetilde{\varphi}_i : \widetilde{U}_i \to \widehat{\mathbf{C}} \mid i \in I\}$ such that:

(2') For every $i \in I$, $\widetilde{\varphi}_i \circ h_i^{-1} : h_i(\widetilde{U}_i) \to \widehat{\mathbf{C}}$ is a meromorphic function, where $\widetilde{\varphi}_i \circ h_i^{-1} = \Phi_{|U_i}$ if $h_i \in A_1$, and $\widetilde{\varphi}_i \circ h_i^{-1} = \Phi_{|k(U_i)}$ if $h_i \in A_2$.

(2") If (\tilde{U}, h, V) and (\tilde{U}', h', V') are charts from A corresponding to the same point $\tilde{z}_0 \in X$, with $h(\tilde{z}_0) = z_0$, respectively $h'(\tilde{z}_0) = w_0$, and $\tilde{\Phi}$ is an N-meromorphic quadratic differential on X, $\tilde{\Phi} \neq 0$, with the local representations $\tilde{\Phi}(\tilde{z}) = \varphi(z)dz^2 + \widehat{\varphi}(k(z))dk(z)^2$, respectively $\tilde{\Phi}'(\tilde{z}) = \varphi'(w)dw^2 + \widehat{\varphi}'(k(w))dk(w)^2$ near \tilde{z}_0 , if \tilde{U}^* is a connected component of $\tilde{U} \cap \tilde{U}'$, then (see [4])

$$\begin{cases} \varphi(z) = \varphi'(w) \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^2 \\ \widehat{\varphi}(k(z)) = \widehat{\varphi}'(k(w)) \left(\frac{\mathrm{d}k(w)}{\mathrm{d}k(z)}\right)^2 \end{cases}$$

if $h' \circ h^{-1}$ is analytic on $h(\widetilde{U}^*)$, or

$$\begin{cases} \varphi(z) = \widehat{\varphi}'(k(w)) \left(\frac{\mathrm{d}k(w)}{\mathrm{d}z}\right)^2\\ \widehat{\varphi}(k(z)) = \varphi'(w) \left(\frac{\mathrm{d}w}{\mathrm{d}k(z)}\right)^2 \end{cases}$$

if $h' \circ h^{-1}$ is antianalytic on $h(\widetilde{U}^*)$.

It was shown in [6] that even if the value of the quadratic differential Φ at a point $P \in O_2$ depends on the local parameter near P, it makes sense to define the zeroes and the poles of Φ .

PROPOSITION 1 ([6]). The order of a critical point of a quadratic differential on O_2 is an analytic invariant, that is, it does not depend on the choice of the local parameter, [6].

Let $\tilde{z}_0 \in X$. Then near \tilde{z}_0 we have the representation

$$\widetilde{\Phi}(\widetilde{z}) = \sum_{l=n}^{\infty} a_l (z - z_0)^l dz^2 + \sum_{l=\widehat{n}}^{\infty} b_l \left[k(z) - k(z_0) \right]^l d(k(z))^2$$

of $\overline{\Phi}$, with $a_n \neq 0$, $b_{\widehat{n}} \neq 0$.

By definition, the order of φ near z_0 is n and we write $\operatorname{ord}(\varphi, z_0; h) = n$ while the order of $\widehat{\varphi}$ near $k(z_0)$ is \widehat{n} and we write $\operatorname{ord}(\widehat{\varphi}, k(z_0); h) = \widehat{n}$.

THEOREM 3. If (\tilde{U}, h, V) and (\tilde{U}', h', V') are charts from A corresponding to the same point $\tilde{z}_0 \in X$, with $h(\tilde{z}_0) = z_0$, respectively $h'(\tilde{z}_0) = w_0$, and $\tilde{\Phi}$ is an N-meromorphic quadratic differential on X, $\tilde{\Phi} \neq 0$, with the local representations $\tilde{\Phi}(\tilde{z}) = \varphi(z)dz^2 + \hat{\varphi}(k(z))dk(z)^2$, respectively $\tilde{\Phi}'(\tilde{z}) = \varphi'(w)dw^2 + \hat{\varphi}'(k(w))dk(w)^2$ near \tilde{z}_0 , then:

$$\begin{cases} \operatorname{ord}(\varphi, z_0; h) = \operatorname{ord}(\varphi', w_0; h') \\ \operatorname{ord}(\widehat{\varphi}, k(z_0); h) = \operatorname{ord}(\widehat{\varphi}', k(w_0); h') \end{cases}$$

if $h' \circ h^{-1}$ is analytic, or

$$\begin{cases} \operatorname{ord}(\varphi, z_0; h) = \operatorname{ord}(\widehat{\varphi}', k(w_0); h') \\ \operatorname{ord}(\widehat{\varphi}, k(z_0); h) = \operatorname{ord}(\varphi', w_0; h') \end{cases}$$

if $h' \circ h^{-1}$ is antianalytic.

