ERGODICITY COEFFICIENTS OF SEVERAL
MATRICES: NEW RESULTS AND APPLICATIONS

UDREA PAUN

We give new results about and applications of ergodicity coefficients of several
matrices. The results refer to the improvement of some results from [7], [8], and
[9] (Section 1). The applications refer to the approximate computation for pro-
ducts of stochastic matrices and probability distributions of finite Markov chains
(Section 2) and the new proofs of some known results (Section 3; some results are
from homogeneous finite Markov chain theory related to convergence and speed
of convergence and one is related to backward products).
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1. ERGODICITY COEFFICIENTS OF SEVERAL MATRICES

In this section (see also [7] and [9]) we consider some ergodicity coef-
ficients of one or two matrices. Then we improve some results from [7], [8], and
[9] related to these ergodicity coefficients. Moreover, we give some new results.

Set

Par(E) = {A| A is a partition of E'},

where E is a nonempty set. We shall agree that the partitions do not contain
the empty set.
Set

Ry ={T|T is areal m x n matrix },
Ny = {T'| T is a nonnegative m X n matrix},
S,

R, = Rm,rm Ny = m,m>» and S, = m,m-

n ={T| T is a stochastic m x n matrix },
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Let P = (Pyj) € Rpn. Let 0 # U C {1,2,...,m} and 0 # V C
{1,2,...,n}. Define
v
Py = (Pij)ieU,jE{l,2,...,n}7 P = (Pij)z‘e{m,...,m},jev’
and
1%
Py = (Pij)ieU,jeV‘
Let P € Ry, . Below we give a list of coefficients associated with P (i.e.,
they are coefficients of one matrix) which are called ergodicity coefficients if

P is a stochastic matrix.
n

Oé(P) = lger,ljl‘rglm . min (Rk; ij)

(if P € Sy n, then a(P) is called Dobrushin’s ergodicity coefficient of P (see,
e.g., [4, p. 56])),

and, for A € Par ({1,2,...,m}),

and

TalP) =5 glgxz |Pir. — P
i,jeK k=1

(see [7] for ya and A ; obviously, we have

7a(P) = min a(Px) and 7A(P)=maxa(Pk)

and, if A = ({1,2,...,m}), then yo = o and J5 = @).

We can consider (following [7]) a coefficient which generalizes ya (also
«) and other which generalizes 7, (also @). For this, let P € Ry, p, 0 # X C
{1,2,..., m}z, and the coefficients

n

Py — . i (P P
ax(P) in min (Pi, Pj)
k=1
and
a :f max P — .
X( ,])6XZ| ik jk’|

Remark 1.1. If P € Ry, ,, then ax (P) = 0 (equivalently, ax(P) = 1 if
P € Sppn) if and only if Py jy is a stable matrix (i.e., a matrix with identical
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rows), V(i,j) € X. In particular, @(P) = 0 (equivalently, a(P) = 1 if P €
Sm.n) if and only if P is a stable matrix.

Remark 1.2. If P € Ry, and 0 # K C {1,2,...,m}, then ag2(P) =
a(Pg) and ag2(P) = a(Pg). In particular, for K = {1,2,...,m}, we have
ag2(P) = a(P) and ag=2(P) = a(P).

Let P € Ry and 0 # X C {1,2,... ,m}%. Define
Sx(P)={k|ke{l,2,...,n} and ¥(i,j) € X we have P, = Pj; }.
We remark that k€ Sx (P) implies that [Py, —Pj,|=0, V(i,j) € X. Therefore,

1
ax(P)=- max > |Py— Pyl

if CSx(P) # 0 (CSx(P) is the complement of Sx(P); if CSx(P) = 0 (equi-
valently, Sx (P) ={1,2,...,n}), then ax (P) = 0). It is possible that we only

know a set Y, ) #Y C Sx(P). In this case we have
ax — max Py — P
( 2 (4,5)eX kGZV‘ ’ ] ’

if V # (), where V := CY (this implies that CSx(P) CV C {1,2,...,n}).

THEOREM 1.3. Let P€ Sy, Q€ Spp, and 0#X C {1,2,...,m}>. Then
(i) ax(P) =1—ax(P);

i) ax(P) = Py — Pii);
(ii) ax (P) A e m})]g]( k — Pjk)

(iii) ax (P) = ax (PY), VW,V # 0 and CSx(P) C V
(IV) ax (PQ)—CLX (Pva) VV,V#@ and CSX(P)
Proof. (i) and (ii) See [7, Proposition 1.9].

(iii) Let V # 0 and CSx(P) CV C {1,2,...,n}. We have

1
ax(P) == Py — Pip| = ax (PP =ay (PY).
ax(P) = 2(i?fae)§<k C%(P)\ k= Pl = ax( ) =ax (P")

(iv) Let V # 0 and CSx(P) CV C{1,2,...,n}. By (ii) we have

c{L,2,...,n};
Vg{ ,n}

ax (PQ) = max  max ZZ i — Pj) Que =

(4,5)eX IeP({1,2,...,p})

kel 1=1
Z Z Py — Py) Qus =
X 1ep(f12.
(m)e 67’({ 2,-5P}) kel 1eCSx (P

— max max ZZ il — ]l Qlk =ax (P QV) O

(LI)EX 1eP{12,.0}) £t £
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THEOREM 1.4. Let P € Sy Q€ Sy p, and 0#X C {1,2,...,m}>. Then
ax (PQ) <ax (P)5(Q).

Proof. See [7, Theorem 1.10]. O
Theorem 1.4 can be generalized as follows.

THEOREM 1.5. Let P€ S, QESnp, and 04X C {1,2,...,m}>. Then
ax (PQ) <ax (PV)a(Qv), VW,V #0 and CSx(P) CV C{1,2,...,n}.

