LEFT INVARIANT COMPLEX STRUCTURES
ON U(2) AND SU(2) x SU(2) REVISITED
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We compute the torsion-free linear maps J : su(2) — su(2), deduce a new de-
scription of the complex structures and their equivalence classes under the action
of the automorphism group for u(2) and su(2) @ su(2), and prove that in both
cases the set of complex structures is a differentiable manifold. The situations of
u(2) ® u(2), su(2)Y and u(2)" are also considered. Extension of complex struc-
tures from u(2) to su(2) @ su(2) are studied, local holomorphic charts given, and
attention is paid to what representations of u(2) we can get from a substitute to
the regular representation on a space of holomorphic functions for the complex
structure.
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1. INTRODUCTION

The left invariant complex structures on the group U(2) of unitary 2 x 2
matrices, i.e., complex structures on its Lie algebra u(2), have been computed
for the first time, up to equivalence, in [11] in the algebraic approach, that
is by determining the complex Lie subalgebras m of the complexification g¢
of u(2) such that gc = m @ m, bar denoting conjugation. More recently, and
more generally, all left invariant maximal rank CR-structures on any finite
dimensional compact Lie group have been classified up to equivalence in [2].
Independently, in the case of SU(2) x SU(2), the complex structures on su(2)®
su(2) have been computed in [4] by direct approach and computations.

In the present paper, we first compute the torsion-free linear maps J :
su(2) — su(2). They appear to be maximal rank C R-structures, of the C' R0-
type in the classification of [2]. Then we show how to deduce, with the com-
puter assisted methods of [6], a new description of the complex structures and
their equivalence classes under the action of the automorphism group for the
specific cases of u(2) and su(2) @ su(2), without resorting to the general re-
sults of [2]. Our method, which consists in growing dimensions starting with

REV. ROUMAINE MATH. PURES APPL., 55 (2010), 4, 269-296



270 Louis Magnin 2

torsion-free linear maps of su(2), is new and very different from that of [4] in
the case su(2) @ su(2).

The cases u(2) @ u(2), su(2)™, u(2)" are considered as well. In these
cases, the set of complex structures is a differentiable manifold, though we
write down explicit proofs only in the cases of u(2) and su(2) @ su(2). We
also examine the extension of complex structures from u(2) to su(2) @ su(2),
compute local complex charts for the complex manifolds associated to the
complex structures, and determine what representations of u(2) we can get
from a substitute to the regular representation on a space of holomorphic
functions for the complex structure.

2. PRELIMINARIES

Let G be a connected finite dimensional real Lie group, with Lie algebra
g. An almost complex structure on g is a linear map J : g — g such that

J? = —1. The almost complex structure .J is said to be integrable if it satisfies
the condition
(1) [(JX,JY]| - [X,)Y]|-J[JX,Y]|-JX,JY] =0, VXY €g.

From the Newlander-Nirenberg theorem [10], condition (1) means that Gy
can be given the structure of a complex manifold with the same underlying
real structure and such that the canonigal complex structure on Gy is the
left invariant almost complex structure J associated to J. (For more details,
see [6], [7].) By a complex structure on g, we will mean an integrable almost
complex structure on g, that is one satisfying (1).

