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1. INTRODUCTION

We start by a short presentation of infinite iterated function systems
(IIFSs) and by fixing the notation. Iterated function systems (IFS) were con-
ceived in the present form by Hutchinson [6] and popularized by Barnsley [2]
and are one of the most common and most general way to generate fractals.
Many of the important examples of functions and sets with special and unu-
sual properties from analysis turns out to be fractal sets and a great part of
them are attractors of IFSs. There is a current effort to extend the classical
Hutchinson’s framework to more general spaces and infinite iterated function
systems or, more generally, to multifunction systems and to study them and
their applications (see for example [1], [3], [7], [8], [10], [12–15]). A recent
such example can be found in [8] where the Lipscomb’s space – which was an
important example in dimension theory – can be obtain as an attractor of an
IIFS defined in a very general setting, where the attractor can be a closed and
bounded set in contrast with the classical theory where only compact sets are
considered. Another generalization of the notion of an IFS can be found in
[9, 11]. Although the fractal sets are defined with measure theory [4], [5] –
being sets with noninteger Hausdorff dimension – it turns out that they have
interesting topological properties as we can see from the above example [8].
One of the most important result in these direction is Theorem 1.3 below (see
[17] for a proof) which states when the attractor of an IFS is a connected set.
We want to extend this result to IIFSs and point out the differences between
the two cases finite (IFS) and infinite (IIFS).
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148 Alexandru Mihail 2

The paper is divided in four parts. The first part is the introduction. The
second part contains the description of the shift or code space for an IIFS. The
third part contains the main results. The last one contains some examples.

For a set X, P (X) denotes the subsets of X and P ∗(X) = P (X)− {∅}.
For a subset A of P (X), by A∗ we mean A− {∅}.

Let (X, dX) and (Y, dY ) be two metric spaces. By C(X, Y ) we will un-
derstand the set of continuous functions from X to Y .

A family of functions (fi)i∈I ⊂ C(X, Y ) is bounded if for every bounded
set in A ⊂ X the set

⋃
i∈I

fi(A) is bounded.

Let (X, d) be a metric space. For a nonvoid set A ⊂ X, d(A) denotes
the diameter of A, that is d(A) = sup

x,y∈A
d(x, y).

Definition 1.1. Let (X, d) be a metric space. For a function f : X → X
let us denote by Lip(f) ∈ R+ = [0,+∞] the Lipschitz constant associated to
f , that is

Lip(f) = sup
x,y∈X; x 6=y

d(f(x), f(y))
d(x, y)

.

f is a Lipschitz function if Lip(f) < +∞ and a contraction if Lip(f) < 1.
Let (X, d) be a metric space, K(X) be the set of compact subsets of X

and B(X) the set of closed bounded subsets of X. It is obvious that K(X) ⊂
B(X) ⊂ P (X).

Definition 1.2. On P ∗(X) we consider the generalized Hausdorff-Pompeiu
semidistance h : P ∗(X)× P ∗(X) → R+ defined by

h(A,B) = max(d(A,B), d(B,A)),

where
d(A,B) = sup

x∈A
d(x,B) = sup

x∈A

(
inf
y∈B

d(x, y)
)
.

Concerning the Hausdorff-Pompeiu semidistance we have the following
important properties:

Proposition 1.1. Let (X, d) be a metric space. Then
1) If H and K are two nonempty subsets of X, then h(H,K) = h(H, K).
2) If (Hi)i∈I and (Ki)i∈I are two families of nonempty subsets of X, then

h
( ⋃

i∈I

Hi,
⋃
i∈I

Ki

)
= h

( ⋃
i∈I

Hi,
⋃
i∈I

Ki

)
≤ sup

i∈I
h(Hi,Ki).