Proof. Let V. # 0 and CSx (P) CV C {1,2,...,n}. Let U = pr; X U
pry X, where

pri X :={jlj€{1,2,...,m} and 3k € {1,2,...,m} such that (j,k) € X}
and
proX :={j| j€{1,2,...,m} and 3k € {1,2,...,m} such that (k,j) e X}.
Obviously, J¢ > 0,3R € S|y, |y| such that PY =cR (ie., P} is a generalized
stochastic matrix (cf. Definition 1.17)). Then
ax (PQ) =

(by Theorem 1.3(iv))

=ax (PVQv) =
(because ) # X C U? and the labels of rows and columns of matrices are

kept when we use the operators (-), ()Y, and ()‘(j defined at the beginning
of this section)

=ax (PYQv) =ax (cRQv) = cax (RQy) <
(by Theorem 1.4)
< cax(R)a(Qv) =ax (cR)a(Qy) =
=ax (Py)@(Qv) =ax (PY)@(Qv). O

Remark 1.6. By Remark 1.2, the inequality from Theorem 1.5 can be
written as

ax (PQ) <ax (PY)ay2(Q), VV,V # 0 and CSx(P) CV C {1,2,...,n}.
THEOREM 1.7. Let P € Sy, Q € Spp, and O # X C {1,2,...,m}>. If
ax(P)>0, then ax (PQ)>0 (equivalently, if ax(P)<1, then ax (PQ)<1).

Proof. By Theorem 1.3(i), since ax (P) > 0, we have ax (P) < 1. Further,
by Theorem 1.4 we have

ax (PQ) <ax (P)a(Q) <ax(P) < 1.
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Now, using the fact that ax (PQ) < 1 and Theorem 1.3(i), we obtain ax (PQ)
>0. O

Let P,QQ € Ry,n. Below we give a list of coefficients (see [9]) associ-
ated with P and @ (i.e., they are coefficients of two matrices) which we call
ergodicity coefficients if P,Q € Sy, p-

1
Noo(P,Q) =1— Noo(P,Q) if P,Q € Spn

(the ergodicity coefficients induced by the matriz norm ||-||| (if T € Rmp,
n
then 1T = e 3517,

((P,Q)=
(X should be equal to {1,2,...,m}* in [9]) and, for A € Par ({1,2,...,m}),

OA(P,Q) = min » min (P, Qjr)

i.jeK k=1
and
(P Q) 7maXZ’sz_ij|
i,jeK k=1
(X should be equal to {(4, §) | (i,5) €{1,2,... ,m}* and 3K € A such that i,j €
K} in [9]; obviously (see [9]), we have
0a(P, Q) = min ¢ (Px, Qk)

and

OA(P,Q) = II?QXZ(PK,QK) )-

Remark 1.8. Obviously, we have (P € Ry, )

((P,P)=a(P), ¢(P,P)=a(P),
OA(P, P) =yaA(P), 0OA(P,P) =74(P),

O12,..mpy =C¢ and O my) = C.
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Also, as in the case of ya and 7, we can consider a coefficient which
generalizes O (also ¢ (see Remark 1.8)) and another one which generalizes 6
(also €). For this, let P,Q € Ry, and 0 # X C {1,2,...,m}?. Define

bx(P,Q) = min me Pit Qjt)

(i,9)€

and

bx(P,Q) = §(max2|1%k Qjil

Note that bx (P, P) = ax(P) and bx (P, P) = ax(P), VP € Ryn, VX,
0 £ X C{1,2,...,m}>. Also, note that if P,Q € Rum.n, then bx (P,Q) =0
(equivalently, bx (P, Q) = 1if P,Q € Sy, ) if and only if Py, = Qjy, V(i,5) €
X. In particular, ¢ (P,Q) = 0 (equivalently, ((P,Q) = 1 if P,Q € Sy, ) if and
only if there exists a stable matrix II such that P = Q = II.

Let o and 7 be two probability distributions on {1,2,...,m}. The total
variation distance between o and T, denoted || — 7||, is defined as

1 m
lo =7l =5 los — 7l
=1

(see, e.g., [1, pp. 109—110]). (Therefore, o — 7| =1 |lo — 7| .)

This notion suggests the next definition.

Definition 1.9. Let P,Q € Sy, and 0 # X C {1,2,... ,m}2 . We say that
bx (P,Q) is the total X -variation distance between P and Q. In particular,
for X ={1,2,...,m}*, bx(P,Q) = C(P,Q) and we say that {(P,Q) is the
total variation distance between P and Q) for short.

Let P,Q € Ry and 0 # X C {1,2,...,m}”. Define

Xx(P,Q)={k| ke {1,2,...,n} and V(i,j) € X we have Py, = Q1 } .
We have, obviously, X x (P, P) = Sx (P) and
bx(P,Q) = 5 max > 1P Qul
keCTx (P,Q)

if CXx(P,Q) # 0 (if CEx (P, Q) = 0 (equivalently, Xx (P, Q) = {1,2,...,n}),
then bx(P,Q) = 0). It is possible that we only know a set Z, 0 # Z C
Yx(P,Q). In this case we have

bx(P,Q) = 5 max Z | Pir, — Q|

2 (4,3) €X /2
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if W # (), where W := CZ (this implies that CX¥x (P, Q) C W C {1,2,...,n}).

THEOREM 1.10. Let P,Q € Sy, RE Spp, and D# X C{1,2,...,m}>.
Then B

(i) bx (P, Q)—l—bX(P Q)'

i P, e — Qi)

(ii) bx 7( Q) = (W)GXEP({M’ m})k%( K — Qjk)
{1,2,...,n};

(iv) bx (PR,QR) = bx (P Ry, Q"W Ry ), YW, W # ( and CEx (P, Q) C
W C{1,2,...,n}.

Proof. (i) and (ii) See [9, Proposition 1.4].
(iii) Let W # 0 and CXx(P,Q) C W C {1,2,...,n}. We have
_ 1 _
bx(PQ) =5 max > [Py —Qul=bx (P",Q").
GDEX ) cerr(P.Q)
(iv) Let W # 0 and CXx (P, Q) C W C {1,2,...,n}. By (ii) we have
bx (PR,QR) = max p})zz i — Qi) R =

XTI 1 2
(i,5)€ 679({ el =1

= P;— Qi) Ry =
(T)%(Iep p})z Z (Pt = Q) R

kel 1eCEx (P,Q)

= max max — Ql Ry, —bX PWRW,QWRW 0
(i,j)€X I€P({1,2,....p}) ;E:”;V it) ( ).

THEOREM 1.11 ([9]). Let P,Q € Spn, R € Spp, and O # X C
{1,2,...,m}%. Then

Proof. See [9]. O
Theorem 1.11 can be improved as follows.

THEOREM 1.12. Let P,Q € Sy, R € Spp, and 0 # X C {1,2,...,m}>.
Then

bx (PR,QR) < bx (PV,Q")a(Rw),
VW, W #£0 and C¥x (P,Q) CW C{1,2,...,n}.

