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We give new results about and applications of ergodicity coefficients of several
matrices. The results refer to the improvement of some results from [7], [8], and
[9] (Section 1). The applications refer to the approximate computation for pro-
ducts of stochastic matrices and probability distributions of finite Markov chains
(Section 2) and the new proofs of some known results (Section 3; some results are
from homogeneous finite Markov chain theory related to convergence and speed
of convergence and one is related to backward products).
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1. ERGODICITY COEFFICIENTS OF SEVERAL MATRICES

In this section (see also [7] and [9]) we consider some ergodicity coef-
ficients of one or two matrices. Then we improve some results from [7], [8], and
[9] related to these ergodicity coefficients. Moreover, we give some new results.

Set

Par(E) = {∆ | ∆ is a partition of E } ,

where E is a nonempty set. We shall agree that the partitions do not contain
the empty set.

Set

Rm,n = {T | T is a real m× n matrix} ,
Nm,n = {T | T is a nonnegative m× n matrix} ,
Sm,n = {T | T is a stochastic m× n matrix} ,
Rm = Rm,m, Nm = Nm,m, and Sm = Sm,m.

REV. ROUMAINE MATH. PURES APPL., 55 (2010), 1, 53–77



54 Udrea Păun 2

Let P = (Pij) ∈ Rm,n. Let ∅ 6= U ⊆ {1, 2, . . . ,m} and ∅ 6= V ⊆
{1, 2, . . . , n}. Define

PU = (Pij)i∈U, j∈{1,2,...,n} , P V = (Pij)i∈{1,2,...,m}, j∈V ,

and
P V

U = (Pij)i∈U, j∈V .

Let P ∈ Rm,n. Below we give a list of coefficients associated with P (i.e.,
they are coefficients of one matrix) which are called ergodicity coefficients if
P is a stochastic matrix.

α(P ) = min
1≤i,j≤m

n∑
k=1

min (Pik, Pjk)

(if P ∈ Sm,n, then α(P ) is called Dobrushin’s ergodicity coefficient of P (see,
e.g., [4, p. 56])),

α(P ) =
1
2

max
1≤i,j≤m

n∑
k=1

|Pik − Pjk|

and, for ∆ ∈ Par ({1, 2, . . . ,m}),

γ∆(P ) = min
K∈∆
i,j∈K

n∑
k=1

min (Pik, Pjk)

and

γ∆(P ) =
1
2

max
K∈∆
i,j∈K

n∑
k=1

|Pik − Pjk|

(see [7] for γ∆ and γ∆; obviously, we have

γ∆(P ) = min
K∈∆

α (PK) and γ∆(P ) = max
K∈∆

α (PK)

and, if ∆ = ({1, 2, . . . ,m}), then γ∆ = α and γ∆ = α).
We can consider (following [7]) a coefficient which generalizes γ∆ (also

α) and other which generalizes γ∆ (also α). For this, let P ∈ Rm,n, ∅ 6= X ⊆
{1, 2, . . . ,m}2, and the coefficients

aX(P ) = min
(i,j)∈X

n∑
k=1

min (Pik, Pjk)

and

aX(P ) =
1
2

max
(i,j)∈X

n∑
k=1

|Pik − Pjk| .

Remark 1.1. If P ∈ Rm,n then aX (P ) = 0 (equivalently, aX(P ) = 1 if
P ∈ Sm,n) if and only if P{i,j} is a stable matrix (i.e., a matrix with identical
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rows), ∀(i, j) ∈ X. In particular, α(P ) = 0 (equivalently, α (P ) = 1 if P ∈
Sm,n) if and only if P is a stable matrix.

Remark 1.2. If P ∈ Rm,n and ∅ 6= K ⊆ {1, 2, . . . ,m}, then aK2(P ) =
α (PK) and aK2(P ) = α (PK). In particular, for K = {1, 2, . . . ,m} , we have
aK2(P ) = α (P ) and aK2(P ) = α(P ).

Let P ∈ Rm,n and ∅ 6= X ⊆ {1, 2, . . . ,m}2. Define

SX(P ) = {k | k ∈ {1, 2, . . . , n} and ∀(i, j) ∈ X we have Pik = Pjk } .

We remark that k∈SX(P ) implies that |Pik−Pjk|=0, ∀(i, j) ∈ X. Therefore,

aX(P ) =
1
2

max
(i,j)∈X

∑
k∈CSX(P )

|Pik − Pjk|

if CSX(P ) 6= ∅ (CSX(P ) is the complement of SX(P ); if CSX(P ) = ∅ (equi-
valently, SX (P ) = {1, 2, . . . , n}), then aX (P ) = 0). It is possible that we only
know a set Y , ∅ 6= Y ⊆ SX(P ). In this case we have

aX(P ) =
1
2

max
(i,j)∈X

∑
k∈V

|Pik − Pjk|

if V 6= ∅, where V := CY (this implies that CSX(P ) ⊆ V ⊆ {1, 2, . . . , n}).

Theorem 1.3. Let P ∈Sm,n, Q∈Sn,p, and ∅ 6=X ⊆ {1, 2, . . . ,m}2. Then
(i) aX(P ) = 1− aX(P );
(ii) aX(P ) = max

(i,j)∈X
max

I∈P({1,2,...,n})

∑
k∈I

(Pik − Pjk) ;

(iii) aX(P ) = aX

(
P V
)
, ∀V, V 6= ∅ and CSX(P ) ⊆ V ⊆ {1, 2, . . . , n} ;

(iv) aX (PQ)=aX

(
P VQV

)
, ∀V, V 6=∅ and CSX(P )⊆V ⊆{1, 2, . . . , n} .

Proof. (i) and (ii) See [7, Proposition 1.9].
(iii) Let V 6= ∅ and CSX(P ) ⊆ V ⊆ {1, 2, . . . , n}. We have

aX(P ) =
1
2

max
(i,j)∈X

∑
k∈CSX(P )

|Pik − Pjk| = aX

(
P CSX(P )

)
= aX

(
P V
)
.

(iv) Let V 6= ∅ and CSX(P ) ⊆ V ⊆ {1, 2, . . . , n}. By (ii) we have

aX (PQ) = max
(i,j)∈X

max
I∈P({1,2,...,p})

∑
k∈I

n∑
l=1

(Pil − Pjl)Qlk =

= max
(i,j)∈X

max
I∈P({1,2,...,p})

∑
k∈I

∑
l∈CSX(P )

(Pil − Pjl)Qlk =

= max
(i,j)∈X

max
I∈P({1,2,...,p})

∑
k∈I

∑
l∈V

(Pil − Pjl)Qlk = aX

(
P VQV

)
. �
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Theorem 1.4. Let P ∈Sm,n, Q∈Sn,p, and ∅ 6=X ⊆ {1, 2, . . . ,m}2. Then

aX (PQ) ≤ aX (P )α (Q) .

Proof. See [7, Theorem 1.10]. �

Theorem 1.4 can be generalized as follows.

Theorem 1.5. Let P ∈Sm,n, Q∈Sn,p, and ∅ 6=X ⊆ {1, 2, . . . ,m}2. Then
aX (PQ) ≤ aX

(
P V
)
α (QV ), ∀V, V 6= ∅ and CSX(P ) ⊆ V ⊆ {1, 2, . . . , n} .

Proof. Let V 6= ∅ and CSX (P ) ⊆ V ⊆ {1, 2, . . . , n}. Let U = pr1X ∪
pr2X, where

pr1X := {j | j ∈ {1, 2, . . . ,m} and ∃k ∈ {1, 2, . . . ,m} such that (j, k) ∈ X }
and

pr2X := {j | j ∈ {1, 2, . . . ,m} and ∃k ∈ {1, 2, . . . ,m} such that (k, j) ∈ X } .
Obviously, ∃c ≥ 0,∃R ∈ S|U |,|V | such that P V

U = cR (i.e., P V
U is a generalized

stochastic matrix (cf. Definition 1.17)). Then

aX (PQ) =

(by Theorem 1.3(iv))
= aX

(
P VQV

)
=

(because ∅ 6= X ⊆ U2 and the labels of rows and columns of matrices are
kept when we use the operators (·)U , (·)

V , and (·)V
U defined at the beginning

of this section)

= aX

(
P V

U QV

)
= aX (cRQV ) = caX (RQV ) ≤

(by Theorem 1.4)

≤ caX(R)α (QV ) = aX (cR)α (QV ) =

= aX

(
P V

U

)
α (QV ) = aX

(
P V
)
α (QV ) . �

Remark 1.6. By Remark 1.2, the inequality from Theorem 1.5 can be
written as

aX (PQ) ≤ aX

(
P V
)
aV 2 (Q) , ∀V, V 6= ∅ and CSX(P ) ⊆ V ⊆ {1, 2, . . . , n} .