Let J a complex structure on g and denote by G = (G, J) the group Gy
endowed with the structure of complex manifold defined by J. The complexi-
fication g¢ of g splits as gc = g1 @ g where g1 = {X = X —iJX; X €
€ g}, o) = {X~X +1JX; X € g}. We will denote g9 by m. The inte-
grability of J amounts to m being a complex subalgebra of gc. In that way
the set of complex structures on g can be identified with the set of all com-
plex subalgebras m of g¢ such that gc = m ® m, bar denoting conjugation
in gc. In particular, J is said to be abelian if m is. That is the algebraic
approach. Our approach is more elementary. We fix a basis of g, write down
the torsion equations ij|k (1 < i,7,k < n) obtained by projecting on xj the
equation [Jx;, Jx;] — [x;, xj] — J[Jxs, 2] — J[xi, Ja;] = 0, where (z)1<j<p is
the basis of g we use, and solve them in steps by specific programs with the
computer algebra system Reduce by A. Hearn. These programs are down-
loadable in the electronic archive [3]. From now on, we will use the same
notation J for J and J as well. For any x € Gy, the complexification T, (Go)¢
of the tangent space also splits as the direct sum of the holomorphic vectors
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Tw(Go)(l’o) = {)?X —iJX; X € Ty(Go)} and the antiholomorphic vectors
To(Go) Y = {X~X +1JX; X € T(Go)}. For any open subset V C Gy, the
space Hc (V) of complex valued holomorphic functions on V' consists of all
complex smooth functions f on V which are annihilated by any antiholomor-
phic vector field. This is equivalent to f being annihilated by all
X7 =X;+iJX;, 1<j<n

with (X;)1<j<n the left invariant vector fields associated to the basis (z;)1<j<n
of g. Hence

He(V)={feC®(V); X; f=0, Vj, 1<j<n}.

Finally, the automorphism group Autg of g acts on the set Xy of all
complex structures on g by J — ® o J o ® ! V& € Autg. Two complex
structures J,J' on g are said to be equivalent if they are on the same Autg

orbit. For simply connected Gy, this amounts to requiring the existence of an
f € Aut Gy such that f: (Go,J) — (Go,J’') is biholomorphic.

3. U2)

Consider the Lie algebra su(2) along with its basis {Ji, J2, J3} defined
by Ji=5(98), =3 (9731, J5=15(§2). One has

(2) [J1,Jo] = J3, [Jo,J3] =J1, [J3, 1] = Jo
L igini
and the corresponding one-parameter subgroups of SU(2) are et (f:ié cos f) ,
2 2

el (COS% _Sin%> els (ei% 0 ) By means of the basis {Ji, Ja, J3}, su(2)
sini cost ) 0 e-ib ) y 1,2, J3 7,

can be identified to the euclidean vector space R® the bracket being then

identified to the vector product A. Then Autsu(2) consists of the matrices

A = Mat(a,b,a A b) with a, b any two orthogonal normed vectors in R3, i.e.,

Autsu(2) = SO(3). Now, u(2) = su(2) @ ¢ where ¢ = R J; is the center of u(2),

Ji=1(39). We use the basis (J1, Jo, J3, Js) for u(2). R* stands for R\ {0}.
LEMMA 1. Autu(2) = SO(3) x R*.
Proof. As the center is invariant, any ® € Autu(2) is of the form

0
A 0

0

by by by b

with A € Autsu(2) = SO(3) and b} € R*. Necessarily, b} = b3 = b5 = 0, since
O(Jk) € [u(2),u(2)] =su(2),1<k<3. O

b —
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LEMMA 2. Let J : su(2) — su(2) linear. J has zero torsion, i.e., satisfies
(1), if and only if there exists R € SO(3) such that

0 1 0
(3) RYJR([-1 0 0
0 0 &

Proof. Let J = (§§)1§i7j§3 in the basis (Ji, J2,J3). The 9 torsion equa-
tions are

121 (& +&)+8(E - &) - 8(E +&)

12]2 GE+&)-8(E - &) -8 +&)

)

0
0,

1213 & -6 — (&) — (6 +EE +6) +1=0,
131 (67 — &) + (&G + &) -6 + &) =0,
1312 &&f + €36 — (612 — ()2 + & - &) +1=0,
13[3 —EH(E3+63) + 61 (6 +&0) + &8 - &) =0,
23|11 G+ &6 — ()7 — (&) - & - &) +1=0,
232 (61— &) -GG +8) + 6 + &) =0,
2313 (& +63) — &(8 +63) + &6 — &) =0.