Proof. Let W # () and CEXx(P,Q) C W C {1,2,...,n}. As in the proof
of Theorem 1.5, setting U = pr; X U pry X, we have ng = cFE and QW = cF|
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where ¢ > 0 and P}V, QlV € Sju|,;w|- By Theorems 1.10(iv) and 1.11 we have
bx (PR,QR) = bx (P Rw,Q" Rw) = bx (P} Rw,Q( Rw) =

= BX (CERw, CFRw) = CBX (ERw, FRw) < CBX (E, F) a (Rw) =
=bx (cE,cF)a(Rw) =bx (P),Q0 ) a(Rw) =bx (P, Q") a(Rw). O

In this paper, a vector x € R" is a row vector and z’ denotes its transpose.
Sete=e(n)=(1,1,...,1) e R™.

THEOREM 1.13. (i) If £ € R™ such that &' =0 and R € Spp, then

IER, < ll€lly a(R)

(an inequality of Dobrushin (see, e.g., [4, p. 59], or [5, p. 147], or [9])).

(i) (a generalization of (1)) If T € Ry, such that Te' =0 and R € Sy, p,
then

TRl < [IT] (R)

(see, e.g., [5, p. 147] or [9]).
(iii) If P,Q € Smpn and R € Sy, p, then

No (PR,QR) < Noo(P,Q)a(R)
(see [9]; therefore N, too, enjoys a property as in Theorem 1.11).

Proof. See [9] or, for (i), see, e.g., [4, p. 59], or [5, p. 147], for (ii), see,
e.g., [5, p. 147], and for (iii), use (ii) taking T'=P — Q. O

Let T' € Ry, . Define
Z(M) ={jlje{1,2,...,n} and TV} =0}
(the set of zero columns of T).
Theorem 1.13 can be improved as follows.
THEOREM 1.14. (i) If £ € R™ such that &' =0 and R € Spp, then
IR, < ||V ]|, @ (Rw), YW, W #0 and CZ (§) CW C{1,2,...,n}.

, (ii) (a generalization of (i)) If T € Ry, such that Te'=0 and R€E S, p,
then

TR < ||TY]|| @ (Rw), YW, W # 0 and CZ (T) CW C{1,2,...,n}.

(iii) If P,Q € Smn (more generally, P,Q € Ry, ,, with (P —Q)e’ =0)
and R € S, ,, then

VW, W #£0 and CZ (P —Q) CW C{1,2,...,n}.
Proof. This is left to the reader. [
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Remark 1.15. By Theorem 1.12, taking X = {1,2,... ,m}2, and Theo-
rem 1.14(iii) we obtain two analogous inequality, namely,

C(PR,QR) < (PV,Q")a(Rw)
and
N (PR,QR) < N (P, Q") @ (Ru).
VW, W # 0 and CXx (P,Q) CW C{1,2,...,n}
(here Xx(P,Q) C Z (P — Q)). Obviously, the first inequality contains more
information than the second one (cf. the definitions of { and N,). Moreover,

Now <¢
(see [9]). If P or @ is a stable matrix, then

This means that in cases such as this it does not matter if we use N4, or (.
The converse is not true. Indeed, if

1 0 0 1
PZ(I 1) and Q:<1 1)7
5 3 2 2

then No(P,Q) = ((P,Q) = 1, but neither P nor @Q is a stable matrix.
In the next example we compare Theorems 1.13(i) and 1.14(i).

Ezample 1.16. Let

2 2
OOZZ
1 3
P:OOZZ
L3 0 o

1 1

3 1
1100

and let &; and & be two probability distributions on {1,2, 3,4} with supp¢;,
supp &2 C {1,2}. (If 7 is a probability distribution on {1,2,...,7}, then

suppm:={i|i€{1,2,...,r} andm; >0}.)
By Theorem 1.13(i) we have

160P — &Py < [I§1 — &l a(P) = [[§1 — &,
while by Theorem 1.14(i) we have

1
16 P = &Pl < (16 = &l @ (Pagy) = 7 16— &l -

Therefore, in the last case we have an upper bound four times smaller than in
the first case.



62 Udrea Paun 10

Definition 1.17. Let P € N, ,. We say that P is a generalized stochastic
matriz if da > 0, 3Q € S, such that P = aQ).
Let Ay € Par ({1,2,...,m}) and A € Par ({1,2,...,n}). Define
Ga,py ={P| P € Sy, and VK € Ay, VL € Ay,
PEL is a generalized stochastic matrix} .

In particular, if m = n and Ay = Ay := A, we set GaA = Ga A (as in [9]
(see also [8])).
In the next theorem we give a result similar to Theorem 1.11, but using
A in place of @. It improves Theorem 1.9 in [9] (Note that Theorem 1.9 in
[9] is too restrictive and contains a mistake, namely, ‘¢ < j’, that should be
replaced by “(i,7) € {1,2,...,m}*".)
THEOREM 1.18. Let P,Q € Sy, R € Spp, and 0 # X C {1,2,...,m}>.
Let Ay € Par ({1,2,...,n}). If we have ) Py, = > Qjk, V(i,j) € X, VL €
keL keL
Ag, then
bx (PR,QR) < bx (P,Q)Va,(R).
In particular, for X = {(i,7) | (i,5) € {1,2,...,m}?* and IK € Ay such

that 1,j € K} (in this case, P,Q € Ga, a,), where Ay € Par ({1,2,...,m}),
we have

§A1 (PR, QR) < gAl(Pv Q)WAQ (R)v
which for P=Q := C and R := D vyields

Proof. See the proof of Theorem 1.9 in [9]. O
Let A € Par(E) and ) # D C E, where E is a nonempty set. Define
AND={KND|KecA}.

Obviously, AN D € Par (D) and this is the partition induced on D by A.

Let P,Q € Ry, 0 # X C {1,2,...,m}?, and A € Par ({1,2,...,m}).
If X ={1,2,...,m}? then

bx(P,Q)=C(P,Q) and XIx(P.Q)CZ(P-Q)

(moreover, PZ(P=Q) = QZ(P=Q)) 1f X = {(i,j) | (4,5) € {1,2,...,m}” and
JK € A such that 7,5 € K} then

bx(P,Q) = 0a(P,Q) and x(P,Q)= (] Tx2(Px,Qx)C [ Z((P - Q)g)

KeA KeA

(moreover, Pg((PfQ)K) = Q[Z(((PfQ)K), VK € A).
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Theorem 1.18 can be improved as follows.