3) If H and K are two nonempty subsets of X and f : X → X is a
Lipschitz function, then

h(f(K), f(H)) ≤ Lip(f) · h(K, H).
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Proof. See [1], [2] or [16]. �

Theorem 1.1. Let (X, d) be a metric space. Then (B∗(X), h) is a me-
tric space, (K∗(X), h) is also a metric space and a closed subset in B∗(X).
(B∗(X), h) is complete if (X, d) is a complete metric space and so is (K∗(X), h).
(K∗(X), h) is compact if (X, d) is compact and B∗(X) = K∗(X) in this case.
(K∗(X), h) is separable if (X, d) is separable.

Proof. See [1], [2], [4], [8], and [16]. �

Definition 1.3. An infinite iterated function system (IIFS) on X consists
of a bounded family of contractions (fi)i∈I on X such that sup

i∈I
Lip(fi) < 1

and it is denoted by S = (X, (fi)i∈I).

Definition 1.4. For an IIFS S = (X, (fi)i∈I), FS : B∗(X) → B∗(X) is
the function defined by FS(B) =

⋃
i∈I

fi(B).

The function FS is a contraction with Lip(FS) ≤ sup
i∈I

Lip(fi).

Using the Banach contraction theorem there exists for an IIFS a unique
set A(S) ∈ B∗(X) such that FS(A(S)) = A(S). More precisely we have:

Theorem 1.2 [8]. Let (X, d) be a complete metric space, S = (X, (fi)i∈I)
an IIFS and c = sup

i∈I
Lip(fi) < 1. Then there exists a unique A(S) ∈ B∗(X)

such that FS(A(S)) = A(S). Moreover, for any H0 ∈ B∗(X) the sequence
(Hn)n≥0 defined by Hn+1 = FS(Hn) is convergent to A(S). For the speed of
the convergence we have the following estimation

h(Hn, A(S)) ≤ cn

1− c
h(H0,H1).

Definition 1.5. The invariant set, A(S), is called the attractor of the IIFS.

Definition 1.6. Let (X, d) be a metric space and (Ai)i∈I a family of
nonvoid subset of X. The family (Ai)i∈I is said to be strongly-connected if
for every i, j ∈ I there exists (ik)k=1,n ⊂ I such that i1 = i, in = j and
Ak ∩Ak+1 6= ∅ for every k ∈ {1, 2, . . . , n− 1}.

The following result is well-known.

Lemma 1.1. Let (X, d) a metric space and (Ai)i∈I be a strongly-connected
family of connected subsets of X. Then

⋃
i∈I

Ai is connected.

Definition 1.7. A metric space (X, d) is arcwise connected if for every
x, y ∈ X there exists a continuous function ϕ : [0, 1] → X such that ϕ(0) = x
and ϕ(1) = y.
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Concerning the connectivity of the attractor of an IFS we have the fol-
lowing theorem (see [17]):

Theorem 1.3. Let (X, d) be a complete metric space, S = (X, (fk)k=1,n)
an IFS with c = max

k=1,n
Lip(fk) < 1 and A(S) the attractor of S. The following

are equivalent
1) the family (Ai)i=1,n is strongly-connected, where Ai = fi(A(S));
2) A(S) is arcwise connected ;
3) A(S) is connected.

We want to obtain a similar result for IIFS. This theorem is not true for
IIFSs as we can see from Example 4.1 and 4.2. The attractor of an IIFS can
be connected but not arcwise connected. Also, from Examples 4.1 and 4.2 we
see that if the attractor of an IIFS S = (X, (fi)i∈I) is connected, then it does
not results that the family (Ai)i∈I is stronly-connected, where Ai = fi(A(S)).

2. THE SHIFT SPACE FOR AN IIFS

In this section we present the shift or code space of an IIFS. The shift
space for an IIFS is a generalization of the shift space for an IFS.

We start with notation. N denotes the natural numbers, N∗= N − {0},
N∗

n = {1, 2, . . . , n}. For two sets A and B, BA denotes the set of functions
from A to B.