Again, we identify su(2) to R? with the vector product by means of the
basis (Ji,.J2,J3). J has at least one real eigenvalue \. Let f3 € R? some
normed eigenvector associated to A\. Then there exist normed vectors fy, fa €
R? such that (f1, f2, f3) is a direct orthonormal basis of R3. Hence there exists
R € SO(3) such that

* % 0
RYR=1[% % 0
* %\

Hence we may suppose f% = fg = 0 in J. Now, the torsion equations 12|1 and
12]2 read respectively £3(¢3 — €1) = €3(62 + €3), €3(€2 + €}) = €3(¢] — €2) and
imply the two equations (§7)*(&F — &1) = —(€3)%(&3 — &1), (£)*(&F +&2) =
—(€3)2(€2 + ¢4). Hence each one of the conditions €3 # &} or €2 # —¢1 implies
& = €& = 0. We now have two cases. Case 1: & = & = 0, Case 2: &,
not both zero. In Case 2, one necessarily has &5 = &} and &2 = —&). Then
equations 23|1 and 23|2 read —(&3)? + ()2 +1 = 0, &¢] = 0 and give
¢l =0, & = £1. Now equation 123 reads (£3)? + (&5)? = 0. Hence Case 2
doesn’t occur, i.e., one may suppose & = & = 0. Then equations 13|1 and
2312 read resp. CH(E +€1) = £L(€ - &), EH(E + €)= ~E3(E% — &), hence
if €2 # €1, necessarily €2 = —¢1. Now, ¢ = €1 is impossible since it would
imply either & = 0 or &1 = 0. In fact, first, if & = 0, equations 123, 13|2
and 231 read resp. €3(62 + &)) — €36l + 1= 0, €~ + &) — el —1=0,
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(=2 + &) + €3¢ +1 = 0, so that 12|3 + 13]2 gives &1(&5 — €2) = 0 and
12]3 + 23|1 gives £1€3 = —1, hence & # 0 and & = &3, which is impossible
since then 12|3 reads (£5)? + 1 = 0. Second, if & = 0, 12|3, 13|2 read resp.
—&26l + (€2 +1 =0, -3¢ + (€2)2 — 1 = 0, which is contradictory. Hence

we get as asserted &2 # &1 and ¢5 = —¢}. Now, we prove that & = 0 and
€ = +1. Since €2 = —¢1, equations 12|3, 13|1, 13]2, 23|1 read respectively
12[3 &8t + (5%)2+1 =0,
1Bl &G +&) - &G - &) =0,
1312 26361 +(61)* + (&) —1=0,
231 263¢1 — (&) - (&)? +1=0.
1 2 _14(€h)?
From 12|3, & # 0 and & = . Then 131, 13|2, read respec-

&1
tively Q = 0, R = 0 with Q = & ((¢1)* + (&) + 1) — &((&1)* — (&)* + 1),
= (&)?(28¢ + (€D)? — 1) + ((€1)?* + 1)%. Denote from 23|1, S = 2£5¢1 —
(£3)* — (&1)* + 1. Suppose &f # 0. Then N = 5((6) — D)+ &1 () +
1
2

(€2 +3) = 0 would give, for &} £ +1, & = —% and then

which is impossible since the polyno-

R— ((E%)z*265+(£%)2(421§((£%)2+2£%+(€%)2+1)
mial X2+ 2X + (£1)% + 1 has no real root. Hence & = £1. Now, S = 0 gives
£ = %1 and then R(£1)2((&1)2+4) # 0. Hence &} = 0. Finally, that implies as
asserted £3 = +1, since R = —(&3)? + 1. We conclude that & = &2 = 0,&2 =
—&3,&3 = £1. Changing if necessary ® to ® diag(({ §),—1)), one may suppose
=1 0O