THEOREM 1.19. Let P,Q € Sy, R € Sy p, and 0 # X C {1,2,...,m}?.

Let Ay € Par ({1,2,...,n}). If we have Y Py = Y Qi V(i,j) € X, VL €
kel kel
Ao, then
bx (PR,QR) < bx (P, Q") Ta,w (Bw)
VW, W #£0 and C¥x (P,Q) CW C{1,2,...,n}.

In particular, for X = {(i,j) | (i,j) € {1,2,...,m}? and 3K € Ay such
that 1,5 € K} (in this case, P,Q € Ga,,n,), where Ay € Par ({1,2,...,m}),
we have

gAl (PRa QR) < §A1 (PWv QW) WAQOW (RW) )
YW, W # 0 and CXx (P,Q) CW C{1,2,...,n},
which for P=Q :=C and R := D yields
ﬁAl (CD) S WAl (CW) WAQQW (DW) )
VW, W # 0 and CSx (C) CW C{1,2,...,n}.
Proof. Let W # () and CEx (P,Q) C W C {1,2,...,n}. By Theorems
1.10(iv) and 1.18 we have
by (PR,QR) = bx (P" Rw,Q" Rw) <
(as in the proof of Theorem 1.12)
<bx (PW, QW) Y agnw (Bw) -
If X ={(i,5) | (i,j) € {1,2,...,m}* and 3K € A such that i,j € K} (in
this case, PV, QW ¢ GA, n.nw ), then by =0x,. O
Theorem 1.18 or its generalization, Theorem 1.19, can be applied, e.g., to
the case P,Q € Sa, A, 5, Where Ay = (K1, Ko, ..., K,) € Par ({1,2,...,m}),
Ay = (L1, Lo,...,Ly) € Par({1,2,...,n}), f:{1,2,...,u} — {1,2,... v},

and

CL;(; ,
Saranf ={T|T € Spnand Ty ' =0, Vie{1,2,...,u} },

when 0 # X C {(3,5) | (4,)) € {1,2,...,m}? and 3K € A such that i,j €
K}. (Sa,,n,,f is a generalization of Sa , in [7].)

In the next theorem (the its first part is a special case of Theorem 1.18
in [8]) we give a result similar to Theorem 1.13, but using 7, in place of @.

THEOREM 1.20 ([9]). Let A € Par({1,2,...,n}). If £ € R™ such that
() =0,VK € A, and R € Sy, then

IER] < [€ll; 7a(R)-
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More generally, if T € Ry, such that TX (¢/), = 0, VK € A, and
R € Sy p, then
TR < 1T loo Ya(R)-

In particular, for T := C — D and R := E, where C,D € Sy, ,, (more
generally, C,D € Ry, p), >, Cij = > Djj, Vi € {1,2,...,m}, VK € A, and
jEK jEK
E €S, ,, we have

No (CE,DE) < No (C, D)7A(E).

Proof. See [9, Proposition 1.7]. O
Theorem 1.20 can be improved as follows.

THEOREM 1.21. Let A € Par({1,2,...,n}). If &€ € R" such that
8 (e =0,VK € A, and R € S, , then

IR, < €71, Tacw (Rw), YW, W 0 and CZ(€) €W C {1,2,...,n}.

More generally, if T € Ry such that TX (¢') = 0, VK € A, and
R € Sy, then

TR < (IT]| o Facw (Bw).
YW, W #£0 and CZ(T) CW C{1,2,...,n}.
In particular, for T := C — D and R := E, where C,D € Sy, ,, (more
generally, C,D € Ry, p), >, Cij = > Dij, Vi € {1,2,...,m}, VK € A, and
JjeEK JjeEK
E € S, p, we have
Noo (CE,DE) < N (C, D) Fpmw (Bw),
VW, W #0 and CZ(C — D) CW C{1,2,...,n}.

Proof. Let W # () and CZ (T) C W C {1,2,...,n}. By Theorem 1.20
(TK () =0, VK € ANW) we have

NTRo = [T Rwll|o < 1T ]|.c Tarw (Bw). O

2. APPLICATIONS TO APPROXIMATE COMPUTATION

In this section we use the ergodicity coeflicients to the approximate com-
putation for products of stochastic matrices and probability distributions of
finite Markov chains.

Consider a finite Markov chain (X,,),,~, with state space S={1,2,...,r},
initial distribution po, and transition matrices (Ppn),;>1- We frequently shall
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refer to it as the (finite) Markov chain (P,),, . For all integers m > 0, n > m,
define -

Prn = Prs1Pot2. .. Po = ((Pnn)ij); jes -

Let ) ## B C N. We give below some definitions from A-ergodic theory
in a special case (for a more general framework, see [10] and [11]).

Definition 2.1 ([10]). Let i,5 € S. We say that ¢ and j are in the same
weakly ergodic class on (time set) B if Ym € B, Vk € S we have
lim [(Prmn)ik = (Pmn)jk] = 0.

n—oo

Write i 2 j when ¢ and j are in the same weakly ergodic class on B.

Then £ is an equivalence relation and determines a partition A = A(B) =
(C1,C4,...,C5) of S. The sets C1,Cy, . ..,Cs are called weakly ergodic classes
on B.

Definition 2.2 ([10]). Let A = (Cy,Cy, ..., Cs) be the partition of weakly
ergodic classes on B of a Markov chain. We say that the chain is weakly A-
ergodic on B.

In connection with the above notions and notation we mention some
special cases:

1. A = (S). In this case, a weakly (S5)-ergodic chain on B can be called
weakly ergodic on B for short.

2. B = {m}.In this case, a weakly A-ergodic chain on {m} can be called
weakly A-ergodic at time m. An important case is m = 0. (E.e., we need the
asymptotic behaviour of (Fy ), -, to determine the limit distribution 7, when
it exists, of the Markov chain (P;)n21 because T}Lngo poFon = 7 (see also [12]).)

