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We introduce the notion of Riemann integrable function with respect to a Daniell
integral and prove the approximation theorem of such functions by a monotone se-
quence of Jordan simple functions. This is a generalization of the famous Lebesgue
criterion of Riemann integrability.
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1. PRELIMINARIES

We consider a linear vector space C of real bounded functions over an
arbitrary set X, X 6= φ, such that the constant real functions on X belong to
C and for any f, g ∈ C the function f ∨ g : X → R defined as (f ∨ g)(x) =
max{f(x), g(x)} also belongs to C .

Obviously, for any f, g ∈ C the function f∧g (respectively |f |) defined as

(f ∧ g)(x) = min{f(x), g(x)} (resp. |f |(x) = |f(x)|)

belongs to C and we have f ∧ g + f ∨ g = f + g, |f | = (−f) ∨ f .

Definition 1. A real linear map I : C → R is called a Daniell integral
(or a Cauchy-Daniell integral) if it is increasing and monotone sequentially
continuous, i.e.,

(a) I (αf + βg) = αI(f) + βI(g) ∀α, β ∈ R, ∀f, g ∈ C ;
(b) f, g ∈ C , f ≤ g ⇒ I (f ) ≤ I(g);
(c) for any decreasing sequence (fn)n of C such that inf {fn(x) | n ∈ N} =

0 for any x ∈ X we have inf
n

I(fn) = 0.

As is well known, there exists a real positive measure µ on the σ-algebra
B(C ), generated by C (the coarsest σ-algebra of sets on X for with respect
to which any function f ∈ C is a measurable real function on X), such that
we have

I(f) =
∫

fdµ ∀f ∈ C.
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There are several steps of extension of the given functional I such that,
finally, any characteristic function 1A with A ∈ B(C ), belongs to the domain
of the extension of I.

We recall briefly this procedure. First, we denote by Ci (respectively, Cs),
the set of all functions ϕ : X → (−∞,∞] (respectively, Ψ : X → [−∞,∞)),
for which there exists an increasing sequence (fn)n (respectively decreasing
sequence (gn)n) in C , such that ϕ = sup

n
fn =: ∨

n
fn (Ψ = inf

n
gn =: ∧

n
gn).

Using the property of a Daniell integral one can show that the ele-
ment I(ϕ) (respectively, I(Ψ) of (−∞,∞] (respectively, [−∞,∞)) defined as
I(ϕ) = sup

n
I(fn) (I(Ψ) = inf

n
I(gn)) does not depend on the sequence (fn)n

(respectively, (gn)n) which increases to ϕ (respectively, decreases to Ψ).
We notice the following facts:
(1) Ci and Cs are convex cones, i.e., for any f, g in Ci (respectively, Cs)

and for any α, β ∈ R, α > 0, β > 0, we have αf + βg ∈ Ci (respectively, Cs).
(2) for any f, g in Ci (respectively, Cs) the functions f ∨ g, f ∧ g be-

long to Ci (respectively, Cs). Moreover, for any increasing sequence of Ci ,
its pointwise supremum belongs to Ci while the pointwise infimum of a de-
creasing sequence of Cs belongs to Cs . In fact, we have Cs = −Ci , i.e.,
Cs = {−ϕ | ϕ ∈ Ci} or Ci = {−Ψ | Ψ ∈ Cs}.

(3) I (αf + βg) = αI(f) + βI(g)∀α, β ∈ R∗
+ and f , g ∈ Ci (respectively,

f , g ∈ Cs).
(4) I(f) ≤ I(g) if f ≤ g and f, g ∈ Ci (respectively, f, g ∈ Cs).
(5) sup

n
I(fn) = I

(
sup

n
fn

)
for any increasing sequence (fn)n of Ci and

inf
n

I(fn) = I
(
inf
n

fn

)
for any decreasing sequence (fn)n of Cs .

(6) I (−f) = −I(f) ∀f ∈ Ci or f ∈ Cs .
For any function h : X → R, we denote by I∗(h) (respectively, I∗(h))

the element of R defined as I∗(h) = inf {I(f) | f ∈ Ci , f ≥ h} (respectively,
I∗(h) = sup {I(g) | g ∈ Cs , g ≤ h}). The assertion I∗(h) ≤ I∗(h) does al-
ways hold.

These new extensions of I have the properties below:
(7) I∗ and I∗ are increasing, i.e., I∗(f) ≤ I∗(g), respectively, I∗(f) ≤

I∗(g) whenever f ≤ g;
(8) I∗ (h + g) ≤ I∗(h) + I∗(g), I∗ (h + g) ≥ I∗(h) + I∗(g) whenever the

algebraic operations make sense;
(9) sup

n
I∗(fn) = I∗

(
sup

n
fn

)
for any increasing sequence (fn)n for which

I∗ (f1) > −∞;
(10) inf

n
I∗(fn) = I∗

(
inf
n

fn

)
for any decreasing sequence (fn)n for which

I∗ (f1) < ∞.
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It can be shown that the set L1(I) defined as

L1(I) = {f : X → R | I∗(f) = I∗(f) 6= ±∞}

is a real linear vector space of functions on X, such that
(11) C ⊂ L1(I), f ∨ g, f ∧ g belong to L1(I) if f, g ∈ L1(I);
(12) for any sequence (fn)n of L1(I), dominated in L1(I), i.e., |fn| ≤ g for

all n ∈ N for some function g ∈ L1(I), we have sup
n

fn ∈ L1(I), inf
n

fn ∈ L1(I).