By Λ = Λ(B) we will understand the set BN∗
and by Λn = Λn(B) we

will understand the set BN∗
n . The elements of Λ = Λ(B) = BN∗

will be written
as infinite words ω = ω1ω2 . . . ωmωm+1 . . ., where ωm ∈ B and the elements
of Λn = Λn(B) = BN∗

n will be written as words ω = ω1ω2 . . . ωn. Λ(B) is the
set of infinite words with letters from the alphabet B and Λn(B) is the set of
words of length n. By Λ∗ = Λ∗(B) we will understand the set of all finite words
Λ∗ = Λ∗(B) =

⋃
n≥1

Λn(B). If ω = ω1ω2 . . . ωmωm+1 . . . or if ω = ω1ω2 . . . ωn

and n ≥ m we define [ω]m = ω1ω2 . . . ωm.
For two words α ∈ Λn(B) and β ∈ Λm(B) or β ∈ Λ(B) by αβ we

will understand the concatenation of the words α and β, namely, αβ =
α1α2 . . . αnβ1β2 . . . βm and, respectively, αβ = α1α2 . . . αnβ1β2 . . . βmβm+1 . . ..

Let I be a nonvoid set. On Λ = Λ(I) = (I)N∗
we consider the metric

ds(α, β) =
∞∑

k=1

1−δ
βk
αk

3k , where δy
x =

{
1 if x = y
0 if x 6= y

.

Definition 2.1. The pair (Λ(I) = (I)N∗
, ds) is a metric space and it is

caled the shift space associated with an IIFS whose functions are indexed by
the set I.
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Remark 2.1. The convergence in the metric space (Λ(I), ds) is the con-
vergence on components. (Λ(I), ds) is a complete metric space.

Let Fi : Λ(I) → Λ(I) be defined by Fi(ω) = iω for i ∈ I. The functions
Fi are contractions and are named the right shift functions. We have

ds(Fi(α), Fi(β)) =
ds(α, β)

3
.

The function R : Λ(I) → Λ(I) defined by R(ω) = ω2ω3 . . . ωmωm+1 . . . is
also continuous and is named the left shift function, where ω = ω1ω2 . . . ωmωm+1

. . .. We have

ds(R(α), R(β)) = 3ds(α, β)− (1− δβ1
α1

) ≤ 3ds(α, β).

Remark 2.2. With the above notations we have
1) R ◦ Fi(ω) = ω and Fi ◦R(ω) = iω2ω3 . . . ωmωm+1 . . .;
2) Λ(I) =

⋃
i∈I

Fi(Λ(I)) and so Λ(I) is the attractor of the IFS S =

(Λ(I), (Fi)i∈I).

Notation 2.1. Let (X, d) be a metric space, S = (X, (fi)i∈I) an IIFS on
X and A = A(S) the attractor of the IIFS S. For ω = ω1ω2 . . . ωm ∈ Λm(I)
fω = fω1 ◦ fω2 ◦ . . . . ◦ fωm and Hω = fω (H) for a set H ⊂ X, in particular
Aω = fω (A).

Notation 2.2. Let f : X → X be a contraction. We denote by ef the
fixed point of f . If f = fω then we denote by efω or by eω the fixed point of
f = fω .

The main results concerning the relation between the attractor of an
IIFS and the shift space is contained in the following theorem:

Theorem 2.1 [10]. If A = A(S) is the attractor of the IIFS S =
(X, (fi)i∈I) and c = sup

i∈I
Lip(fi) < 1, then

1) for ω ∈ Λ = Λ(I), A[ω]m+1
⊂ A[ω]m and d(A[ω]m) → 0 as m → ∞,

more precisely
d(A[ω]m) ≤ cmd(A);