3. B = N. In this case, a weakly A-ergodic chain on N can be called
weakly A-ergodic for short.

4. A =(S), B={m}. In this case, a weakly (5)-ergodic chain at time
m can be called weakly ergodic at time m for short.

5. A = (S), B = N. In this case, a weakly (5)-ergodic chain on N can
be called weakly ergodic for short.

Definition 2.3 ([10]). Let i,5 € S. We say that ¢ and j are in the same
uniformly weakly ergodic class on B if Vk € S we have

lim [(Pm,n)ik - (Pm,n)jk] =0

n—oo
uniformly with respect to m € B.
. . u,B . . . . . .
Write i '~ j when ¢ and j are in the same uniformly weakly ergodic

u,B . . . . o
class on B. Then A is an equivalence relation and determines a partition



66 Udrea Paun 14

A =A(B) = (Uy,Us,...,Up) of S. The sets Uy, Us, . .., Uy are called uniformly
weakly ergodic classes on B.

Definition 2.4 ([10]). Let A = (U, Us,...,U;) be the partition of uni-
formly weakly ergodic classes on B of a Markov chain. We say that the chain
is uniformly weakly A-ergodic on B.

Since in Definitions 2.3 and 2.4 the case B = {m} is nonimportant, we
have three special cases for the simplification of language, namely, 1) A = (.9),

2) B=N, 3) A =(S), B=N. These are left to the reader (see the
corresponding cases from weak A-ergodicity on B).

Definition 2.5 ([10]). Let C' be a weakly ergodic class on B. We say that
C is a strongly ergodic class on B if Vi € C, Ym € B the limit
7}1_{1010 (Pmn)i; = Tmj = Tmj(C)

exists and does not depend on 1.

Definition 2.6 ([10]). Let C be a uniformly weakly ergodic class on B.
We say that C is a uniformly strongly ergodic class on B if Vi € C the limit

7}1_{1010 (Pmn)i; = Tmj = Tmj(C)
exists uniformly with respect to m € B and does not depend on i.

Definition 2.7 ([10]). Consider a weakly (respectively, uniformly weakly)
A-ergodic chain on B. We say that the chain is strongly (respectively, uni-
formly strongly) A-ergodic on B if any C' € A is a strongly (respectively,
uniformly strongly) ergodic class on B.

Also, in the last three definitions we can simplify the language when
referring to A (Definition 2.7) and B (Definitions 2.5, 2.6, and 2.7). These are
left to the reader.

Let P, Ps, ..., P, € S,.. We can suppose, e.g., that these stochastic ma-
trices are the first n matrices of a Markov chain (P,),, . First, we consider
two problems (the finite case): -

1) the approximate computation of product Py, (Pon = PiPs...P,);

2) the approximate computation of (probability) distribution p,, (there-
fore of po Py, because p, = poPy,n) at time n of a Markov chain (P,),,~, with
initial distribution py, -
when n is large in both cases.

In the first situation, we approximate Py, by its tail P, (0 < k < n and
n — k is its length) and, in the second one, p,, by pg ,, where py ., := poPp .
To get an approximation within an error ¢ (¢ > 0) for our problems, one
way is to use the ergodicity coefficients of two matrices. This is made in the
theorem below.
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Let (Pn),>; be a Markov chain with state space S = {1,2,...,7}. Set
P = I, Ym > 0.

THEOREM 2.8. Let (P,),~, be a Markov chain with state space S and
initial distribution py. Let A € Par(S). Then

(i) ¢ (Pon, Pen) <@ ((Pln)W), Vi, k<l<n, YW =W(), W #0 and
C¥g2 (Pog, Pry) CW C S;

(11> Noo (PO,’m Pk,n) <a
and CZ (POJ — Pk,l) CWCS;

(iil) Oa (Pon, Pen) < Yanw ((Pln)W), Vi, k < 1 < n, for which the
conditions of Theorem 1.19 hold with P := Py, Q := Py, R := P ,, A1 =
Ay :i=A, and X := {(i,7) | (i,7) € S? and IK €A such that i,j € K}, YW =
W (1), W #0 and CEx (P, Pry) €W C S;

(iv) Noo (Pons Pen) < Fanw ((Pn)w) s VI, k < 1 < n, for which the
conditions of Theorem 1.21 hold with C := Fy;, D := Py; and E = Py,
VIV =W (), W #0 and CZ (Po; — Py;) CW C S;

(V) lpn = Penll; <20 ((Pp)y), VL k<1 <n, YW =W (1), W #0 and
CZ (po (Poy — Pry)) S W C S

(Vi) lpn — Penlly < 27arw (Pun)yy)s V1, k < 1 < n, for which the con-
ditions of Theorem 1.21 hold with & = po (Poy — Pgy), VW = W (1), W # 0
and CZ (po (Poy — Pry)) C W C 8.

(Pon)y)s VI, k<1< n, YW = W (1), W # 0

Proof. For all results we use the decompositions Fy,, = FPy;F;, and
Pyppn =Py Py

(i) See Theorem 1.12 (X = S? and, by Theorem 1.10(i), 0 < { (E, F) < 1,
VE,F € Spn).

(ii) See Theorem 1.14(iii).

(iii) See Theorem 1.19.

(iv) See Theorem 1.21.

(v) See Theorem 1.14(i).

(vi) See Theorem 1.21. [

Remark 2.9. (a) We can make approximations in [|||||.,, Noo (+), ¢ (*)
etc. (See again Remark 1.15.) But (in the case when we have no errors)

MP — Q||| = 0 implies P = Q,

No(P,Q) = 0 implies P = @Q,

((P,Q) = 0 implies that there exists a stable stochastic matrix IT such
that P = @ = II etc. Moreover, for approximation in ¢ (-), we note that
((P,Q) < ¢ (ie., P~ @ in ((-) within an error €) implies that there exist
two stable stochastic matrices IT; and Iy, e.g., I} = ¢/Qqyy and Iy = €' Py,
such that ¢ (P,1;) < ¢ and ¢ (Q,II3) < e. The proof is obvious. Also, we
note that (P, Q) < e implies that there exists a stable stochastic matrix II,
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eg, =1 (e’P{l} +€¢'Qq1y), such that ¢ (P,II) < 3c and ((Q,1I) < 3e. The
proof is as follows. By Remark 1.15 we have

1 1 1
1
= 1 2P=e'Ppy —eQuylll, <

1/1 1 1 3
<3 (2 1P = eQuylll,, + 5 1P = Qlllw + 5 [[|Q - e’P{l}!Hm) <3e
There arises a question: Is there a stable stochastic matrix II such that
((P,Q) < ¢ implies ¢ (P,1I) < ¢ and ¢ (Q,II) < &? The approximations
in ergodicity coefficients we call the ergodic approximations. Finally, we note
the next basic problems:

I) Given ¢ > 0 (¢ < 1) and Py, Ps,...,P, € S, what is the greatest
k = k(n,e), 0 < k < n, such that [Py, — Prnlll,, < €7 (This problem
always has a solution because k > 0.) But such that N (Pon, Pyrn) < €? But
such that Z(Pom, Py ) < e? Etc.