Theorem 1.7. Let P ∈ Sm,n, Q ∈ Sn,p, and ∅ 6= X ⊆ {1, 2, . . . ,m}2. If
aX(P )>0, then aX (PQ)>0 (equivalently, if aX(P )<1, then aX (PQ)<1).

Proof. By Theorem 1.3(i), since aX(P ) > 0, we have aX(P ) < 1. Further,
by Theorem 1.4 we have

aX (PQ) ≤ aX (P )α (Q) ≤ aX(P ) < 1.
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Now, using the fact that aX (PQ) < 1 and Theorem 1.3(i), we obtain aX (PQ)
> 0. �

Let P,Q ∈ Rm,n. Below we give a list of coefficients (see [9]) associ-
ated with P and Q (i.e., they are coefficients of two matrices) which we call
ergodicity coefficients if P,Q ∈ Sm,n.

N∞(P,Q) =
1
2
|‖P −Q‖|∞ ,

N∞(P,Q) = 1−N∞(P,Q) if P,Q ∈ Sm,n

(the ergodicity coefficients induced by the matrix norm |‖·‖|∞ (if T ∈ Rm,n,

then |‖T‖|∞ := max
1≤i≤m

n∑
j=1

|Tij |)),

ζ(P,Q) = min
1≤i,j≤m

n∑
k=1

min (Pik, Qjk) ,

ζ(P,Q) =
1
2

max
1≤i,j≤m

n∑
k=1

|Pik −Qjk|

(X should be equal to {1, 2, . . . ,m}2 in [9]) and, for ∆ ∈ Par ({1, 2, . . . ,m}),

θ∆(P,Q) = min
K∈∆
i,j∈K

n∑
k=1

min (Pik, Qjk)

and

θ∆(P,Q) =
1
2

max
K∈∆
i,j∈K

n∑
k=1

|Pik −Qjk|

(X should be equal to
{
(i, j) | (i, j)∈{1, 2, . . . ,m}2 and ∃K∈∆ such that i, j∈

K
}

in [9]; obviously (see [9]), we have

θ∆(P,Q) = min
K∈∆

ζ (PK , QK)

and
θ∆(P,Q) = max

K∈∆
ζ (PK , QK) ).

Remark 1.8. Obviously, we have (P ∈ Rm,n)

ζ(P, P ) = α(P ), ζ(P, P ) = α(P ),

θ∆(P, P ) = γ∆(P ), θ∆(P, P ) = γ∆(P ),

θ({1,2,...,m}) = ζ and θ({1,2,...,m}) = ζ.
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Also, as in the case of γ∆ and γ∆, we can consider a coefficient which
generalizes θ∆ (also ζ (see Remark 1.8)) and another one which generalizes θ∆

(also ζ). For this, let P,Q ∈ Rm,n and ∅ 6= X ⊆ {1, 2, . . . ,m}2 . Define

bX(P,Q) = min
(i,j)∈X

n∑
k=1

min (Pik, Qjk)

and

bX(P,Q) =
1
2

max
(i,j)∈X

n∑
k=1

|Pik −Qjk| .

Note that bX(P, P ) = aX(P ) and bX(P, P ) = aX(P ), ∀P ∈ Rm,n, ∀X,
∅ 6= X ⊆ {1, 2, . . . ,m}2 . Also, note that if P,Q ∈ Rm,n, then bX (P,Q) = 0
(equivalently, bX(P,Q) = 1 if P,Q ∈ Sm,n) if and only if P{i} = Q{j}, ∀(i, j) ∈
X. In particular, ζ (P,Q) = 0 (equivalently, ζ(P,Q) = 1 if P,Q ∈ Sm,n) if and
only if there exists a stable matrix Π such that P = Q = Π.

Let σ and τ be two probability distributions on {1, 2, . . . ,m} . The total
variation distance between σ and τ, denoted ‖σ − τ‖ , is defined as

‖σ − τ‖ =
1
2

m∑
i=1

|σi − τi|

(see, e.g., [1, pp. 109−110]). (Therefore, ‖σ − τ‖ = 1
2 ‖σ − τ‖1 .)

This notion suggests the next definition.

Definition 1.9. Let P,Q ∈ Sm,n and ∅ 6= X ⊆ {1, 2, . . . ,m}2 .We say that
bX (P,Q) is the total X-variation distance between P and Q. In particular,
for X = {1, 2, . . . ,m}2 , bX(P,Q) = ζ (P,Q) and we say that ζ(P,Q) is the
total variation distance between P and Q for short.

Let P,Q ∈ Rm,n and ∅ 6= X ⊆ {1, 2, . . . ,m}2 . Define

ΣX(P,Q) = {k | k ∈ {1, 2, . . . , n} and ∀(i, j) ∈ X we have Pik = Qjk } .
We have, obviously, ΣX(P, P ) = SX (P ) and

bX(P,Q) =
1
2

max
(i,j)∈X

∑
k∈CΣX(P,Q)

|Pik −Qjk|

if CΣX(P,Q) 6= ∅ (if CΣX(P,Q) = ∅ (equivalently, ΣX(P,Q) = {1, 2, . . . , n}),
then bX(P,Q) = 0). It is possible that we only know a set Z, ∅ 6= Z ⊆
ΣX(P,Q). In this case we have

bX(P,Q) =
1
2

max
(i,j)∈X

∑
k∈W

|Pik −Qjk|
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if W 6= ∅, where W := CZ (this implies that CΣX(P,Q) ⊆W ⊆ {1, 2, . . . , n}).

Theorem 1.10. Let P,Q∈Sm,n, R∈Sn,p, and ∅ 6=X ⊆{1, 2, . . . ,m}2 .
Then

(i) bX(P,Q) = 1− bX(P,Q);
(ii) bX(P,Q) = max

(i,j)∈X
max

I∈P({1,2,...,n})

∑
k∈I

(Pik −Qjk) ;

(iii) bX(P,Q) = bX
(
PW , QW

)
, ∀W,W 6= ∅ and CΣX(P,Q) ⊆ W ⊆

{1, 2, . . . , n} ;
(iv) bX (PR,QR) = bX

(
PWRW , QWRW

)
, ∀W ,W 6= ∅ and CΣX(P,Q) ⊆

W ⊆ {1, 2, . . . , n} .

Proof. (i) and (ii) See [9, Proposition 1.4].
(iii) Let W 6= ∅ and CΣX(P,Q) ⊆W ⊆ {1, 2, . . . , n}. We have

bX(P,Q) =
1
2

max
(i,j)∈X

∑
k∈CΣX(P,Q)

|Pik −Qjk| = bX
(
PW , QW

)
.

(iv) Let W 6= ∅ and CΣX(P,Q) ⊆W ⊆ {1, 2, . . . , n}. By (ii) we have

bX (PR,QR) = max
(i,j)∈X

max
I∈P({1,2,...,p})

∑
k∈I

n∑
l=1

(Pil −Qjl)Rlk =

= max
(i,j)∈X

max
I∈P({1,2,...,p})

∑
k∈I

∑
l∈CΣX(P,Q)

(Pil −Qjl)Rlk =

= max
(i,j)∈X

max
I∈P({1,2,...,p})

∑
k∈I

∑
l∈W

(Pil −Qjl)Rlk = bX
(
PWRW , QWRW

)
. �

Theorem 1.11 ([9]). Let P,Q ∈ Sm,n, R ∈ Sn,p, and ∅ 6= X ⊆
{1, 2, . . . ,m}2. Then

bX (PR,QR) ≤ bX (P,Q)α(R).

Proof. See [9]. �

Theorem 1.11 can be improved as follows.