Remark 1. Recall that a rank r C'R-structure on a real Lie algebra g
is a r-dimensional subalgebra m of the complexification gc of g such that
mNm = {0}. Then m = {X —iJ,X; X € p} where p (the real part of
m) is a vector subspace of g and J, : p — p is a zero torsion linear map
such that Jg = —Idy and [X,Y] — [J, X, J,Y] € p, VXY € p. Alternatively,
a CR-structure can be defined by such data (p,J,). For even-dimensional
g, C'R-structures of maximal rank r = % dim g are just complex structures
on g. CR-structures of maximal rank on a real compact Lie algebra have
been classified in [2]. For odd-dimensional g, they fall essentially into two
classes: CRO and (strict) CRI. For even-dimensional g they are all CRO.
From Lemma 2, any linear map J : su(2) — su(2) which has zero torsion is
such that ker (J2 + Id) # {0}, and hence defines a maximal rank C R-structure
on su(2). It is of type C'RO. Let us elaborate on that point. ay = CJ3 is a
Cartan subalgebra of su(2). The complexification s[(2) of su(2) decomposes
as 5[(2) =CH_o by CHy with Hy =iJ1 F Jo, H3 = iJ3, h = CHs. Any
maximal rank CR-structure of C'RO-type (respectively (strict) C'RI-type) is
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equivalent to m = CH, (respectively m = C(aJs + Hy), a € R*), and has

real part p = RJ; @ R.Jy (respectively p = RJ; @ RJ), J), = Jo — aJs). The

corresponding endomorphism J, of p has matrix (_01 (1)) in the basis (J1, J2)

(respectively (J1, Jy)) and has zero torsion on p. Any extension of J, to su(2)
0 1¢&1

has matrix (—1 0 5%) in the basis (J1, Ja, J3) (respectively (Ji, Jb, J3)). In the
0 0¢&

CRO case, it has zero torsion on the whole of su(2) if and only if &3 = &3 = 0,

i.e., is of the form (3). In the C'RI case, it never has zero torsion on the whole
of su(2).

LEM.MA 3. Letg= @;Vzl a9, where gU) are real Lie algebras with bases
Bj = (Xéj))lgkgnj, and let 79 : g — gU) be the projections. Let J : g — g be
a linear map, 71'; =700 Jorl), %;- =rWoJo 7T(j)|g(j). If J has zero torsion,
then the two following conditions are satisfied:

(i) 7! has zero torsion for any i;

(ii) [ X, 7t Y|wi[JX, Y]+ 7i[X, JY], VX,Y € g¥) for anyi,j such that
i .

Proof. For any 4,7 let X,Y € g. Applying 7 to the torsion equation (1)
we get
@) [#DIX,7Dgy] - [#OX, 7OY] - 2O JIX, V] - 2D J[X, JY] = 0.
Suppose first i = j and X,Y € g, Then [JX, Y[z JX, Y] = 70 [z Jr() X,
Y], and [X, JY][X, 7D JY] = 70X, 7 J7D Y], and moreover [x() X, 7()Y] =
[X,Y], hence (4) gives [V JX, 7 JY] — [X,Y] — 7O Jn® [z Jr() X Y] —
7O JrO (X, 70 Jry] = 0, i.e.,

[FXFmY] = [X, Y] = mmX, Y] - X, mY] =0,
that is 77 has no torsion. Suppose now i # j and X,Y € g9 . Then [w(i)X, W(i)Y]
=0 and (4) gives
D JX, 7D gY] — 2O gz0)[Jx, Y] - 2@ Jr) (X, JY] = 0,

i.e.,

[m X, mY] = m[JX, Y] - mi[X, JY]=0. O

THEOREM 1. (i) Let J : u(2) — u(2) linear. J has zero torsion, i.e.,
satisfies (1), if and only if there exists ® € SO(3) x R such that

0 1 0 0

_ 10 0 0 & &
o 1J® 3 1(2, R).
00 & &) (fé&fi c el

0 0 & ¢
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(ii) Any J € Xy) is equivalent to a unique