Proof. The result is a direct consequence of Theorem 2 and Proposition 1. \Box

For every $\tilde{z} \in X$ define the set $O(\tilde{z}) = \{(n, \hat{n}; h) \mid n, \hat{n} \in \mathbb{Z}, (\tilde{U}, h, V) \in A, \tilde{z} \in \tilde{U}\}$ and an equivalence relation "~" on $O(\tilde{z})$ by $(n, \hat{n}; h) \sim (n', \hat{n'}; h') \Leftrightarrow$ a) $n = n', \, \hat{n} = \hat{n'}$, if $h' \circ h^{-1}$ is an analytic mapping, or b) $n = \hat{n'}, \, \hat{n} = n'$, if $h' \circ h^{-1}$ is an antianalytic mapping.

Let $O(\tilde{z})/\sim$ the set of the corresponding equivalence classes and $[n, \hat{n}; h] \in O(\tilde{z})/\sim$ the equivalence class of $(n, \hat{n}; h) \in O(\tilde{z})$. By definition,

(e1): [0,0;h] = 0;

(e2): $[n, \hat{n}; h] \ge 0 \Leftrightarrow n \ge 0, \, \hat{n} \ge 0;$

(e3): $-[n, \hat{n}; h] = [-n, -\hat{n}; h];$

(e4): $[n, \hat{n}; h] + [n', \hat{n'}; h] = [n + n', \hat{n} + \hat{n'}; h];$

(e5): $[n, \hat{n}; h] \ge [n', \hat{n'}; h] \Leftrightarrow n \ge n', \hat{n} \ge \hat{n'}$ (see [3]).

The order of an N-meromorphic quadratic differential Φ at \tilde{z}_0 will be denoted by $\operatorname{ord}(\tilde{\Phi}, \tilde{z}_0)$ and, by definition,

$$\operatorname{ord}(\Phi, \widetilde{z}_0) = [\operatorname{ord}(\varphi, z_0; h), \operatorname{ord}(\widehat{\varphi}, k(z_0); h); h].$$

Remark 1. It follows from Theorem 3 that the order of an N-meromorphic quadratic differential $\tilde{\Phi}$ at \tilde{z}_0 is well defined, that is, it does not depend on the choice of the local parameter. Thus, the order of an N-meromorphic quadratic differential $\tilde{\Phi}$ at \tilde{z}_0 is a dianalytic invariant.

For the study of the local trajectory structure, we will introduce special conformal parameters in terms of which the representation of an N-quadratic differential $\tilde{\Phi}$ becomes simple.

In a sufficiently small neighborhood \widetilde{U} of a point $\widetilde{z}_0 \in X$, with the local parameter $z = h(\widetilde{z})$, one can select a single valued branch $\Psi(z)$ of the function $\int \sqrt{\varphi(z)} dz$ in the neighborhood U of z_0 and a single valued branch $\widehat{\Psi}(w)$ of the function $\int \sqrt{\widehat{\varphi}(w)} dw$ in the neighborhood k(U) of $w_0 = k(z_0)$, where $q^{-1}(\widetilde{U}) = \{U, k(U)\}; U$ and k(U) are mapped homeomorphically by Ψ and $\widehat{\Psi}$ onto open sets V, respectively \widehat{V} . Then $\omega = \Psi(z)$ and $\widehat{\omega} = \widehat{\Psi}(k(z))$ are local parameters in U, respectively k(U), in terms of which $d\omega^2 = \varphi(z) dz^2$, respectively $d\widehat{\omega}^2 = \widehat{\varphi}(k(z)) dk(z)^2$. The parameters are uniquely determined up to a transformation $\omega \to \pm \omega + \text{constant}$, respectively $\widehat{\omega} \to \pm \widehat{\omega} + \text{constant}$ (see [6]).

By definition, the natural parameter of φ near z_0 is ω and it will be denoted by $\omega = np(\varphi, z_0; h)$ while the natural parameter of $\widehat{\varphi}$ near $k(z_0)$ is $\widehat{\omega}$ and it will be denoted by $\widehat{\omega} = np(\widehat{\varphi}, k(z_0); h)$.