Theorem 1.12. Let P,Q ∈ Sm,n, R ∈ Sn,p, and ∅ 6= X ⊆ {1, 2, . . . ,m}2 .
Then

bX (PR,QR) ≤ bX
(
PW , QW

)
α (RW ) ,

∀W, W 6= ∅ and CΣX (P,Q) ⊆W ⊆ {1, 2, . . . , n} .

Proof. Let W 6= ∅ and CΣX(P,Q) ⊆ W ⊆ {1, 2, . . . , n}. As in the proof
of Theorem 1.5, setting U = pr1X ∪ pr2X, we have PW

U = cE and QW
U = cF,
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where c ≥ 0 and PW
U , QW

U ∈ S|U |,|W |. By Theorems 1.10(iv) and 1.11 we have

bX (PR,QR) = bX
(
PWRW , QWRW

)
= bX

(
PW

U RW , QW
U RW

)
=

= bX (cERW , cFRW ) = cbX (ERW , FRW ) ≤ cbX (E,F )α (RW ) =
= bX (cE, cF )α (RW ) = bX

(
PW

U , QW
U

)
α (RW ) = bX

(
PW , QW

)
α (RW ) . �

In this paper, a vector x ∈ Rn is a row vector and x′ denotes its transpose.
Set e = e (n) = (1, 1, . . . , 1) ∈ Rn.

Theorem 1.13. (i) If ξ ∈ Rn such that ξe′ = 0 and R ∈ Sn,p, then

‖ξR‖1 ≤ ‖ξ‖1 α(R)

(an inequality of Dobrushin (see, e.g., [4, p. 59], or [5, p. 147], or [9])).
(ii) (a generalization of (i)) If T ∈ Rm,n such that Te′ = 0 and R ∈ Sn,p,

then
|‖TR‖|∞ ≤ |‖T‖|∞ α(R)

(see, e.g., [5, p. 147] or [9]).
(iii) If P,Q ∈ Sm,n and R ∈ Sn,p, then

N∞ (PR,QR) ≤ N∞(P,Q)α(R)

(see [9]; therefore N∞, too, enjoys a property as in Theorem 1.11).

Proof. See [9] or, for (i), see, e.g., [4, p. 59], or [5, p. 147], for (ii), see,
e.g., [5, p. 147], and for (iii), use (ii) taking T = P −Q. �

Let T ∈ Rm,n. Define

Z (T ) =
{
j | j ∈ {1, 2, . . . , n} and T {j} = 0

}
(the set of zero columns of T ).

Theorem 1.13 can be improved as follows.

Theorem 1.14. (i) If ξ ∈ Rn such that ξe′ = 0 and R ∈ Sn,p, then

‖ξR‖1 ≤
∥∥ξW

∥∥
1
α (RW ) , ∀W, W 6= ∅ and CZ (ξ) ⊆W ⊆ {1, 2, . . . , n} .

(ii) (a generalization of (i)) If T ∈Rm,n such that Te′=0 and R∈Sn,p,
then

|‖TR‖|∞ ≤
∣∣∥∥TW

∥∥∣∣
∞ α (RW ) , ∀W, W 6= ∅ and CZ (T ) ⊆W ⊆ {1, 2, . . . , n} .

(iii) If P,Q ∈ Sm,n (more generally, P,Q ∈ Rm,n with (P −Q) e′ = 0)
and R ∈ Sn,p, then

N∞ (PR,QR) ≤ N∞
(
PW , QW

)
α (RW ) ,

∀W, W 6= ∅ and CZ (P −Q) ⊆W ⊆ {1, 2, . . . , n} .

Proof. This is left to the reader. �
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Remark 1.15. By Theorem 1.12, taking X = {1, 2, . . . ,m}2, and Theo-
rem 1.14(iii) we obtain two analogous inequality, namely,

ζ (PR,QR) ≤ ζ
(
PW , QW

)
α (RW )

and
N∞ (PR,QR) ≤ N∞

(
PW , QW

)
α (RW ) ,

∀W,W 6= ∅ and CΣX (P,Q) ⊆W ⊆ {1, 2, . . . , n}
(here ΣX(P,Q) ⊆ Z (P −Q)). Obviously, the first inequality contains more
information than the second one (cf. the definitions of ζ and N∞). Moreover,

N∞ ≤ ζ

(see [9]). If P or Q is a stable matrix, then

N∞(P,Q) = ζ (P,Q) .

This means that in cases such as this it does not matter if we use N∞ or ζ.
The converse is not true. Indeed, if

P =

(
1 0
1
2

1
2

)
and Q =

(
0 1
1
2

1
2

)
,

then N∞(P,Q) = ζ(P,Q) = 1, but neither P nor Q is a stable matrix.

In the next example we compare Theorems 1.13(i) and 1.14(i).

Example 1.16. Let

P =


0 0 2

4
2
4

0 0 1
4

3
4

1
4

3
4 0 0

3
4

1
4 0 0


and let ξ1 and ξ2 be two probability distributions on {1, 2, 3, 4} with supp ξ1,
supp ξ2 ⊆ {1, 2}. (If π is a probability distribution on {1, 2, . . . , r} , then

suppπ := {i | i ∈ {1, 2, . . . , r} and πi > 0} .)

By Theorem 1.13(i) we have

‖ξ1P − ξ2P‖1 ≤ ‖ξ1 − ξ2‖1 α(P ) = ‖ξ1 − ξ2‖1

while by Theorem 1.14(i) we have

‖ξ1P − ξ2P‖1 ≤ ‖ξ1 − ξ2‖1 α
(
P{1,2}

)
=

1
4
‖ξ1 − ξ2‖1 .

Therefore, in the last case we have an upper bound four times smaller than in
the first case.
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Definition 1.17. Let P ∈ Nm,n. We say that P is a generalized stochastic
matrix if ∃a ≥ 0, ∃Q ∈ Sm,n such that P = aQ.

Let ∆1 ∈ Par ({1, 2, . . . ,m}) and ∆2 ∈ Par ({1, 2, . . . , n}) . Define

G∆1,∆2 = {P | P ∈ Sm,n and ∀K ∈ ∆1, ∀L ∈ ∆2,

PL
K is a generalized stochastic matrix

}
.

In particular, if m = n and ∆1 = ∆2 := ∆, we set G∆ = G∆,∆ (as in [9]
(see also [8])).

In the next theorem we give a result similar to Theorem 1.11, but using
γ∆ in place of α. It improves Theorem 1.9 in [9] (Note that Theorem 1.9 in
[9] is too restrictive and contains a mistake, namely, ‘i ≤ j’, that should be
replaced by ‘(i, j) ∈ {1, 2, . . . ,m}2’.)

Theorem 1.18. Let P,Q ∈ Sm,n, R ∈ Sn,p, and ∅ 6= X ⊆ {1, 2, . . . ,m}2 .
Let ∆2 ∈ Par ({1, 2, . . . , n}) . If we have

∑
k∈L

Pik =
∑
k∈L

Qjk, ∀(i, j) ∈ X, ∀L ∈

∆2, then
bX (PR,QR) ≤ bX (P,Q) γ∆2

(R).

In particular, for X =
{
(i, j) | (i, j) ∈ {1, 2, . . . ,m}2 and ∃K ∈ ∆1 such

that i, j ∈ K
}

(in this case, P,Q ∈ G∆1,∆2), where ∆1 ∈ Par ({1, 2, . . . ,m}) ,
we have

θ∆1 (PR,QR) ≤ θ∆1(P,Q)γ∆2
(R),

which for P = Q := C and R := D yields

γ∆1
(CD) ≤ γ∆1

(C) γ∆2
(D) .

Proof. See the proof of Theorem 1.9 in [9]. �

Let ∆ ∈ Par(E) and ∅ 6= D ⊆ E, where E is a nonempty set. Define

∆ ∩D = {K ∩D | K ∈ ∆} .
Obviously, ∆ ∩D ∈ Par (D) and this is the partition induced on D by ∆.