Moreover, if the above sequence is pointwise convergent to a function f ,
then we have f ∈ L1(I) and I∗(f) = lim

n→∞
I∗(fn), lim

n→∞
I∗(|f − fn|) = 0.

If we denote by M the set of all subsets A of X such that the charac-
teristic function 1A of A belongs to L1(I), then M is a σ-algebra on X, the
map µ : M → R+ defined as µ (A) = I∗ (1A) = I∗ (1A) is a measure on M,
any element f ∈ L1(I) is M-measurable and µ-integrable. Moreover, we have
I∗(f) =

∫
fdµ and, in particular, the above equality holds for any f ∈ C .

The elements of M are generally called Lebesgue measurable (w.r. to I)
(or Daniell-measurable w.r. to I).

2. RIEMANN INTEGRABILITY
AND RIEMANN MEASURABILITY

In the sequel we develop a theory close to the Riemann theory of in-
tegration on the real line with respect to the Lebesgue measure on R. The
starting point is a pointwise vector lattice of real functions C on a set X which
contains the real constant functions, and a Daniell integral I : C → R.

Definition 2.1. A real bounded function h : X → R is called Riemann
integrable with respect to I or, simply, Riemann integrable if we have

sup{I(f ′) | f ′ ∈ C , f ′ ≤ f} = inf{I(f ′′) | f ′′ ∈ C , f ≤ f ′′}.

We shall denote by R1(I) the set of all Riemann integrable functions
f : X → R. For any f ∈ R1(I), denote

I(f) = sup{I(f ′) | f ′ ∈ C , f ′ ≤ f} = inf{I(f ′′) | f ′′ ∈ C , f ≤ f ′′}.

Proposition 2.2 (Darboux criterion). A function f : X → R is Riemann
integrable iff for any ε > 0 there exist f ′, f ′′ in C (or f ′, f ′′ ∈ R1(I)) such that
f ′ ≤ f ≤ f ′′ and I(f ′′)− I(f ′) < ε.

Proof. The assertion follows directly from the above definition. �

Proposition 2.3. a) The set R1(I) is a pointwise vector lattice such that
C ⊂ R1(I) ⊂ L1(I) and for any sequence (hn)n from R1(I) which decreases to
zero, i.e., ∧

n
hn = 0, the sequence (I (hn))n decreases to zero.
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b) If (hn)n is a sequence from R1(I), uniformly convergent to a function
h, we have h ∈ R1(I) and lim

n→∞
I (hn) = I(h), lim

n→∞
I (|hn − h|) = 0.

Proof. a) The inclusions C ⊂ R1(I) ⊂ L1(I) follow from the definitions,
on account of the fact that C ⊂ Ci, C ⊂ Cs.

Let h be an element of R1(I) and for any ε > 0 let f ′, f ′′ ∈ C be such that
f ′ ≤ h ≤ f ′′ and I(f ′′−f ′) < ε. We consequently have f ′∨0 ≤ h∨0 ≤ f ′′∨0,
(f ′′∨0)− (f ′∨0) ≤ f ′′−f ′, I(f ′′∨0)−I(f ′∨0) ≤ I(f ′′)−I(f ′) < ε. Since the
functions f ′∨0 and f ′′∨0 belong to C , we deduce that the function h+ = h∨0
belongs to R1(I). Hence R1(I) is a pointwise lattice.

If the sequence (hn)n from R1(I) decreases to zero, by the above pro-
perty (12) of the Daniell integral, we have lim

n→∞
I (hn) = lim

n→∞
I∗ (hn) = 0.

Nevertheless, we can directly prove this property. For any ε > 0 and for
any n ∈ N choose f ′n, f ′′n ∈ C such that f ′n ≤ hn ≤ f ′′n and I (f ′′n − f ′n) < ε/2n.
Consequently, for any natural integer k we have

k
∧

n=1
f ′n ≤ hk ≤

k
∧

n=1
f ′′n ,

k
∧

n=1
f ′′n −

k
∧

n=1
f ′n ≤

k∑
n=1

(
f ′′n − f ′n

)
,

I

(
k
∧

n=1
f ′′n −

k
∧

n=1
f ′n

)
≤

k∑
n=1

I
(
f ′′n − f ′n

)
≤ ε.

Since the sequence
(

k
∧

n=1
f ′n

)
k

from C decreases to zero
(

inf
k

hk = 0
)

,

we have lim
k→∞

I

(
k
∧

n=1
f ′n

)
= 0.

On the other hand, the sequence
(

k
∧

n=1
f ′′n

)
k

from C decreases and hk≤
k∑

n=1
f ′′n for any k ∈ N. Therefore,

I (hk) ≤ I

(
k
∧

n=1
f ′′n

)
≤ ε + I

(
k
∧

n=1
f ′n

)
, lim

k→∞
I (hk) ≤ ε.