0 1 0 0
-1 0 0 0
(5) Ol o ¢ 1

0 0 —(1+¢&) ¢
with £ € R. J(§) and J(&') (§,& € R) are equivalent if and only if £ = ¢&'.
Proof. (i) From Lemma 3,
3
J1 31
&
& & & &G
for some J; : su(2) — su(2) with zero torsion. From Lemma 2, there exists

010
R € SO(3) such that R~'J1 R <01 g 5% >, whence
3

0 1 0 &
_ -1 0 0 &
- 1J® 4
10 0 g &

& & & &
010
with & = diag(R, 1). Hence we may suppose J; <01 8£%> . Now the torsion
3
equations 13[4,23|4 143,24|3 give the two Cramer systems £5&5 + & = 0,
—& + €36l = 0, 63€8 — €1 = 0, €1 + €4} = 0. Hence &f = &} = ¢} = &1 = 0.
Then all torsion equations vanish, and (i) is proved ([3], torsionu2.red).
(ii) From (i), we may suppose

0 1 0 O
J -1 0 0 O
o0& &
0 0 & &
. (&3 e3\2 .
Now J € X, (9) if and only if ( 3 i) =—1,ie.,
E3 4
0 1 0 0
-1 0 0 0 5
J=10 o & 31, &#0.
3)2
0 0 _1+(§3) _éé’)

&4
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Now, for any ® = diag(A,b) € Autu(2) (A € SO(3),b # 0),

AJ; AL b1A 8
(6) dJO! €3
b (0 0 _1+§§’)2) A1 ¢}
Taking A = I, b = &3, we get
0 1 0 0
dJO ! _01 8 gog (1)
0 0 —(1+(&)?* -&
Hence J is equivalent to J(£) in (5) with ¢ = &3. The last assertion of the

theorem results from (6). O

Remark 2. In [11], the equivalence classes of left invariant complex struc-
tures on u(2) are shown to be parametrized by the complex subalgebras my
with basis {J; +iJo, 2iJ3+dJs} with d = — lljéé, ¢ € R. The complex structure
defined by my has matrix

0 1 0 0

-10 0 0 -
00 ¢ 21+ 2O E
0o 0 -2 £

with @ = diag(l, 1,1, m) e Autu(2).

Remark 3. u(2) has no abelian complex structures since, for J(&), m =
CJ; @ CJs is the solvable Lie algebra [J1, J3] = i(1 — i) J;.

COROLLARY 1. X9 consists of the matrices

(@ (o} +adalet)e (adales —ad)e al
a |l @ide (e abe o
(efales +ade (afadcs —abe (¢ af |’

—(E+1)cFay  —(E2+1DcPa] —(E+1)cPa] £

with the conditions

1
ay

8) Ee€R, <a2> eR\{0}, c==%((a1)’+ (a])*+ (ai)?)"

=

3
ay
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Proof. As is known, any R € SO(3) can be written

u? —v? —w? 4 52 —2(uv + ws) 2(—uw + sv)
(9) 2(=sw+w) ur—vi+w?-—s*  —2(su+ow)
2(sv + uw) 2(su — vw) u? +v? — w? — s

for ¢ = (u,v,w,s) € S* (R can be written in exactly 2 ways by means of ¢ and
—q). Hence any ® € Autu(2) can be written

0
R 0
¢ = 0
0 0 0 ¢
with R as in (9) and ¢ € R*. Then we get for ®.J(£)® ! the matrix (7) with
2
(10) ay = =(sv — uw),
c
2
(11) a3 = —=(su+ vw),
c
1
(12) aj = = (2u* +2v% - 1).
c

From u? +v? + w? + 5% = 1, one gets (aj)? + (af)? + (a})? = . Conversely,
for any matrix J of the form (7) with conditions (8) there exist ® € Autu(2)
and ¢ € R such that J = ®J(£)®~!. This amounts to the existence of ¢ =
= (u,v,w,s) € S? such that equations (10), (11), (12) hold true, and follows
from the fact that the map S* — S? ¢+ (cal, ca?, ca3) is the Hopf fibration. [

COROLLARY 2. Xy) 45 a closed 4-dimensional (smooth) submanifold
of R with two connected components, each of them diffeomorphic to R x

(R?\ {0}) .