2) if aω is defined by {aω } =
⋂

m≥1
A[ω]m , then d(e[ω]m , aω ) → 0

as m →∞;
3) A = A(S) =

⋃
ω∈Λ

{aω }, Aα =
⋃

ω∈Λ

{aαω} for every α ∈ Λ∗; if A =⋃
i∈I

fi(A) then A = A(S) =
⋃

ω∈Λ

{aω } and Aα =
⋃

ω∈Λ

{aαω} for every α ∈ Λ∗;

4) the set {e[ω]m/ω ∈ Λ and m ∈ N∗} is dense in A;
5) the function π : Λ → X defined by π(ω) = aω is continuous such that

π(Λ) ⊂ A and π(Λ) = A if A =
⋃
i∈I

fi(A);
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6) π ◦ Fi = fi ◦ π for every i ∈ I.

Definition 2.3. The function π : Λ → X from the above theorem is named
the canonical projection from the shift space on the attractor of the IIFS.

3. THE MAIN RESULTS

For the main results we have to a define the connectivity for an infinite
family of sets. We give two such definitions.

Definition 3.1. Let (X, d) be a metric space and (Ai)i∈I a family of non-
void subsets of X. The family (Ai)i∈I is said to be disconnected if there exists
J, J ′ ⊂ I such that J ∪ J ′ = I, J 6= ∅, J ′ 6= ∅ and AJ ∩ AJ ′ = AJ ∩ AJ ′ = ∅,
where AJ =

⋃
i∈J

Ai. The family (Ai)i∈I is said to be connected if it is not

disconnected.

Definition 3.2. Let (X, d) be a metric space and (Ai)i∈I a family of non-
void subsets of X. The family (Ai)i∈I is said to be strongly-disconnected if
there exists J, J ′ ⊂ I such that J∪J ′ = I, J 6= ∅, J ′ 6= ∅ and AJ∩AJ ′ = ∅. The
family (Ai)i∈I is said to be weakly connected if it is not strong-disconnected.

Remark 3.1. Let (X, d) be a metric space and (Ai)i∈I a family of nonvoid
subset of X. We have

1) if (Ai)i∈I is strongly-disconnected it is also disconnected;
2) if (Ai)i∈I is connected it is also weakly-connected;
3) if (Ai)i∈I is strongly-connected it is also connected;
4) there are connected families of sets which are not strongly-connected

and also there are weakly-connected families of sets which are not connected.

Lemma 3.1. Let (X, dX) and (Y, dY ) be two metric spaces, f : X → Y
a continuous function and (Ai)i∈I a family of nonvoid subsets of X. If the
family (Ai)i∈I is connected, then the family (f(Ai))i∈I is also connected. If the
family (Ai)i∈I is weakly-connected, then the family (f(Ai))i∈I is also weakly-
connected.

Proof. We first consider the case where the family (Ai)i∈I is connected.
Let J, J ′ ⊂ I be such that J ∪ J ′ = I, J ∩ J ′ = ∅, J 6= ∅ and J ′ 6= ∅.

Because the family (Ai)i∈I is connected, we have AJ∩AJ ′ 6= ∅ or AJ∩AJ ′ 6= ∅.
By symmetry we can suppose that AJ ∩AJ ′ 6= ∅. Let a ∈ AJ ∩AJ ′ . Then

f(a) ∈ f(AJ) ∩ f(AJ ′) ⊂ f(AJ) ∩ f(AJ ′) =
⋃
i∈J

f(Ai) ∩
( ⋃

i∈J ′
f(Ai)

)
.

This proves that the family (f(Ai))i∈I is also connected. The case when the
family (Ai)i∈I is weakly-connected is similar. �
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Lemma 3.2. Let (X, d) be a complete metric space, S = (X, (fi)i∈I)) an
IIFS with c = sup

i∈I
Lip(fi) < 1. If the family (Ai)i∈I is weakly-connected, then

the families (Aw)w∈Λp for p ∈ N∗ are weakly-connected, where Λp = Λp(I).