Let P,Q ∈ Rm,n, ∅ 6= X ⊆ {1, 2, . . . ,m}2, and ∆ ∈ Par ({1, 2, . . . ,m}) .
If X = {1, 2, . . . ,m}2, then

bX(P,Q) = ζ (P,Q) and ΣX(P,Q) ⊆ Z (P −Q)

(moreover, PZ(P−Q) = QZ(P−Q)). If X =
{
(i, j) | (i, j) ∈ {1, 2, . . . ,m}2 and

∃K ∈ ∆ such that i, j ∈ K
}
, then

bX(P,Q) = θ∆(P,Q) and ΣX(P,Q)=
⋂

K∈∆

ΣK2(PK , QK)⊆
⋂

K∈∆

Z ((P −Q)K)

(moreover, PZ((P−Q)K)
K = Q

Z((P−Q)K)
K , ∀K ∈ ∆).
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Theorem 1.18 can be improved as follows.

Theorem 1.19. Let P,Q ∈ Sm,n, R ∈ Sn,p, and ∅ 6= X ⊆ {1, 2, . . . ,m}2 .
Let ∆2 ∈ Par ({1, 2, . . . , n}) . If we have

∑
k∈L

Pik =
∑
k∈L

Qjk, ∀(i, j) ∈ X, ∀L ∈

∆2, then
bX (PR,QR) ≤ bX

(
PW , QW

)
γ∆2∩W (RW ) ,

∀W, W 6= ∅ and CΣX (P,Q) ⊆W ⊆ {1, 2, . . . , n} .
In particular, for X =

{
(i, j) | (i, j) ∈ {1, 2, . . . ,m}2 and ∃K ∈ ∆1 such

that i, j ∈ K
}

(in this case, P,Q ∈ G∆1,∆2), where ∆1 ∈ Par ({1, 2, . . . ,m}) ,
we have

θ∆1 (PR,QR) ≤ θ∆1

(
PW , QW

)
γ∆2∩W (RW ) ,

∀W, W 6= ∅ and CΣX (P,Q) ⊆W ⊆ {1, 2, . . . , n} ,
which for P = Q := C and R := D yields

γ∆1
(CD) ≤ γ∆1

(
CW

)
γ∆2∩W (DW ) ,

∀W, W 6= ∅ and CSX (C) ⊆W ⊆ {1, 2, . . . , n} .

Proof. Let W 6= ∅ and CΣX (P,Q) ⊆ W ⊆ {1, 2, . . . , n}. By Theorems
1.10(iv) and 1.18 we have

bX (PR,QR) = bX
(
PWRW , QWRW

)
≤

(as in the proof of Theorem 1.12)

≤ bX
(
PW , QW

)
γ∆2∩W (RW ) .

If X =
{
(i, j) | (i, j) ∈ {1, 2, . . . ,m}2 and ∃K ∈ ∆1 such that i, j ∈ K

}
(in

this case, PW , QW ∈ G∆1,∆2∩W ), then bX = θ∆1 . �

Theorem 1.18 or its generalization, Theorem 1.19, can be applied, e.g., to
the case P,Q ∈ S∆1,∆2,f , where ∆1 = (K1,K2, . . . ,Ku) ∈ Par ({1, 2, . . . ,m}),
∆2 = (L1, L2, . . . , Lv) ∈ Par ({1, 2, . . . , n}), f : {1, 2, . . . , u} → {1, 2, . . . , v} ,
and

S∆1,∆2,f =
{
T | T ∈ Sm,n and T

CLf(i)

Ki
= 0, ∀i ∈ {1, 2, . . . , u}

}
,

when ∅ 6= X ⊆
{
(i, j) | (i, j) ∈ {1, 2, . . . ,m}2 and ∃K ∈ ∆1 such that i, j ∈

K
}
. (S∆1,∆2,f is a generalization of S∆,σ in [7].)

In the next theorem (the its first part is a special case of Theorem 1.18
in [8]) we give a result similar to Theorem 1.13, but using γ∆ in place of α.

Theorem 1.20 ([9]). Let ∆ ∈ Par ({1, 2, . . . , n}) . If ξ ∈ Rn such that
ξK (e′)K = 0, ∀K ∈ ∆, and R ∈ Sn,p, then

‖ξR‖1 ≤ ‖ξ‖1 γ∆(R).
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More generally, if T ∈ Rm,n such that TK (e′)K = 0, ∀K ∈ ∆, and
R ∈ Sn,p, then

|‖TR‖|∞ ≤ |‖T‖|∞ γ∆(R).

In particular, for T := C − D and R := E, where C,D ∈ Sm,n (more
generally, C,D ∈ Rm,n),

∑
j∈K

Cij =
∑

j∈K

Dij , ∀i ∈ {1, 2, . . . ,m}, ∀K ∈ ∆, and

E ∈ Sn,p, we have

N∞ (CE,DE) ≤ N∞ (C,D) γ∆(E).

Proof. See [9, Proposition 1.7]. �

Theorem 1.20 can be improved as follows.

Theorem 1.21. Let ∆ ∈ Par ({1, 2, . . . , n}) . If ξ ∈ Rn such that
ξK (e′)K = 0, ∀K ∈ ∆, and R ∈ Sn,p, then

‖ξR‖1 ≤
∥∥ξW

∥∥
1
γ∆∩W (RW ) , ∀W, W 6= ∅ and CZ (ξ) ⊆W ⊆ {1, 2, . . . , n} .

More generally, if T ∈ Rm,n such that TK (e′)K = 0, ∀K ∈ ∆, and
R ∈ Sn,p, then

|‖TR‖|∞ ≤
∣∣∥∥TW

∥∥∣∣
∞ γ∆∩W (RW ) ,

∀W, W 6= ∅ and CZ (T ) ⊆W ⊆ {1, 2, . . . , n} .

In particular, for T := C − D and R := E, where C,D ∈ Sm,n (more
generally, C,D ∈ Rm,n),

∑
j∈K

Cij =
∑

j∈K

Dij , ∀i ∈ {1, 2, . . . ,m}, ∀K ∈ ∆, and

E ∈ Sn,p, we have

N∞ (CE,DE) ≤ N∞
(
CW , DW

)
γ∆∩W (EW ) ,

∀W, W 6= ∅ and CZ (C −D) ⊆W ⊆ {1, 2, . . . , n} .

Proof. Let W 6= ∅ and CZ (T ) ⊆ W ⊆ {1, 2, . . . , n}. By Theorem 1.20
(TK (e′)K = 0, ∀K ∈ ∆ ∩W ) we have

|‖TR‖|∞ =
∣∣∥∥TWRW

∥∥∣∣
∞ ≤

∣∣∥∥TW
∥∥∣∣
∞ γ∆∩W (RW ) . �

2. APPLICATIONS TO APPROXIMATE COMPUTATION

In this section we use the ergodicity coefficients to the approximate com-
putation for products of stochastic matrices and probability distributions of
finite Markov chains.

Consider a finite Markov chain (Xn)n≥0 with state space S={1, 2, . . . , r},
initial distribution p0, and transition matrices (Pn)n≥1. We frequently shall
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refer to it as the (finite) Markov chain (Pn)n≥1 . For all integers m ≥ 0, n > m,
define

Pm,n = Pm+1Pm+2 . . . Pn = ((Pm,n)ij)i,j∈S .

Let ∅ 6= B ⊆ N. We give below some definitions from ∆-ergodic theory
in a special case (for a more general framework, see [10] and [11]).

Definition 2.1 ([10]). Let i, j ∈ S. We say that i and j are in the same
weakly ergodic class on (time set) B if ∀m ∈ B, ∀k ∈ S we have

lim
n→∞

[(Pm,n)ik − (Pm,n)jk] = 0.

Write i B∼ j when i and j are in the same weakly ergodic class on B.

Then B∼ is an equivalence relation and determines a partition ∆ = ∆(B) =
(C1, C2, . . . , Cs) of S. The sets C1, C2, . . . , Cs are called weakly ergodic classes
on B.

Definition 2.2 ([10]). Let ∆ = (C1, C2, . . . , Cs) be the partition of weakly
ergodic classes on B of a Markov chain. We say that the chain is weakly ∆-
ergodic on B.

In connection with the above notions and notation we mention some
special cases:

1. ∆ = (S). In this case, a weakly (S)-ergodic chain on B can be called
weakly ergodic on B for short.