IT) Given € > 0, a probability distribution py € R", and P;, Py, ..., P, €
Sr, what is the greatest k& = k (po,n, €), 0 < k < n, such that [[p, — prnll; < €7

(b) In Theorem 2.8 we can use Py, , instead of Py, (here we approximate
Py by Py, m <k <n). But this is an apparent generalization (because we
can apply Theorem 2.8 to the chain (FP,),,<,,)-

(c) To approximate P, by Py, in |||/, within an error e, Theo-
rem 2.8, e.g., (i), requires that 3,k < I < n, IW = W (), W # 0 and
C¥g2 (Pyy, Pyy) € W C S, such that a((Pl,n)W) < 5 (recall that Ny < 0).
On the other hand, Theorem 2.8, e.g., (i), says that Py, ~ Py, in |||/
within an error 2a ((Pn)y, ), Vik < 1 < n, YW = W (), W # 0 and
CSge (P, Poy) CW C S.

(d) If (Pp),,>, is weakly ergodic at time [ (k <1 < n), then @ (FP,,) — 0
as n — oo. Therefore, Ve > 0, 3n (¢,1) > I such that @ (P,,) <&, Yn > n(e,l).
This implies that, at least theoretically, we can approximate P, by Py, in
¢ (-) within an error €, Vn > n (g,1) . A more restrictive condition than ‘(P,),,-,
weakly ergodic at time [’ is ‘(P,),,~; weakly ergodic’. -

(e) Theorem 2.8, (iii), (iv), and (vi), can be applied, e.g., to the cyclic
(homogeneous or nonhomogeneous) case. E.g., let

=P Vn>1,

S O kRN
O O Blw e

B Re- O O
BNl O O
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and pg = (%, %, 0, O) . (This is an example of a chain that does not have a limit

distribution.) The period of this chain is d = 2. Let A = ({1,2},{3,4}) (the
partition of cyclic subclasses of the chain). First, we can approximate P™ by
P % (k < n) if n mod 2 = (n — k) mod 2. For | = k, since Sy (P*, 1) =0,
where X = {(i,7) | (i,5) € {1,2,3,4}* and 3K € A such that i,j € K}, we
just take W =S = {1,2,3,4} in Theorem 2.8, (iii) and (iv), and obtain

EA (Pn, Pn—k‘) S WA (Pn—k)

and

NOO (Pn,Pn_k) S WA(Pn—k),

respectively. Since the chain is weakly A-ergodic, we have 7 (P”*k) — 0 as
n — 00. Second, we can approximate p,, by py p if n mod 2 = (n — k) mod 2.
For | =k + 1, because Z (po (P*™! — P)) = {1,2} (n mod 2 = (n — k) mod
2=n=2u+tand n —k = 2v+t, where u,v > 0 and t € {0,1} = k =
2(u—wv), i.e., k is an even number = k + 1 is an odd number), we can take
W =W (1) = {3,4} in Theorem 2.8(vi). Therefore,

1pn = Prally < 273,41 ((Pn_(k+1)){3,4}) =20 ((Pn_(k+1)){3,4}> ’

where pp, = poP" . Since the chain is weakly A-ergodic, we have
Tigsay (PTFHD) — 0 as n — oo,

Second, we consider two other problems (the infinite case):

3) the approximate computation of limit of product Py, if it exists
(more generally, of Py, ,, Vm € B () # B C N), if the limit of P, ,, does exist,
Vm € B),

4) the approximate computation of limit (probability) distribution of a
Markov chain if it exists.

Related to these problems we shall approximate the limit matrix and
the limit distribution of a uniformly strongly ergodic Markov chain (A = (.5),
B =N).

THEOREM 2.10 ([3]). Let (P,),,~; be a Markov chain. Then it is uni-
formly weakly ergodic if and only if 3a > 0 (a < 1), Ing > 1 such that
a (Ppm+n) = a, Vm >0, VYn > ng (equivalently, 3a > 0 (a < 1), 3ng > 1 such
that o (P m+ne) > @, Ym > 0).

Proof. See [3] or [4, pp. 221-222]. [

This theorem can be modified, more precisely, we can isolate a (with the
difference that 0 < a < 1 above and 0 < a < 1 below).
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THEOREM 2.11. Let (P,),~, be a Markov chain. Let 0 < a < 1. Then it
is uniformly weakly ergodic if and only if Ing > 1 such that o (P min) > a,
VYm > 0, Vn > ng.

Proof. “=7” By Theorem 2.10, 3b, 0 < b < 1, Jug > 1 such that
a(Pmmtu) = b, Ym > 0, Yu > ug. Let kg = min{k | k> 1and (1-— b)k
1-— a} and ng = koug. Then VYm > 0, Vn > ny we have

« (Pm,ern) S (@] (Pm,erno) S

(by Theorem 1.4, taking X = S?, where S = {1,2,...,r} is the state space of
(Pn)n21>

_ _ — k
S « (Pm,m—i-uo) (0% (Pm+u07m+2u0) e (Pm+(k071)u0,m+n0) S (1 - b) 0 S 1—a
Therefore, Ing > 1 such that a (P, m+n) > @ (see Theorem 1.3(i)), Ym > 0,

Vn > ng.
“<” See Theorem 2.10. O

Remark 2.12. The reader can try to find a proof of Theorem 2.11 without
using Theorem 2.10 (for this see the proof of the latter).

Remark 2.13. There exist generalizations of Theorem 2.10 in [8, Theo-
rems 3.14, (1)< (4), and 3.16, (1)< (4)] which use ya in place of a. These lead
to some generalizations of Theorem 2.11 which are left to the reader.

The next result is useful for problem 1) of this section in the uniformly
weakly ergodic Markov chain case and is based on Theorem 2.11.

THEOREM 2.14. Let (P,),,~; be a uniformly weakly ergodic Markov chain.
Let 0 < ¢ < 1. Let ng > 1 such that a (Pmm4ng) = €', Ym > 0 (see Theo-
rem 2.11). Then

(1) ¢ (Pomns Pr—ngm) <1—¢ =g, ¥m >0, ¥n > m + ng.