Proof. The proof will be made by induction. The first step p = 1 is
the hypothesis. For the induction step we suppose that (Aw)w∈Λp is weakly-
connected. We want to prove that the family (Aw)w∈Λp+1 is weakly-connected.
Let us suppose by reduction ad absurdum that the family (Aw)w∈Λp+1 is not
weakly-connected. Then there exists J, J ′ ⊂ Λp+1 such that J ∪ J ′ = Λp+1,
J 6= ∅, J ′ 6= ∅ and AJ ∩ AJ ′ = ∅. For ω ∈ Λp, set Jω = {w ∈ J | [w]p = ω}
and J ′ω = {w ∈ J ′ | [w]p = ω}. We have Jω = ∅ or J ′ω = ∅. Indeed
Jω ⊂ J , J ′ω ⊂ J ′ and so AJω ∩AJ ′ω ⊂ AJ ∩AJ ′ = ∅. Since the family (Ai)i∈I is
weakly-connected from hypothesis, from Lemma 3.1 we deduce that the family
(Aw)w∈Jω∪J ′ω = (Aw)w∈Λp+1;[w]p=ω = (fω(Ai))i∈I is weakly-connected. So, we
have Jω = ∅ or J ′ω = ∅. Let L = {[w]p | w ∈ J} and L′ = {[w]p | w ∈ J ′}. It
follows that L ∩ L′ = ∅, L 6= ∅, L′ 6= ∅, L ∪ L′ = Λp, AJ = AL, AJ ′ = AL′ and
AL ∩AL′ = ∅. This imply that the family (Aw)w∈Λp is not weakly-connected,
which is a contradiction. �

Lemma 3.3. Let (X, d) be a complete metric space, S = (X, (fi)i∈I)) an
IIFS with c = sup

i∈I
Lip(fi) < 1 and A(S) the attractor of IIFS S. If the family

(Ai)i∈I is weakly-connected and A(S) =
⋃
i∈I

fi(A(S)), then the family (Ai)i∈I

is connected, where Ai = fi(A(S)).

Proof. Let us suppose by reduction ad absurdum that the family (Ai)i∈I

is not connected. Then it is disconnected. This means that there exists J, J ′ ⊂
I such that J∪J ′ = I, J 6= ∅, J ′ 6= ∅ and AJ∩AJ ′ = AJ∩AJ ′ = ∅. Because the
family (Ai)i∈I is weakly-connected we have AJ ∩ AJ ′ 6= ∅. Let x ∈ AJ ∩ AJ ′ .
But AJ ∪ AJ ′ =

⋃
j∈I

Aj = A =
⋃
j∈I

Aj = AJ ∪ AJ ′ and so x ∈ AJ or x ∈ AJ ′ .

Then AJ ∩AJ ′ 6= ∅ or AJ ∩AJ ′ 6= ∅. This ends the proof. �

Definition 3.2. Let (X, d) be a metric space. A set A ⊂ X is said to
be decomposable if there exists two nonvoid subsets B and C of A such that
B ∪ C = A and δ(B,C) = inf

x∈B,y∈C
d(x, y) > 0.

Remark 3.2. Let (X, d) be a metric space. Then
1) every decomposable set is not connected;
2) a compact set A ⊂ X is decomposable if and only if it is not a

connected set.
Let A be a disconnected compact set. Then there exists two compact

nonvoid sets B and C such that B∩C = ∅ and B∪C = A. Let ε = δ(B,C) =
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inf
x∈B, y∈C

d(x, y). Since B and C are compact sets, we have ε > 0 and so A is

decomposable.

Theorem 3.1. Let (X, d) be a complete metric space and S=(X, (fi)i∈I))
an IIFS with c = sup

i∈I
Lip(fi) < 1. Then

1) if A(S) is a connected set, then the family (Ai)i∈I is weakly-connected
where Ai = fi(A(S));

2) if A(S) is a connected set and A(S) =
⋃
i∈I

fi(A(S)), then the family

(Ai)i∈I is connected;
3) if the family (Ai)i∈I is weakly-connected, then A(S) is not decompo-

sable.