2. B = {m} . In this case, a weakly ∆-ergodic chain on {m} can be called
weakly ∆-ergodic at time m. An important case is m = 0. (E.e., we need the
asymptotic behaviour of (P0,n)n≥1 to determine the limit distribution π, when
it exists, of the Markov chain (Pn)n≥1 because lim

n→∞
p0P0,n = π (see also [12]).)

3. B = N. In this case, a weakly ∆-ergodic chain on N can be called
weakly ∆-ergodic for short.

4. ∆ = (S), B = {m} . In this case, a weakly (S)-ergodic chain at time
m can be called weakly ergodic at time m for short.

5. ∆ = (S), B = N. In this case, a weakly (S)-ergodic chain on N can
be called weakly ergodic for short.

Definition 2.3 ([10]). Let i, j ∈ S. We say that i and j are in the same
uniformly weakly ergodic class on B if ∀k ∈ S we have

lim
n→∞

[(Pm,n)ik − (Pm,n)jk] = 0

uniformly with respect to m ∈ B.
Write i

u,B∼ j when i and j are in the same uniformly weakly ergodic
class on B. Then

u,B∼ is an equivalence relation and determines a partition
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∆ = ∆(B) = (U1, U2, . . . , Ut) of S. The sets U1, U2, . . . , Ut are called uniformly
weakly ergodic classes on B.

Definition 2.4 ([10]). Let ∆ = (U1, U2, . . . , Ut) be the partition of uni-
formly weakly ergodic classes on B of a Markov chain. We say that the chain
is uniformly weakly ∆-ergodic on B.

Since in Definitions 2.3 and 2.4 the case B = {m} is nonimportant, we
have three special cases for the simplification of language, namely, 1) ∆ = (S),
2) B = N, 3) ∆ = (S), B = N. These are left to the reader (see the
corresponding cases from weak ∆-ergodicity on B).

Definition 2.5 ([10]). Let C be a weakly ergodic class on B. We say that
C is a strongly ergodic class on B if ∀i ∈ C, ∀m ∈ B the limit

lim
n→∞

(Pm,n)ij := πm,j = πm,j(C)

exists and does not depend on i.

Definition 2.6 ([10]). Let C be a uniformly weakly ergodic class on B.
We say that C is a uniformly strongly ergodic class on B if ∀i ∈ C the limit

lim
n→∞

(Pm,n)ij := πm,j = πm,j(C)

exists uniformly with respect to m ∈ B and does not depend on i.

Definition 2.7 ([10]). Consider a weakly (respectively, uniformly weakly)
∆-ergodic chain on B. We say that the chain is strongly (respectively, uni-
formly strongly) ∆-ergodic on B if any C ∈ ∆ is a strongly (respectively,
uniformly strongly) ergodic class on B.

Also, in the last three definitions we can simplify the language when
referring to ∆ (Definition 2.7) and B (Definitions 2.5, 2.6, and 2.7). These are
left to the reader.

Let P1, P2, . . . , Pn ∈ Sr. We can suppose, e.g., that these stochastic ma-
trices are the first n matrices of a Markov chain (Pn)n≥1 . First, we consider
two problems (the finite case):

1) the approximate computation of product P0,n (P0,n = P1P2 . . . Pn);
2) the approximate computation of (probability) distribution pn (there-

fore of p0P0,n because pn = p0P0,n) at time n of a Markov chain (Pn)n≥1 with
initial distribution p0,
when n is large in both cases.

In the first situation, we approximate P0,n by its tail Pk,n (0 < k < n and
n − k is its length) and, in the second one, pn by pk,n, where pk,n := p0Pk,n.
To get an approximation within an error ε (ε > 0) for our problems, one
way is to use the ergodicity coefficients of two matrices. This is made in the
theorem below.
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Let (Pn)n≥1 be a Markov chain with state space S = {1, 2, . . . , r}. Set
Pm,m = Ir, ∀m ≥ 0.

Theorem 2.8. Let (Pn)n≥1 be a Markov chain with state space S and
initial distribution p0. Let ∆ ∈ Par(S). Then

(i) ζ (P0,n, Pk,n) ≤ α
(
(Pl,n)W

)
, ∀l, k ≤ l < n, ∀W = W (l), W 6= ∅ and

CΣS2 (P0,l, Pk,l) ⊆W ⊆ S;
(ii) N∞ (P0,n, Pk,n) ≤ α

(
(Pl,n)W

)
, ∀l, k ≤ l < n, ∀W = W (l), W 6= ∅

and CZ (P0,l − Pk,l) ⊆W ⊆ S;
(iii) θ∆ (P0,n, Pk,n) ≤ γ∆∩W

(
(Pl,n)W

)
, ∀l, k ≤ l < n, for which the

conditions of Theorem 1.19 hold with P := P0,l, Q := Pk,l, R := Pl,n, ∆1 =
∆2 := ∆, and X :=

{
(i, j) | (i, j)∈S2 and ∃K∈∆ such that i, j ∈ K

}
, ∀W =

W (l), W 6= ∅ and CΣX (P0,l, Pk,l) ⊆W ⊆ S;
(iv) N∞ (P0,n, Pk,n) ≤ γ∆∩W

(
(Pl,n)W

)
, ∀l, k ≤ l < n, for which the

conditions of Theorem 1.21 hold with C := P0,l, D := Pk,l and E := Pl,n,
∀W = W (l), W 6= ∅ and CZ (P0,l − Pk,l) ⊆W ⊆ S;

(v) ‖pn − pk,n‖1 ≤ 2α
(
(Pl,n)W

)
, ∀l, k ≤ l < n, ∀W = W (l), W 6= ∅ and

CZ (p0 (P0,l − Pk,l)) ⊆W ⊆ S;
(vi) ‖pn − pk,n‖1 ≤ 2γ∆∩W

(
(Pl,n)W

)
, ∀l, k ≤ l < n, for which the con-

ditions of Theorem 1.21 hold with ξ := p0 (P0,l − Pk,l), ∀W = W (l), W 6= ∅
and CZ (p0 (P0,l − Pk,l)) ⊆W ⊆ S.

Proof. For all results we use the decompositions P0,n = P0,lPl,n and
Pk,n = Pk,lPl,n.

(i) See Theorem 1.12 (X = S2 and, by Theorem 1.10(i), 0 ≤ ζ (E,F ) ≤ 1,
∀E,F ∈ Sm,n).

(ii) See Theorem 1.14(iii).
(iii) See Theorem 1.19.
(iv) See Theorem 1.21.
(v) See Theorem 1.14(i).
(vi) See Theorem 1.21. �

Remark 2.9. (a) We can make approximations in ‖|·|‖∞ , N∞ (·) , ζ (·)
etc. (See again Remark 1.15.) But (in the case when we have no errors)

‖|P −Q|‖∞ = 0 implies P = Q,

N∞(P,Q) = 0 implies P = Q,
ζ(P,Q) = 0 implies that there exists a stable stochastic matrix Π such

that P = Q = Π etc. Moreover, for approximation in ζ (·), we note that
ζ(P,Q) ≤ ε (i.e., P ' Q in ζ (·) within an error ε) implies that there exist
two stable stochastic matrices Π1 and Π2, e.g., Π1 = e′Q{1} and Π2 = e′P{1},
such that ζ (P,Π1) ≤ ε and ζ (Q,Π2) ≤ ε. The proof is obvious. Also, we
note that ζ(P,Q) ≤ ε implies that there exists a stable stochastic matrix Π,
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e.g., Π = 1
2

(
e′P{1} + e′Q{1}

)
, such that ζ (P,Π) ≤ 3

2ε and ζ (Q,Π) ≤ 3
2ε. The

proof is as follows. By Remark 1.15 we have

ζ (P,Π) = N∞ (P,Π) =
1
2
‖|P −Π|‖∞ =

1
2

∥∥∥∥∣∣∣∣P − 1
2
(
e′P{1} + e′Q{1}

)∣∣∣∣∥∥∥∥
∞

=

=
1
4

∥∥∣∣2P − e′P{1} − e′Q{1}
∣∣∥∥
∞ ≤

≤ 1
2

(
1
2

∥∥∣∣P − e′Q{1}
∣∣∥∥
∞ +

1
2
‖|P −Q|‖∞ +

1
2

∥∥∣∣Q− e′P{1}
∣∣∥∥
∞

)
≤ 3

2
ε.