Proof. Denote %;’(2) (respectively %;(2)) the subset of those J € Xy
with ¢ > 0 (respectively ¢ < 0). As ¢ is uniquely defined by the matrix J =

(a%) € Xy(2) by the formula
o ohah ) 4 (a4 ad) + el —ad)
(a3)? + (a3)? + (a3)?

one has X = j{j@) U %;(2) with disjoint union. %j@) (respectively %;(2))

is a closed subset of R6. It hence suffices to prove that %;2) is a regular

submanifold, the case of %;(2) being analogous. Let F : Rx (R \ {0}) — %j@)
be the bijection defined by F(¢, (a),a?,a})) = J where J is the matrix (7)

1
with ¢ = ((a})? + (a})? + (a})?) 2. We equip .’{:(2) with the differentiable
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structure transferred from R x (R?\ {0}) . The injection ¢ from %j(z) into the
open subset X C R16 defined by (al)?+(a2)2+(a3)? # 0 is smooth. Now, there
is a smooth retraction r : X — .’{:(2) defined by r(A) = F(—a4, (a}, a3, a3))
for A = (a;.) € X. Hence ¢ is an immersion and the topology of %j@) is the
induced topology of R16. [

4. SU(2) x SU(2)

LEMMA 4. Aut (su(2) @ su(2)) (SO(3) x SO(3)) U 7(5S0(3) x SO(3))
where 7= (91 ) is the switch between the two factors of su(2) ® su(2).

Proof. Let J,E,l)7 1 < k < 3, (respectively Jt@’ 1 < ¢ < 3) be the basis
for the first (respectively the second) factor su(2)(M) (respectively su(2)®)) of
su(2) @ su(2) with relations (2), and 7(1) (respectively 7(?)) the correspon-
ding projections. Let ® = (g; gi) € Aut (su(2) ®su(2)), each ®; being a
3 x 3 matrix. ®; = (w(l) o <I>)‘5u(2)(1) is an homomorphism of su(2)() into
itself. Hence the three columns of ®; are two-by-two orthogonal vectors
in R? and if one of them is zero, then the three of them are zero. In par-
ticular, if ®; # 0, then ®; € SO(3). With the same reasoning, the same
property holds true for ®o, &3, &4. Suppose first ;1 # 0. For k, ¢ = 1,2,3,
O @), 7D (@ ()] = 7O (@ [V, 1)) = 0. That implies that any
column of ®; is collinear with any column of ®5, hence &3 = 0 since the
columns of ®; are linearly independent. Then det ®4 # 0, whence ®4, € SO(3)
and finally ®3 = 0 by the above reasoning. Hence ¢ = (%1 (194) € SO(3) x

SO(3). Suppose now ®; = 0. Then det &3 # 0, whence 3 € SO(3), and
det @3 # 0, whence &3 € SO(3). By the same argument as before, &4 = 0.

Hence ® = (;33 %2> T (%3 <I(32) eT(SO3) x S0O13)). O

THEOREM 2. Let J : su(2) @ su(2) — su(2) @ su(2) linear. J has zero
torsion, i.e., satisfies (1), if and only if there exists ® € SO(3) x SO(3)
such that

0 1.0 0 00
-10 0 0 0 O
0 0 & 0 0 &
13 o 1o 3 6
(13) 0 00 0 1 0
0 00 -1 0 0
0 0 ¢ 0 0 &
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Proof. From Lemmas 3 and 2, there exists ® € SO(3) x SO(3) such that
0 1 0 & & &
-1.0 0 & & &
B 0 0 &-3 53 53 3
14 >~y A
” § g g oo 1o
§ & g -1.0 0
& & & 0 0 &

Hence we may suppose J of the form (14). The matrix (§')1<,<3 a<j<6 (res-
pectively (§ )a<i<e,1<j<3) is the matrix of 7r2 (respectively 7r1) of Lemma 3.