THEOREM 4. Under the same conditions as in Theorem 3, if $\omega = np(\varphi, z_0; h)$, $\widehat{\omega} = np(\widehat{\varphi}, k(z_0); h)$, respectively $\omega' = np(\varphi', w_0; h')$, $\widehat{\omega'} = np(\widehat{\varphi'}, k(w_0); h')$ are the corresponding natural parameters near $\widetilde{z}_0 \in X$, uniquely determined up to a transformation of type $\omega \to \pm \omega + \text{ constant, then}$

$$\begin{cases} \operatorname{np}(\varphi, z_0; h) = \operatorname{np}(\varphi', w_0; h') \\ \operatorname{np}(\widehat{\varphi}, k(z_0); h) = \operatorname{np}(\widehat{\varphi'}, k(w_0); h') \end{cases}$$

if $h' \circ h^{-1}$ is analytic,

$$\begin{cases} \operatorname{np}(\varphi, z_0; h) = \operatorname{np}(\widehat{\varphi'}, k(w_0); h') \\ \operatorname{np}(\widehat{\varphi}, k(z_0); h) = \operatorname{np}(\varphi', w_0; h') \end{cases}$$

if $h' \circ h^{-1}$ is antianalytic.

Proof. The result is a direct consequence of Theorem 2 and the definition of the natural parameter of a quadratic differential on a Riemann surface. \Box

For every $\widetilde{z} \in X$, define the set $NP(\widetilde{z}) = \{(\omega, \widehat{\omega}; h) \mid (\widetilde{U}, h, V) \in A, \widetilde{z} \in \widetilde{U}\}$ and an equivalence relation "~" on $NP(\widetilde{z})$ by $(\omega, \widehat{\omega}; h) \sim (\omega', \widehat{\omega}'; h') \Leftrightarrow$ a) $\omega = \omega', \widehat{\omega} = \widehat{\omega'}$, if $h' \circ h^{-1}$ is an analytic mapping, or b) $\omega = \widehat{\omega'}, \widehat{\omega} = \omega'$, if $h' \circ h^{-1}$ is an antianalytic mapping.

Let $NP(\tilde{z})/\sim$ be the set of the corresponding equivalence classes and $[\omega, \hat{\omega}; h] \in NP(\tilde{z})/\sim$ the equivalence class of $(\omega, \hat{\omega}; h) \in NP(\tilde{z})$.

The natural parameter of an N-meromorphic quadratic differential Φ at \tilde{z}_0 will be denoted by np($\tilde{\Phi}, \tilde{z}_0$) and, by definition,

$$\operatorname{np}(\Phi, \widetilde{z}_0) = [\operatorname{np}(\varphi, z_0; h), \operatorname{np}(\widehat{\varphi}, k(z_0); h); h].$$

3.6 .	D '
Monica	Rosin
monitou	TOQIA

Remark 2. It follows from Theorem 4, that the natural parameter of an N-meromorphic quadratic differential $\tilde{\Phi}$ at \tilde{z}_0 is well defined, that is, it does not depend on the choice of the local parameter. Thus, the natural parameter of an N-meromorphic quadratic differential $\tilde{\Phi}$ at \tilde{z}_0 is a dianalytic invariant.

An horizontal arc with respect to the quadratic differential φ near z_0 is a smooth curve γ along which $\arg d\omega^2 = \arg \varphi(z) dz^2 = 0$. By definition, γ is an horizontal trajectory or simply a trajectory of the quadratic differential φ near z_0 if it is a maximal horizontal arc and we write $\gamma = \operatorname{tr}(\varphi, z_0; h)$, [6]. An horizontal arc with respect to the quadratic differential $\widehat{\varphi}$ near $k(z_0)$ is a smooth curve $\widehat{\gamma}$ along which $\arg d\widehat{\omega}^2 = \arg \widehat{\varphi}(z) dz^2 = 0$. By definition, $\widehat{\gamma}$ is an horizontal trajectory or simply a trajectory of the quadratic differential $\widehat{\varphi}$ near $k(z_0)$ if it is a maximal horizontal arc and we write $\widehat{\gamma} = \operatorname{tr}(\widehat{\varphi}, k(z_0); h)$.