The number ε > 0 being arbitrary, we get lim
k→∞

I (hk) = 0.

b) Let ε > 0 be arbitrary and let n0 ∈ N be such that |hn − h| < ε for
n ≥ n0. We have hn0 ± ε ∈ R1 and

hn0 − ε ≤ h ≤ hn0 + ε, I (hn0 + ε)− I (hn0 − ε) = 2εI (1X) ,

i.e., h ∈ R1(I). Moreover, from the above considerations we deduce the rela-
tions

I (|hn − h|) ≤ εI (1X) , |I (hn)− I(h)| ≤ I (|hn − h|) ≤ ε, ∀n ≥ n0,
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i.e., lim
n→∞

I (|hn − h|) = 0, lim
n→∞

I (hn) = I(h). �

Let us denote by R the set of subsets of X defined as R = {A | A ⊂ X ,
1A ∈ R1(I)}.

We refer to an element of R as Jordan measurable with respect to I.
Obviously, we have R ⊂M.

Proposition 2.4. The set R is an algebra of subsets of X.

Proof. The assertion follows from the fact that R1(I) is a pointwise vector
lattice using the equations 1A∪B = 1A ∨ 1B, 1X\A = 1− 1A, ∀A,B ⊂ X. �

Theorem 2.5. If f : X → R is a bounded function, then the following
assertions are equivalent:

1) f is Riemann integrable w.r. to I.
2) There exists an increasing sequence of R-step functions which con-

verges uniformly to f .
3) There exists a decreasing sequence of R-step functions which converges

uniformly to f .
4) For any ε > 0 there exists an R-partition

∆ε = (A1, A2, . . . , An) , Ai ∈ R,
n⋃

i=1

Ai = X, Ai ∩Aj = φ if i 6= j

such that S (f,∆ε) − s (f,∆ε) < ε, where S (f,∆ε), respectively s (f,∆ε), is
the upper, respectively the lower, Darboux sum associated with f and ∆ε.

Proof. The implications 2) ⇒ 4), 3) ⇒ 4) are obvious.
4) ⇒ 1). For any natural integer n, n 6= 0, we consider a partition

∆n = (A1, A2, . . . , Akn) of X, with Ai ∈ R for any i ≤ kn, such that

kn∑
i=1

Miµ (Ai)−
kn∑
i=1

miµ (Ai) <
1
n

, sup
x∈Ai

f(x) = Mi, inf
x∈Ai

f(x) = mi.

Since 1Ai ∈ R1, we deduce that the functions ϕ, Ψ defined as ϕ =∑
i mi1Ai ,Ψ =

∑
i Mi1Ai belong to R1(I), and, moreover, we have

ϕ ≤ f ≤ Ψ, I(ϕ) =
∑

i

miµ(Ai), I(Ψ) =
∑

i

Miµ(Ai), I(Ψ)− I(ϕ) <
1
n

.

Now, using Proposition 2.2, we deduce that the function f is Riemann
integrable.

1) ⇒ 2) Without loss of generality, we may assume that f ≥ 0. Since
for any real number r the set [f = r] belongs to M, the set D of real numbers
defined as D = {r ∈ R | µ ([f = r]) > 0} is at most countable. Let us now
show that the set [f > r] belongs to R for any r ∈ R, r /∈ D. Indeed, we have
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1[f>r] = sup
n

ϕn, 1[f≥r] = inf
n

Ψn, where, for any natural integer n, the functions

ϕn, Ψn are defined as ϕn = 1∧n (f − r)+, Ψn = 1−1∧n (r − f)+. Obviously,
ϕn ∈ R1(I), Ψn ∈ R1(I), the sequence (ϕn)n is increasing, the sequence (Ψn)n
is decreasing and the sequence (Ψn − ϕn)n decreases to the function 1[f=r].
Since µ ([f = r]) = 0 we have

lim
n→∞

I (Ψn − ϕn) = lim
n→∞

∫
(Ψn − ϕn) dµ = µ ([f = r]) = 0

and, therefore, by Proposition 2.2 again, any function g : X → R, such that
sup

n
ϕn ≤ g ≤ inf

n
Ψn, belongs R1(I). In particular, the functions 1[f>r], 1[f≥r]

belong to R1(I). Since D is at most countable, there exists a real number a
such that 0 < a ≤ 1 and r · a /∈ D for any rational number r. For any natural
integer n 6= 0 we consider the function ϕn defind as

ϕn =
a

2n

2n·p−1∑
k=1

1[f> k· a
2n ],

where p ∈ N is such that f(x) ≤ pa for any x ∈ X. Obviously ϕn is an R-step
function, we have ϕn ≤ f ≤ ϕn + a

2n , and the sequence (ϕn)n is uniformly
increasing to f . Now, replacing f by −f , we deduce that 2) ⇔ 3). �

Remark 2.6. In the case where X = [a, b] ⊂ R and C = {f : [a, b] →
R | f continuous}, Theorem 2.5 generalizes the famous Lebesgue criterion of
Riemann integrability.
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