Consider the vectors u = J( ) , V= %J( ),

one has
w3, wh )
I

[7T2J2 )77T2<]3E )]
=} [, 1§

2
m3 72, 7 D)

That is,

uAv =0,

3 7T TP +

3y [0, ] +
2 2
+ 3 (5, €87) =

732, 57 +
w3 =07, ) 4wy [ €857 = —m}

VAW = —v+ &,

1 [J
L) =

= w%Jé ). From Lemma 2 (ii)

2)””2(2)] _

3 (T2, 17 =
—m} I 4 &8nl TP,

my [, 757 =
T2 -

2
b o

uAw=—u-—&v,

which implies u = v = 0. With the same reasoning for 77, we get

0 1 0
-1 0 0
0 0 &
1
1) o o
0 0 &
0 0 &

0
0
0
0
-1
0

0 &
0 &
0 &
1 0
0 O
0 &

Now, the torsion equations 16|3,26|3 36|4,36|5 give the 2 Cramer systems

§63

—§:Q%+@%:&@$+%:Q

€3 + €864 = 0. Hence &} =

€2 = & = & = 0. Then all torsion equations vanish, and the theorem is

proved ([3]). O
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COROLLARY 3. Any J € Xgy2)msu(2) S equivalent under some member
of SO(3) x SO(3) to

o O OO

(16) J(&m)

S OMm O O
O3 OO

—1
&2 _
n 0 3

o O o o
O OO OO
SO O OO O

[y
_l’_

with &,n € R, n # 0. J(§,n) and J(&',1') are equivalent under some member
of SO(3) x SO(3) (respectively T (SO(3) x SO(3))) if and only if &' = & and
_ 1€y,

n' =n (respectively & = —& and ' = ;

: : 2 : £ 03 6 1+(63)°

Proof. J in (13) satisfies J* = —I if and only if £ # 0 and &3 = — 533 ,

6
€8 = —¢£3, leading to J(&,7) in (16) with & = &3,n = €.

Suppose J(¢,7)®J(&,n)®~ ! with ® (‘%1 £2> € SO(3) x SO(3). Then
%00) @ (_()1%8)@—1 a0 Vo (_01% 8)@—1 hich imply first
ooe) *\ooeg) ! an 00-¢) 2\ 0 0-¢ 2 » Wiich 1mply 1irs

¢ = ¢ and second ®; = diag(Ry,1), o = diag(Ra,1) with Ry, Ry € SO(2).
then (§88) ) (08) 05" mpiis o =
n (595 )®1(880) ;" implies 7' = 1.
Now, suppose J(¢',7)=W¥J (&, )P~ ! with U=7® € 7 (SO(3) x SO(3)),
12
¢ (%1 q?z) € SO(3) x SO(3). Then ®J (&, )@ 7J (&, )T = J (=&, —5-).

n
2, 2
H;f e, n = _*E 0

Hence £ = —¢ and n = — ;

Remark 4. Lemma 1 in [4] states that a left invariant almost complex
structure on SU(2) x SU(2) is integrable if and only if it has the form Al, .A™1
with A € SO(3) x SO(3), a € R,c € R*, and

a9 o -2+ o
00 -1 0 0 0
L0 0 0 00
“1Lo o0 -2 0 0
00 0 0 0 -1
00 0 0 1 0

One has @11, = J(4,—~22) with @ — diag ( (
€ S0(3) x SO(3).