THEOREM 5. Under the same conditions as in Theorems 3 and 4, if $\gamma = \operatorname{tr}(\varphi, z_0; h), \ \widehat{\gamma} = \operatorname{tr}(\widehat{\varphi}, k(z_0); h), \ respectively \ \gamma' = \operatorname{tr}(\varphi', w_0; h'), \ \widehat{\gamma'} = \operatorname{tr}(\widehat{\varphi'}, k(w_0); h'), \ near \ \widetilde{z}_0 \ are \ the \ corresponding \ trajectories, \ then$

$$\begin{cases} \operatorname{tr}(\varphi, z_0; h) = \operatorname{tr}(\varphi', w_0; h') \\ \operatorname{tr}(\widehat{\varphi}, k(z_0); h) = \operatorname{tr}(\widehat{\varphi'}, k(w_0); h') \end{cases}$$

if $h' \circ h^{-1}$ is analytic, or

$$\begin{cases} \operatorname{tr}(\varphi, z_0; h) = \operatorname{tr}(\widehat{\varphi'}, k(w_0); h') \\ \operatorname{tr}(\widehat{\varphi}, k(z_0); h) = \operatorname{tr}(\varphi', w_0; h') \end{cases}$$

if $h' \circ h^{-1}$ is antianalytic.

Proof. The result is a direct consequence of Theorem 2 and the definition of the trajectory of a quadratic differential on a Riemann surface. \Box

For every $\tilde{z} \in X$ the set

 $\{(\gamma, \widehat{\gamma}; h) \mid \gamma, \widehat{\gamma} : [0, 1] \to \mathbb{C} \text{ locally rectifiable curves}, (\widetilde{U}, h, V) \in A, \ \widetilde{z} \in \widetilde{U}\}$

is denoted by $TR(\tilde{z})$. Define an equivalence relation "~" on $TR(\tilde{z})$ by $(\gamma, \hat{\gamma}; h)$ ~ $(\gamma', \hat{\gamma'}; h') \Leftrightarrow$ a) $\gamma = \gamma', \ \hat{\gamma} = \hat{\gamma'}$, if $h' \circ h^{-1}$ is an analytic mapping, or b) $\gamma = \hat{\gamma'}, \ \hat{\gamma} = \gamma'$, if $h' \circ h^{-1}$ is an antianalytic mapping.

Let $TR(\tilde{z})/\sim$ be the set of the corresponding equivalence classes and $[\gamma, \hat{\gamma}; h] \in TR(\tilde{z})/\sim$ the equivalence class of $(\gamma, \hat{\gamma}; h) \in TR(\tilde{z})$.

The trajectory of a quadratic differential Φ near \tilde{z}_0 will be denoted by $\operatorname{tr}(\Phi, \tilde{z}_0)$ and, by definition,

$$\operatorname{tr}(\widehat{\Phi}, \widetilde{z}_0) = \left[\operatorname{tr}(\varphi, z_0; h), \operatorname{tr}(\widehat{\varphi}, k(z_0); h); h\right].$$

Remark 3. It follows from Theorem 5 that the trajectory of an Nmeromorphic quadratic differential $\tilde{\Phi}$ at \tilde{z}_0 is well defined, that is, it does not depend on the choice of the local parameter. Thus, the trajectory of an N-meromorphic quadratic differential $\tilde{\Phi}$ at \tilde{z}_0 is a dianalytic invariant.

COROLLARY 1. In the (z)-plane, the trajectory arcs are the lines which are mapped into horizontals in the (ω) -plane. Similarly, the trajectory arcs in the (w)-plane are the lines which are mapped into horizontals in $(\widehat{\omega})$ -plane. The trajectory structure in the plane of the parameter $np(\widetilde{\Phi}, \widetilde{z}_0)$ near \widetilde{z}_0 results from the (z)-plane, respectively (w)-plane, trajectory structure, by conformal mappings, corresponding to the nature of the points z_0 , respectively $k(z_0)$ (see [6]).

REFERENCES

- N.L. Alling and N. Greenleaf, Foundations of the Theory of Klein Surfaces. Lecture Notes in Math. 219. Springer-Verlag, Berlin, 1971.
- [2] Cabiria Andreian Cazacu, On the morphisms of Klein surfaces. Rev. Roumaine Math. Pures Appl. 31 (1986), 461–470.
- [3] I. Bârză, Fonctions et formes différentielles de type méromorphe sur les surfaces de Riemann non orientables. II. Rev. Roumaine Math. Pures Appl. 28 (1983), 933–948.
- [4] Monica Roşiu and P. Kessler, A note on quadratic differentials on Klein surfaces. An. Univ. Craiova Ser. Mat. Inform. 22 (1995), 58–65.
- [5] Monica Roşiu and P. Kessler, Correspondence between different types of quadratic differentials. An. Univ. Craiova Ser. Mat. Inform. 33 (2006), 79–86.
- [6] K. Strebel, Quadratic Differentials. Springer-Verlag, Berlin, 1984.

Received 23 January 2009

University of Craiova Faculty of Mathematics and Computer Science Str. Al.I. Cuza nr. 13 200585 Craiova, Romania