There arises a question: Is there a stable stochastic matrix Π such that
ζ(P,Q) ≤ ε implies ζ (P,Π) ≤ ε and ζ (Q,Π) ≤ ε? The approximations
in ergodicity coefficients we call the ergodic approximations. Finally, we note
the next basic problems:

I) Given ε > 0 (ε < 1) and P1, P2, . . . , Pn ∈ Sr, what is the greatest
k = k (n, ε), 0 ≤ k < n, such that ‖|P0,n − Pk,n|‖∞ ≤ ε? (This problem
always has a solution because k ≥ 0.) But such that N∞ (P0,n, Pk,n) ≤ ε? But
such that ζ (P0,n, Pk,n) ≤ ε? Etc.

II) Given ε > 0, a probability distribution p0 ∈ Rr, and P1, P2, . . . , Pn ∈
Sr, what is the greatest k = k (p0, n, ε), 0 ≤ k < n, such that ‖pn − pk,n‖1 ≤ ε?

(b) In Theorem 2.8 we can use Pm,n instead of P0,n (here we approximate
Pm,n by Pk,n, m < k < n). But this is an apparent generalization (because we
can apply Theorem 2.8 to the chain (Pn)n>m).

(c) To approximate P0,n by Pk,n in ‖|·|‖∞ within an error ε, Theo-
rem 2.8, e.g., (i), requires that ∃l, k ≤ l < n, ∃W = W (l), W 6= ∅ and
CΣS2 (P0,l, Pk,l) ⊆ W ⊆ S, such that α

(
(Pl,n)W

)
≤ ε

2 (recall that N∞ ≤ ζ).
On the other hand, Theorem 2.8, e.g., (i), says that P0,n ' Pk,n in ‖|·|‖∞
within an error 2α

(
(Pl,n)W

)
, ∀l, k ≤ l < n, ∀W = W (l), W 6= ∅ and

CΣS2 (P0,l, Pk,l) ⊆W ⊆ S.
(d) If (Pn)n≥1 is weakly ergodic at time l (k ≤ l < n), then α (Pl,n) → 0

as n→∞. Therefore, ∀ε > 0, ∃n (ε, l) > l such that α (Pl,n) ≤ ε, ∀n ≥ n (ε, l) .
This implies that, at least theoretically, we can approximate P0,n by Pk,n in
ζ (·) within an error ε, ∀n ≥ n (ε, l) . A more restrictive condition than ‘(Pn)n≥1

weakly ergodic at time l’ is ‘(Pn)n≥1 weakly ergodic’.
(e) Theorem 2.8, (iii), (iv), and (vi), can be applied, e.g., to the cyclic

(homogeneous or nonhomogeneous) case. E.g., let

Pn =


0 0 2

4
2
4

0 0 1
4

3
4

1
4

3
4 0 0

2
4

2
4 0 0

 := P, ∀n ≥ 1,
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and p0 =
(

1
2 ,

1
2 , 0, 0

)
. (This is an example of a chain that does not have a limit

distribution.) The period of this chain is d = 2. Let ∆ = ({1, 2}, {3, 4}) (the
partition of cyclic subclasses of the chain). First, we can approximate Pn by
Pn−k (k < n) if n mod 2 = (n− k) mod 2. For l = k, since ΣX

(
P k, I4

)
= ∅,

where X =
{
(i, j) | (i, j) ∈ {1, 2, 3, 4}2 and ∃K ∈ ∆ such that i, j ∈ K

}
, we

just take W = S = {1, 2, 3, 4} in Theorem 2.8, (iii) and (iv), and obtain

θ∆

(
Pn, Pn−k

)
≤ γ∆

(
Pn−k

)
and

N∞
(
Pn, Pn−k

)
≤ γ∆

(
Pn−k

)
,

respectively. Since the chain is weakly ∆-ergodic, we have γ∆

(
Pn−k

)
→ 0 as

n→∞. Second, we can approximate pn by pk,n if n mod 2 = (n− k) mod 2.
For l = k + 1, because Z

(
p0

(
P k+1 − P

))
= {1, 2} (n mod 2 = (n− k) mod

2 ⇒ n = 2u + t and n − k = 2v + t, where u, v ≥ 0 and t ∈ {0, 1} ⇒ k =
2 (u− v) , i.e., k is an even number ⇒ k + 1 is an odd number), we can take
W = W (l) = {3, 4} in Theorem 2.8(vi). Therefore,

‖pn − pk,n‖1 ≤ 2γ({3,4})

((
Pn−(k+1)

)
{3,4}

)
= 2α

((
Pn−(k+1)

)
{3,4}

)
,

where pk,n = p0P
n−k. Since the chain is weakly ∆-ergodic, we have

γ({3,4})
(
Pn−(k+1)

)
→ 0 as n→∞.

Second, we consider two other problems (the infinite case):
3) the approximate computation of limit of product P0,n, if it exists

(more generally, of Pm,n, ∀m ∈ B (∅ 6= B ⊆ N), if the limit of Pm,n does exist,
∀m ∈ B),

4) the approximate computation of limit (probability) distribution of a
Markov chain if it exists.

Related to these problems we shall approximate the limit matrix and
the limit distribution of a uniformly strongly ergodic Markov chain (∆ = (S),
B = N).

Theorem 2.10 ([3]). Let (Pn)n≥1 be a Markov chain. Then it is uni-
formly weakly ergodic if and only if ∃a > 0 (a ≤ 1), ∃n0 ≥ 1 such that
α (Pm,m+n) ≥ a, ∀m ≥ 0, ∀n ≥ n0 (equivalently, ∃a > 0 (a ≤ 1), ∃n0 ≥ 1 such
that α (Pm,m+n0) ≥ a, ∀m ≥ 0).

Proof. See [3] or [4, pp. 221–222]. �

This theorem can be modified, more precisely, we can isolate a (with the
difference that 0 < a ≤ 1 above and 0 < a < 1 below).
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Theorem 2.11. Let (Pn)n≥1 be a Markov chain. Let 0 < a < 1. Then it
is uniformly weakly ergodic if and only if ∃n0 ≥ 1 such that α (Pm,m+n) ≥ a,
∀m ≥ 0, ∀n ≥ n0.

Proof. “⇒” By Theorem 2.10, ∃b, 0 < b ≤ 1, ∃u0 ≥ 1 such that
α (Pm,m+u) ≥ b, ∀m ≥ 0, ∀u ≥ u0. Let k0 = min

{
k | k ≥ 1 and (1− b)k ≤

1− a
}

and n0 = k0u0. Then ∀m ≥ 0, ∀n ≥ n0 we have

α (Pm,m+n) ≤ α (Pm,m+n0) ≤

(by Theorem 1.4, taking X = S2, where S = {1, 2, . . . , r} is the state space of
(Pn)n≥1)

≤ α (Pm,m+u0)α (Pm+u0,m+2u0) . . . α
(
Pm+(k0−1)u0,m+n0

)
≤ (1− b)k0 ≤ 1− a.

Therefore, ∃n0 ≥ 1 such that α (Pm,m+n) ≥ a (see Theorem 1.3(i)), ∀m ≥ 0,
∀n ≥ n0.

“⇐” See Theorem 2.10. �

Remark 2.12. The reader can try to find a proof of Theorem 2.11 without
using Theorem 2.10 (for this see the proof of the latter).

Remark 2.13. There exist generalizations of Theorem 2.10 in [8, Theo-
rems 3.14, (1)⇔(4), and 3.16, (1)⇔(4)] which use γ∆ in place of α. These lead
to some generalizations of Theorem 2.11 which are left to the reader.

The next result is useful for problem 1) of this section in the uniformly
weakly ergodic Markov chain case and is based on Theorem 2.11.

Theorem 2.14. Let (Pn)n≥1 be a uniformly weakly ergodic Markov chain.
Let 0 < ε′ < 1. Let n0 ≥ 1 such that α (Pm,m+n0) ≥ ε′, ∀m ≥ 0 (see Theo-
rem 2.11). Then

(i) ζ (Pm,n, Pn−n0,n) ≤ 1− ε′ := ε, ∀m ≥ 0, ∀n ≥ m+ n0.
(ii) ‖pn − pn−n0,n‖1 ≤ 2ε, ∀n ≥ n0.