(11) ||pn _pn—no,nHl < 257 Vn > no.

Proof. (i) By Theorem 1.11,

C( m,n, n non)<<( m,n— noal)a(Pnfno,n)S
<A (Pongn) <1—¢€'=¢, VYm >0, Vn >m+ ny.

(ii) By Theorem 1.13(i),
Hpn Pn— no,nH1 HpO (PO n—ng — IT) Pn—no,nul <
< HpO (PO,n—no - r Hl (Pn—no,n) <2a (Pn—no,n) < 257 n > ng. 0

Remark 2.15. By Theorem 2.14, Py, ,, =~ Pp_pyn in  (+) within an error
g, Ym > 0,Vn > m+ng, Ppp~ Py_nyn in N () within an error &, Vm > 0,
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Vn > m+ng (because Noo < ), Pmn =~ Py_ngn in |||-||lo, within an error 2e,
Vm >0, Yn > m+ ng, and p, =~ pp—ngpn in [|-||; within an error 2e, Vn > ny.

THEOREM 2.16 (see, e.g., [5, pp. 160-163]). Let (), be a Markov
chain. If (Py),~, is weakly ergodic and ) ||[{ny1 — Unl; < 00, where 1y, is
- n>1
a probability vector satisfying V¥nPp = 1y, Yn > 1, then the chain is strongly
ergodic.
Proof. See, e.g., [5, pp. 160—163]. O

THEOREM 2.17 ([6]). Let (P,),~; be a Markov chain. Then (P,),s,
is uniformly strongly ergodic if and only if it is uniformly weakly ergodic and
strongly ergodic.

Proof. See [6]. O
Combining Theorems 2.16 and 2.17 we have the next result.

THEOREM 2.18. Let (P),,>; be a Markov chain. If (Py),, -, is uniformly

weakly ergodic and ) ||tni1 — Unll; < 00, where 1y, is a probability vector
n>1
satisfying ¥ P = ¥y, Y > 1, then the chain is uniformly strongly ergodic.

Proof. See Theorems 2.16 and 2.17. [

Remark 2.19. Let (P,),», be a uniformly weakly ergodic Markov chain.
Is (Pm7m+n)m>0 convergent, VYn > 17 The answer is ‘no’. Indeed, let

11
P4n—3:P4n—2:<? ?)1:13,
2 2
1 3
P4n1:P4n:<§ ?)::Q, Vn > 1.
4 4

By Theorem 2.10 (or Theorem 2.11), (F,),>; is uniformly weakly ergodic.
Further, by Theorem 2.18, (Pn)n21 is uniformly strongly ergodic because it is

uniformly weakly ergodic and 7P = P and 7Q) = @), where m = (%, %) But,
e.g., A lim P, and # lim Primi2.

The next theorem is our main result related to problem 3).

THEOREM 2.20. Let (Py),; be a uniformly strongly ergodic Markov
chain with limit 11 (ie., lim P, , = II, Ym > 0). Let 0 < ¢ < 1. Let
n—oo

ng > 1 such that a(Ppiny) > 1 — 5, Vm > 0 (see Theorem 2.11). Let
0<my <mg <--- such that tlim Py mi4no exists (3 (my);~, with the above
—00 =
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property because (Ppming),,>o 5 bounded). Let I = tlim P, mitng- Then
= —00
II ~1I in |||-|||o, within an error .

Proof. Let § > e. It follows from tlim Py midng = II that Jt; > 1 such
— 0

that

~ 5 —
P~ Tl < 255 =

Further,
H ‘Poﬂm-i-no - ﬁ‘ Hoo S H ‘Poﬁmt-f'no - Pmt,mt-i—nomoo + H |Pmivmt+”0 - ﬁ‘ Hoo =
(by Theorem 1.13(i))
~ 5 —
S 2a (Pmt,mt—i-no) + Hlez,mH-no - H‘Hoo S €+ Tga vt 2 tl'
Further, tlim Py, mi+no = I implies that Jt5 > 1 such that
—00

o —
R

Let tg = max (t1,t2) . Then
=i < 08— Pl o+ 1P~ i <0 e o
Therefore, IT ~ II in ||| - |||sc Within an error & because € = (isnf 0. O
>e

Remark 2.21. One can give a proof of Theorem 2.20 using Ny or {
instead of ||| - |||co. This is left to the reader.

THEOREM 2.22 ([12]). Let P,Q € Ry, . Then
(i) 2P = 2Qll, <[P = Qlllos, V& € R™ with ||z[|, <1;
(ii) 2P = 2Qlloc < 1P = Qllloc, Yz € R™ with ||z|[, <1.

Proof. See [12]. O
The next theorem is our main result related to problem 4).

THEOREM 2.23. Let (P,),~; be a uniformly strongly ergodic Markov
chain with initial distribution po and limit distribution m (i.e., ILm poPon =
m). Let 0 < e < 1. Let ng > 1 such that a (P min,) > 1 - %X: Vm > 0
(see Theorem 2.11). Let 0 < mj < mg < --- such that tli>nolo Prymitno €xists
(3 (mi)y>; with the above property because (Ppming),,>o i bounded). Let

1= tlim Py mi4no and ™ = poll. Then m~ 7 in |||, within an error €.
— 00
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Proof. We use notation and results from Theorem 2.20 and its proof. We
have II = e’w. Further,

. /
lim poPo,mi+ne = poll = poe'm =,
t—o0

so that
||p0P07mt+TL0 - 77”1 = ||pOP0,mt+n0 - pUHHl <
(by Theorem 2.22(i))

d—¢
2 )

< [ Posmerno = Tf| < vt b

Finally,
I =7y = |7 = poIl||, < 17 = PoPometnolly + [|PoPo,metno—poll|, <
(by Theorem 2.22(i))
< H7T _pOPO,mt—l—noHl + H|P0,mt+n0—ﬁwoo < 57 vt = to.

Therefore, |7 —7||; <e = }nf J,ie,m~7in ||-||, within an error e. O
>€

3. OTHER APPLICATIONS

In this section we use certain ergodicity coefficients of one or two matrices
to give another proof of Theorem 4.3 in [4, p. 126] related to the convergence
and the speed of convergence of homogeneous finite Markov chains. Other
applications refer to new proofs of Theorem 2.8 in [9] and to the equivalence
of weak and strong ergodicity for backward products.