Proof. We remark first that Aω for ω ∈ Λp and p ∈ N∗ are nonvoid sets,
because A(S) is nonvoid.

1) Let us suppose by reduction ad absurdum that the family (Ai)i∈I is
not weak by connected. Then there exists J, J ′ ⊂ I such that J ∪ J ′ = I,
J 6= ∅, J ′ 6= ∅ and AJ ∩ AJ ′ = ∅. Because Ai are nonvoid, AJ and AJ ′ are
nonvoid. Also A =

⋃
j∈I

Aj = AJ ∪ AJ ′ . This imply that A is not a connected

set, which is a contradiction.
2) It results from point 1) and Lemma 3.3.
3) Let us suppose by reduction ad absurdum that A is a decomposable

set. Then there exists two sets such that B ∪ C = A and δ(B,C) > 0. Since
A is closed B and C are closed. Let ε = δ(B,C). Let m be a natural number
such that cmd(A) < ε. We consider the family (Aw = fw(A))w∈Λm . Then
d(Aw) ≤ cmd(A) < ε for every w ∈ Λm. It is not possible that Aw ∩B 6= ∅ and
Aw ∩ C 6= ∅ for a w ∈ Λm, because in this case we should have ε > d(Aw) ≥
δ(B,C) = ε. Because Aw ⊂ A = B ∪ C we have Aw ⊂ B or Aw ⊂ C. Let
J = {w ∈ Λm | Aw ⊂ B} and J ′ = {w ∈ Λm | Aw ⊂ C}. Then J ∪ J ′ = Λm,
J 6= ∅, J ′ 6= ∅, AJ ⊂ B and AJ ′ ⊂ C. Since A = AJ∪AJ ′ = B∪C and B∩C = ∅
we have AJ = B and AJ ′ = C. This means that the family (Aw = fw(A))w∈Λm

is strongly-disconnected. This contradicts with Lemma 3.1. �

Taking into account Remark 3.2, for IIFSs with compact attractors Theo-
rem 3.1 becomes

Corollary 3.1. Let (X, d) be a complete metric space, S = (X, (fi)i∈I))
an IIFS with c = sup

i∈I
Lip(fi) < 1. We suppose that A = A(S), the attractor

of S, is compact. The following are equivalent:
1) the family (Ai)i∈I is weakly-connected where Ai = fi(A(S));
2) A(S) is connected.
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Taking into account in addition Remark 3.1.2, one can obtain the follow-
ing result.

Corollary 3.2. Let (X, d) be a complete metric space and S = (X,
(fi)i∈I)) an IIFS with c = sup

i∈I
Lip(fi) < 1. We suppose that A = A(S), the

attractor of S, is compact. If A =
⋃
i∈I

fi(A) the following are equivalent:

1) the family (Ai)i∈I is weakly-connected where Ai = fi(A(S));
2) the family (Ai)i∈I is connected where Ai = fi(A(S));
3) A(S) is connected.

Corollary 3.3. Let (X, d) be a complete metric space and S = (X,
(fi)i∈I) be an IIFS such that A(S), the attractor of IIFS S, is compact.
If the family (Ai)i∈I is strongly-connected, then A(S) is connected, where
Ai = fi(A(S)).

Proof. It results from Corollary 3.1 and Remark 3.1.3. �

4. EXAMPLES AND REMARKS

The hypothesis that A = A(S), the attractor of S, is compact has an
important role in the proof of the implication 2) ⇒ 1) from Corollary 3.1. It
is an open question that Corollary 3.1 remains valid if we drop the hypothesis
that A = A(S), the attractor of S, is compact. We think that the result is not
true in this case but it is difficult to give a concrete example.