Proof. (i) By Theorem 1.11,

ζ (Pm,n, Pn−n0,n) ≤ ζ (Pm,n−n0 , Ir)α (Pn−n0,n) ≤
≤ α (Pn−n0,n) ≤ 1− ε′ = ε, ∀m ≥ 0, ∀n ≥ m+ n0.

(ii) By Theorem 1.13(i),

‖pn − pn−n0,n‖1 = ‖p0 (P0,n−n0 − Ir)Pn−n0,n‖1 ≤
≤ ‖p0 (P0,n−n0 − Ir)‖1 α (Pn−n0,n) ≤ 2α (Pn−n0,n) ≤ 2ε, ∀n ≥ n0. �

Remark 2.15. By Theorem 2.14, Pm,n ' Pn−n0,n in ζ (·) within an error
ε, ∀m ≥ 0, ∀n ≥ m+n0, Pm,n ' Pn−n0,n in N∞ (·) within an error ε, ∀m ≥ 0,
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∀n ≥ m+ n0 (because N∞ ≤ ζ), Pm,n ' Pn−n0,n in ‖|·|‖∞ within an error 2ε,
∀m ≥ 0, ∀n ≥ m+ n0, and pn ' pn−n0,n in ‖·‖1 within an error 2ε, ∀n ≥ n0.

Theorem 2.16 (see, e.g., [5, pp. 160–163]). Let (Pn)n≥1 be a Markov
chain. If (Pn)n≥1 is weakly ergodic and

∑
n≥1

‖ψn+1 − ψn‖1 < ∞, where ψn is

a probability vector satisfying ψnPn = ψn, ∀n ≥ 1, then the chain is strongly
ergodic.

Proof. See, e.g., [5, pp. 160−163]. �

Theorem 2.17 ([6]). Let (Pn)n≥1 be a Markov chain. Then (Pn)n≥1
is uniformly strongly ergodic if and only if it is uniformly weakly ergodic and
strongly ergodic.

Proof. See [6]. �

Combining Theorems 2.16 and 2.17 we have the next result.

Theorem 2.18. Let (Pn)n≥1 be a Markov chain. If (Pn)n≥1 is uniformly
weakly ergodic and

∑
n≥1

‖ψn+1 − ψn‖1 < ∞, where ψn is a probability vector

satisfying ψnPn = ψn, ∀n ≥ 1, then the chain is uniformly strongly ergodic.

Proof. See Theorems 2.16 and 2.17. �

Remark 2.19. Let (Pn)n≥1 be a uniformly weakly ergodic Markov chain.
Is (Pm,m+n)m≥0 convergent, ∀n ≥ 1? The answer is ‘no’. Indeed, let

P4n−3 = P4n−2 =

(
1
2

1
2

1
2

1
2

)
:= P,

P4n−1 = P4n =

(
1
4

3
4

3
4

1
4

)
:= Q, ∀n ≥ 1.

By Theorem 2.10 (or Theorem 2.11), (Pn)n≥1 is uniformly weakly ergodic.
Further, by Theorem 2.18, (Pn)n≥1 is uniformly strongly ergodic because it is
uniformly weakly ergodic and πP = P and πQ = Q, where π =

(
1
2 ,

1
2

)
. But,

e.g., @ lim
m→∞

Pm and @ lim
m→∞

Pm,m+2.

The next theorem is our main result related to problem 3).

Theorem 2.20. Let (Pn)n≥1 be a uniformly strongly ergodic Markov
chain with limit Π (i.e., lim

n→∞
Pm,n = Π, ∀m ≥ 0). Let 0 < ε < 1. Let

n0 ≥ 1 such that α (Pm,m+n0) ≥ 1 − ε
2 , ∀m ≥ 0 (see Theorem 2.11). Let

0 ≤ m1 ≤ m2 ≤ · · · such that lim
t→∞

Pmt,mt+n0 exists (∃ (mt)t≥1 with the above
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property because (Pm,m+n0)m≥0 is bounded). Let Π̃ = lim
t→∞

Pmt,mt+n0 . Then

Π ' Π̃ in ‖|·|‖∞ within an error ε.

Proof. Let δ > ε. It follows from lim
t→∞

Pmt,mt+n0 = Π̃ that ∃t1 ≥ 1 such
that ∥∥∣∣Pmt,mt+n0 − Π̃

∣∣∥∥
∞ ≤ δ − ε

2
, ∀t ≥ t1.

Further,∥∥∣∣P0,mt+n0 − Π̃
∣∣∥∥
∞ ≤

∥∥∣∣P0,mt+n0 − Pmt,mt+n0

∣∣∥∥
∞ +

∥∥∣∣Pmt,mt+n0 − Π̃
∣∣∥∥
∞ ≤

(by Theorem 1.13(i))

≤ 2α (Pmt,mt+n0) +
∥∥∣∣Pmt,mt+n0 − Π̃

∣∣∥∥
∞ ≤ ε+

δ − ε

2
, ∀t ≥ t1.

Further, lim
t→∞

P0,mt+n0 = Π implies that ∃t2 ≥ 1 such that

∥∥∣∣P0,mt+n0 −Π
∣∣∥∥
∞ ≤ δ − ε

2
, ∀t ≥ t2.

Let t0 = max (t1, t2) . Then∥∥∣∣Π− Π̃
∣∣∥∥
∞ ≤

∥∥∣∣Π− P0,mt+n0

∣∣∥∥
∞ +

∥∥∣∣P0,mt+n0 − Π̃
∣∣∥∥
∞ ≤ δ, ∀t ≥ t0.

Therefore, Π ' Π̃ in |‖ · ‖|∞ within an error ε because ε = inf
δ>ε

δ. �

Remark 2.21. One can give a proof of Theorem 2.20 using N∞ or ζ
instead of |‖ · ‖|∞. This is left to the reader.

Theorem 2.22 ([12]). Let P,Q ∈ Rm,n. Then
(i) ‖xP − xQ‖1 ≤ ‖|P −Q|‖∞, ∀x ∈ Rm with ‖x‖1 ≤ 1;
(ii) ‖xP − xQ‖∞ ≤ ‖|P −Q|‖∞, ∀x ∈ Rm with ‖x‖1 ≤ 1.

Proof. See [12]. �

The next theorem is our main result related to problem 4).

Theorem 2.23. Let (Pn)n≥1 be a uniformly strongly ergodic Markov
chain with initial distribution p0 and limit distribution π (i.e., lim

n→∞
p0P0,n =

π). Let 0 < ε < 1. Let n0 ≥ 1 such that α (Pm,m+n0) ≥ 1 − ε
2 , ∀m ≥ 0

(see Theorem 2.11). Let 0 ≤ m1 ≤ m2 ≤ · · · such that lim
t→∞

Pmt,mt+n0 exists

(∃ (mt)t≥1 with the above property because (Pm,m+n0)m≥0 is bounded). Let

Π̃ = lim
t→∞

Pmt,mt+n0 and π̃ = p0Π̃. Then π ' π̃ in ‖·‖1 within an error ε.
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Proof. We use notation and results from Theorem 2.20 and its proof. We
have Π = e′π. Further,

lim
t→∞

p0P0,mt+n0 = p0Π = p0e
′π = π,

so that
‖p0P0,mt+n0 − π‖1 = ‖p0P0,mt+n0 − p0Π‖1 ≤

(by Theorem 2.22(i))

≤
∥∥∣∣P0,mt+n0 −Π

∣∣∥∥
∞ ≤ δ − ε

2
, ∀t ≥ t2.

Finally,

‖π − π̃‖1 =
∥∥π − p0Π̃

∥∥
1
≤ ‖π − p0P0,mt+n0‖1 +

∥∥p0P0,mt+n0−p0Π̃
∥∥

1
≤

(by Theorem 2.22(i))

≤ ‖π − p0P0,mt+n0‖1 +
∥∥∣∣P0,mt+n0−Π̃

∣∣∥∥
∞ ≤ δ, ∀t ≥ t0.