THEOREM 3.1. Let P,Q € Sy, . Then
n
(1) |P2k_ij‘ < % Z |qu_qu’7\v/Z7] € {1727‘ . .,m},Vk € {1727" : ,TZ};
u=1

(11> ‘sz_ij“ SZ(P?Q)a VZ,] S {1?27~-'am}7 Vk € {1,2,...,??,}.
Proof. (i) Let 4,5 € {1,2,...,m} and k € {1,2,...,n}. From

n n
Y Pu=) Qu=1,
u=1 u=1

n

u=1

we have

Further, setting

+  Joa ifa>0, nd - — 0 ifa>0,
“TV10 ifa<o MY TV a4 ifa<o,
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where a € R, we have

n n

Z(Pw - qu)+ = _Z( qu Z|qu qu|

u=1 u=1

Case 1. | Py, — Q]k| P, — Q]k Then

’sz - ij| < Z i Q]u Z |Bu Q]u’

u=1
Case 2. | Py, — Qjk| = — (Pir, — Qjx) - Then
|Pik_ij‘ < _Z( Q]u Z’qu Q]u|
u=1

Thus we proved (i).
(ii) Let ¢,5 € {1 2,...,m}and k € {1,2,...,n}. We have

2 1<v,w<m

C(P Q max Z|ka ka’| > ;;’Pw _qu| >

(by (1))
> Py, — Qx| O

Definition 3.2 (see, e.g., [4, p. 126]). Let P € S,. We say that P is a
mizing matriz if 3n > 1 such that o (P™) > 0.

THEOREM 3.3 ([4, p. 126]). Consider a homogeneous (finite) Markov
chain with mizing transition matriz P and state space S. Let R and T be the
set of recurrent states and the set of transient states, respectively. Then

(i) P* — II = €'m as n — oo, where 7 is a probability vector, 7P =
m,m >0 if i € R while m; =0 if i € T when T # {;

(i) |[(P")i; — )| < @(PoNF) vij e S v > 1, where ng > 1 is
taken such that @ (P™) > 0.

Proof. See [4, pp. 123-126]. Another proof is as follows.
(i) First, we show that (P"), -, is convergent. For this, we show that

(P")n21 is a Cauchy sequence. Let 0 < ¢ < 1. By Theorem 1.4 (taking
X = §?), since P is mixing, 3m = m. > 1 such that
€
a(Pm) < -.
7 (P < ©
Let p > 1 and n > m. Then (we can also prove that (P"), -, is a Cauchy
sequence using N or ()

[P =Pl = ([ (7= = o) Pl <
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(by Theorem 1.13(ii))
< ||[prrrTm — prm|| @ (P™) < 2a(P™) <e.

Therefore, (P"),~, is convergent. Further, this implies that JII € S, such
that P* — II as n — oo.
Second, we show that II is a stable matrix. Since P is mixing and @ is
continuous, we have
a(ll) =a ( lim P”) — lim @ (P") = 0.
n—oo n—oo
Therefore, II is a stable matrix (see Remark 1.1).

Third, we show that there exists a probability vector 7 such that IT = ¢'r,
7P = m, m > 0if i € R while m; = 0if ¢ € T when T # (). Because
IT is a stable matrix, there exists a probability vector m such that II = ¢'r.
Obviously, 7 = Ilg;, Vi € S. Further, it follows from P"*! = P"P that
II =1IIP. Hence Vi € S we have Il;;y = II; P, i.e., 7P = . Further, the fact
that P is mixing implies that P has only a recurrent class that is aperiodic
and, perhaps, transient states. Therefore, P can be written as

U 0
P=U or P_<V W>7

where U is a regular matrix (i.e., a matrix for which 3n > 1 such that U™ > 0);
recall that if C' € Nj is a irreducible and aperiodic matrix, then C' is a regular
matrix (see, e.g., Theorem 1.4 in [13, p. 21]). Now, 7; > 0if ¢ € R follows from
the fact that P is mixing and a theorem of O. Perron and G. Frobenius (see,
e.g., Theorem 1.8 in [4, p. 51]) applied to the regular matrix U. If T # (), then
by Theorem 2.10 (or 2.11), since P is mixing, the chain is uniformly weakly
ergodic (we need only to prove that the chain is weakly ergodic; note that in
this case weak ergodicity and uniformly weak ergodicity are equivalent). This
implies that TIT = 0 since P} = 0 (PL = 0 = (P")}, = 0, ¥n > 1). Finally,
from II” = 0 we have m; = 0if i € T.
(ii) Let 4,7 € S and n > 1. By Theorem 3.1(ii),

[(P™)ij — M| < ¢ (P",T0).

Because Ily; = 7, Vk,l € S we must only prove that

¢ < @yl
We have
Z(anrD :Z(Pn’ 1i_r)n Pm> =
(using continuity of ¢)
— lim C(P",P™) <

m—00
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(for m > n and using the fact that there exists the limit below)

< lim C(I,P"")@(P") < lim @(P")=a(P").

- m—oo

Finally, setting n = sng + u, where s > 1 and 0 < u < ng, we have
a (Pn) - a (PsnoJru) S
(by Theorem 1.4)

<a(P™) < (@(P) = @Peplil. o

Next, following the proof of Theorem 3.3 and using 6 instead of ¢ and,
possibly, 6 instead of ||| - |||so, the reader can try to give a new proof of Theo-
rem 2.8 in [9] (see also Remark 2.9 there).

Another application of the ergodicity coefficients of one or two matrices
refers to the asymptotic behaviour of backward products, i.e., of the products

Um,n =P,Pi1...Ppny1, m>0, n>m,

where P, € S, ¥n > 1 (see, e.g., [13, p. 153]). More precisely, we can prove
the equivalence of weak and strong ergodicity for backward products (see [2]
or [13, pp. 154-155]); obviously, strong ergodicity implies weak ergodicity and
to prove the converse we need only to prove that (Umnn),,, is a Cauchy
sequence, Ym > 0 (the proof of this is similar to the proof of the fact that
(P"),~, is a Cauchy sequence, Theorem 3.3(i)). Moreover, taking as a guide
the general A-ergodic theory of finite Markov chains (see [10] and [11]), we
can build a general A-ergodic theory for backward products. The interested
reader can develop this topic (for a starting point see also [2] and [13]).
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