Example 4.1 (a generalization of [15]). Let (X, d) be a complete metric
space and A ∈ B∗(X). For an element a ∈ X, fa will denote the constant
function with value a, that is fa : X → X and fa(x) = a for every x ∈
X. Then A is the attractor of the IIFS S = (X, (fa)a∈A) if A is infinite
or IFS S = (X, (fa)a∈A) if A is finite. Also, A is the attractor of the IIFS
SB = (X, (fa)a∈B) for any dense set B in A. If A is separable and B is a
countable dense set in A, then A is the attractor of the CIFS (countable IFS)
SB = (X, (fa)a∈B). This happens, in particular, for any compact set A. Since
a closed set could be connected but not arcwise connected, conditions 2) and
3) from Theorem 1.3 are not equivalent for a IIFS. Also, because the family
of sets (Aa = fa(A) = {a})a∈A is not strongly-connected for every set A (in
fact Aa ∩ Ab = ∅ for a, b ∈ A with a 6= b), points 1) and 2) (and also 1) and
3)) from Theorem 1.3 are not equivalent for an IIFS.

Remark 4.1. 1) If the set A from the previous example is connected and
compact and we consider the IIFS S = (X, (fa)a∈A), then we are in the case
of Corollary 3.2.
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2) If the set A from the previous example is connected and compact and
we consider the IIFS SB = (X, (fa)a∈B), then we are (in general) in the case
of Corollary 3.1.

Example 4.2. Let X = R2 endowed with the Euclidean distance. For
a line d, πd : R2 → d denotes the projection on d. For two different points
A,B ∈ R2, AB denotes the line which passes trough A and B and [A,B]
denotes the segment with ends in A and B.

Let A,B, C ∈ R2 be such that A 6= B. Then there exist an unique real
number xC such that πd(C) = A + xC(B −A).

Also, for two different points A,B ∈ R2 and α ∈ R let fα
A,B : R2 → AB

be the function defined by

fα
A,B(C) =


A if xC < 0,

A + αxC(B −A) if xC ∈ [0, 1),
A + α(B −A) if xC ≥ 1.

fα
A,B is a Lipschitz function with Lip(fα

A,B) = |α|. We remark that f
1/2
A,B(R2) =[

A, A+B
2

]
and that the attractor of the IFS (R2, (f1/2

A,B, f
1/2
B,A)) is [A,B], because

f
1/2
A,B([A,B]) ∪ f

1/2
B,A([A,B]) =

[
A,

A + B

2

]
∪

[
A + B

2
, B

]
= [A,B].

We consider the points An =
(

1
2n , 1+(−1)n−1

2

)
for n ∈ N, A−1 = (0, 0) and

A−2 = (0, 1), and the functions fn, f−1, f−2 : R2 → R2, for n ∈ N, de-
fined by f2n = f

1/2
An,An+1

, f2n+1 = f
1/2
An+1,An

, f−1 = f
1/2
A−1,A−2

and f−2 =

f
1/2
A−2,A−1

. Let S = (R2, (fn)n≥0) and S1 = (R2, (fn)n≥−2) be two IIFSs. Then

A(S) = A(S1) = [A−1, A−2] ∪
( ⋃

n≥0
[An, An+1]

)
. This results from the facts

that
⋃

n≥0
[An, An+1] = [A−1, A−2] ∪

( ⋃
n≥0

[An, An+1]
)
, for n ≥ 0, the attrac-

tor of the IFS S ′n = (R2, (f2n, f2n+1)) is [An, An+1] and f2n(R2), f2n+1(R2) ⊂
[An, An+1] and for n = −1 the attractor is [A−1, A−2] and f−1(R2), f−2(R2) ⊂
[A−1, A−2]. We remark first that the set A(S) = A(S1) is connected by not
arcwise connected. Also, the family of sets (fn(A(S)))n≥0 is strong connected
but the family of sets (fn(A(S1)))n≥−2) is connected but not strong connected.

Other interesting examples of connected attractors of IIFSs can be found
in [13, 14, 16].
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