Therefore, ‖π − π̃‖1 ≤ ε = inf
δ>ε

δ, i.e., π ' π̃ in ‖·‖1 within an error ε. �

3. OTHER APPLICATIONS

In this section we use certain ergodicity coefficients of one or two matrices
to give another proof of Theorem 4.3 in [4, p. 126] related to the convergence
and the speed of convergence of homogeneous finite Markov chains. Other
applications refer to new proofs of Theorem 2.8 in [9] and to the equivalence
of weak and strong ergodicity for backward products.

Theorem 3.1. Let P,Q ∈ Sm,n. Then

(i) |Pik−Qjk| ≤ 1
2

n∑
u=1

|Piu−Qju|, ∀i, j ∈ {1, 2, . . . ,m}, ∀k ∈ {1, 2, . . . , n} ;

(ii) |Pik −Qjk| ≤ ζ (P,Q), ∀i, j ∈ {1, 2, . . . ,m}, ∀k ∈ {1, 2, . . . , n} .

Proof. (i) Let i, j ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , n}. From
n∑

u=1

Piu =
n∑

u=1

Qju = 1,

we have
n∑

u=1

(Piu −Qju) = 0.

Further, setting

a+ =
{
a if a ≥ 0,
0 if a < 0 and a− =

{
0 if a ≥ 0,
a if a < 0,
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where a ∈ R, we have
n∑

u=1

(Piu −Qju)+ = −
n∑

u=1

(Piu −Qju)− =
1
2

n∑
u=1

|Piu −Qju| .

Case 1. |Pik −Qjk| = Pik −Qjk. Then

|Pik −Qjk| ≤
n∑

u=1

(Piu −Qju)+ =
1
2

n∑
u=1

|Piu −Qju| .

Case 2. |Pik −Qjk| = − (Pik −Qjk) . Then

|Pik −Qjk| ≤ −
n∑

u=1

(Piu −Qju)− =
1
2

n∑
u=1

|Piu −Qju| .

Thus we proved (i).
(ii) Let i, j ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , n}. We have

ζ(P,Q) =
1
2

max
1≤v,w≤m

n∑
k=1

|Pvk −Qwk| ≥
1
2

n∑
u=1

|Piu −Qju| ≥

(by (i))
≥ |Pik −Qjk| . �

Definition 3.2 (see, e.g., [4, p. 126]). Let P ∈ Sr. We say that P is a
mixing matrix if ∃n ≥ 1 such that α (Pn) > 0.

Theorem 3.3 ([4, p. 126]). Consider a homogeneous (finite) Markov
chain with mixing transition matrix P and state space S. Let R and T be the
set of recurrent states and the set of transient states, respectively. Then

(i) Pn → Π = e′π as n → ∞, where π is a probability vector, πP =
π, πi > 0 if i ∈ R while πi = 0 if i ∈ T when T 6= ∅;

(ii) |(Pn)ij − πj | ≤ (α (Pn0))
[

n
n0

]
, ∀i, j ∈ S, ∀n ≥ 1, where n0 ≥ 1 is

taken such that α (Pn0) > 0.

Proof. See [4, pp. 123–126]. Another proof is as follows.
(i) First, we show that (Pn)n≥1 is convergent. For this, we show that

(Pn)n≥1 is a Cauchy sequence. Let 0 < ε < 1. By Theorem 1.4 (taking
X = S2), since P is mixing, ∃m = mε ≥ 1 such that

α (Pm) <
ε

2
.

Let p ≥ 1 and n ≥ m. Then (we can also prove that (Pn)n≥1 is a Cauchy
sequence using N∞ or ζ)∥∥∣∣Pn+p − Pn

∣∣∥∥
∞ =

∥∥∣∣ (Pn+p−m − Pn−m
)
Pm
∣∣∥∥
∞ ≤
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(by Theorem 1.13(ii))

≤
∥∥∣∣Pn+p−m − Pn−m

∣∣∥∥
∞α (Pm) ≤ 2α (Pm) < ε.

Therefore, (Pn)n≥1 is convergent. Further, this implies that ∃Π ∈ Sr such
that Pn → Π as n→∞.

Second, we show that Π is a stable matrix. Since P is mixing and α is
continuous, we have

α (Π) = α
(

lim
n→∞

Pn
)

= lim
n→∞

α (Pn) = 0.

Therefore, Π is a stable matrix (see Remark 1.1).
Third, we show that there exists a probability vector π such that Π = e′π,

πP = π, πi > 0 if i ∈ R while πi = 0 if i ∈ T when T 6= ∅. Because
Π is a stable matrix, there exists a probability vector π such that Π = e′π.
Obviously, π = Π{i}, ∀i ∈ S. Further, it follows from Pn+1 = PnP that
Π = ΠP . Hence ∀i ∈ S we have Π{i} = Π{i}P, i.e., πP = π. Further, the fact
that P is mixing implies that P has only a recurrent class that is aperiodic
and, perhaps, transient states. Therefore, P can be written as

P = U or P =
(
U 0
V W

)
,

where U is a regular matrix (i.e., a matrix for which ∃n ≥ 1 such that Un > 0);
recall that if C ∈ Nl is a irreducible and aperiodic matrix, then C is a regular
matrix (see, e.g., Theorem 1.4 in [13, p. 21]). Now, πi > 0 if i ∈ R follows from
the fact that P is mixing and a theorem of O. Perron and G. Frobenius (see,
e.g., Theorem 1.8 in [4, p. 51]) applied to the regular matrix U . If T 6= ∅, then
by Theorem 2.10 (or 2.11), since P is mixing, the chain is uniformly weakly
ergodic (we need only to prove that the chain is weakly ergodic; note that in
this case weak ergodicity and uniformly weak ergodicity are equivalent). This
implies that ΠT = 0 since P T

R = 0 (P T
R = 0 ⇒ (Pn)T

R = 0, ∀n ≥ 1). Finally,
from ΠT = 0 we have πi = 0 if i ∈ T.

(ii) Let i, j ∈ S and n ≥ 1. By Theorem 3.1(ii),

|(Pn)ij −Πij | ≤ ζ (Pn,Π) .

Because Πkl = πl, ∀k, l ∈ S we must only prove that

ζ (Pn,Π) ≤ (α (Pn0))
[

n
n0

]
.

We have
ζ (Pn,Π) = ζ

(
Pn, lim

m→∞
Pm
)

=

(using continuity of ζ)
= lim

m→∞
ζ (Pn, Pm) ≤
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(for m ≥ n and using the fact that there exists the limit below)

≤ lim
m→∞

ζ
(
I, Pm−n

)
α (Pn) ≤ lim

m→∞
α (Pn) = α (Pn) .

Finally, setting n = sn0 + u, where s ≥ 1 and 0 ≤ u < n0, we have

α (Pn) = α
(
P sn0+u

)
≤

(by Theorem 1.4)

≤ α (P sn0) ≤ (α (Pn0))s = (α (Pn0))
[

n
n0

]
. �

Next, following the proof of Theorem 3.3 and using θ instead of ζ and,
possibly, θ instead of ‖| · |‖∞, the reader can try to give a new proof of Theo-
rem 2.8 in [9] (see also Remark 2.9 there).

Another application of the ergodicity coefficients of one or two matrices
refers to the asymptotic behaviour of backward products, i.e., of the products

Um,n = PnPn−1 . . . Pm+1, m ≥ 0, n > m,

where Pn ∈ Sr, ∀n ≥ 1 (see, e.g., [13, p. 153]). More precisely, we can prove
the equivalence of weak and strong ergodicity for backward products (see [2]
or [13, pp. 154–155]); obviously, strong ergodicity implies weak ergodicity and
to prove the converse we need only to prove that (Um,n)n>m is a Cauchy
sequence, ∀m ≥ 0 (the proof of this is similar to the proof of the fact that
(Pn)n≥1 is a Cauchy sequence, Theorem 3.3(i)). Moreover, taking as a guide
the general ∆-ergodic theory of finite Markov chains (see [10] and [11]), we
can build a general ∆-ergodic theory for backward products. The interested
reader can develop this topic (for a starting point see also [2] and [13]).
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Tehnică, Bucharest, 1980; corrected republication by Dover, Mineola, N.Y., 2007.

[5] D.L. Isaacson and R.W. Madsen, Markov Chains: Theory and Applications. Wiley, New
York, 1976; republication by Krieger, 1985.
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