—_OO
oo
|
OO»—A
N——
/N
—OO
oo
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Remark 5. su(2) x su(2) has no abelian complex structures since, for
J(&n), m = (CJ( ) (ngl) @ (Cj?) is the solvable Lie algebra [Jl(l), jgl)] =
1(1 - 1§>J1 ’ [j(l ) ~(2 ] - 1t7£2 ‘71(2)

COROLLARY 4. Xy 2)qsu(2) consists of the matrices

(17)

A€ “mé+vi i€+ NA1A2 —nA1p2 NA1v2
—Amé — 1 i€ A — g1 —np1A2 N2 —nNp1ve
i —p1 —A— g Vi€ ULZOY —nyipe nv1ve

2 2
—&4t +1 A1 A2 e +1M1)\2 -4 :1 V12 —A\3¢ Aopo€ +vo —Aar + p2
2
& Jr1/\1u2 - +1,u1,u2 3 n+11/1,u2 A2 pi2€ — V2 —u3é A2 + pav2é
2
-4 :1>\17/2 & J'_1A011/2 £ ;'_1 viva  —Xa€ — 2 —A2 + pareé —vie
with
A .
(18) (EmeRxR, (w)es’ i=12

Proof. X g2)@eu(z) consists of the matrices ®J(&, )@, (£,n) € R x
R*, ® € SO(3) x SO(3). Let & = (‘I’l 0 ) € SO(3) x SO(3). @1, P can be

written in the form (9) for respectively ¢1 = (u1, v1, w1, s1), g2 = (ug, v, we, S2)
€ S3. Then ®.J(&,n)® ! is the matrix (17) with, for i = 1,2,

(19) A = 2(Sﬂ)i — uiwi),
(20) pi = 2(siu; + viw;),
(21) v; = 2u? + 207 — 1.

One has \? + p? + v? = 1. Conversely, for any matrix J of the form (17)
with condition (18) there exist ® € SO(3) x SO(3) and ({,n7) € R x R*
such that J = ®J(¢,7)®~!. This amounts to the existence for i = 1,2 of
¢ = (u,vi,w;, 8;) € S® such that equations (19), (20), (21) hold true, which
again follows from the Hopf fibration. [

COROLLARY 5. Xgy2)@su(2) 95 @ closed 6-dimensional (smooth) submani-
fold of R3S diffeomorphic to R x R* x (S?)2.

Proof. Let X the open subset of R36 of those matrices (aé-)l <ij<6 such
that H2NiNy # 0, where H? = 372 123 J(ah)?, Ny = (a3 — a3)® + (a3 —
a3)? + (a} — a?)?, Ny = (af — af)? + (ag — ag)2 + (a3 — a})? and consider
F :RxR*x (82)2 — X defined by F'(§,n, (A1, p1,v1), (A2, 2, v2)) = J, where
J is the matrix (17).

Observe first that F is injective. In fact, &, (A1, u1,v1), (A2, p2, v2) can be
retrieved from (a ) (€,m, (M, 1, v1), (Mo, i, v2)) by the formulas € = a}+a2+
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3 a2—a3 al_a?’ al—a2 a5_a6 0/4—a6 a4—a/5 .
a’37 ()\1,,[1,1,7/1) ( \S/foa \3/N7117 f/Nill)) ()\25/"’27V2) ( \6/N7257 \6/N724) \5/N724> 5 hence
F(§7 n, ()\17/1’17 Vl)a <)\27 H2, VQ))F(§/7 77/7 ()‘/17 /J/17 V1)7 ()‘/27/1’/27 Vé)) lmphes § - §/7

()\/17M/1; V{) = ()‘17/“7 Vl)v ()\/2, //27 Vé)(AQNU/Q: V2>7 and then n = 77/ since

A2 —Ape A

—piXe  pipe —pave | #O.
Vida Ve Ve

From the injectivity of F, %w(z)@ﬁu@)%;@)@su@) U :{;u(2)€a5u(2) with disjoint
@) denotes the set of those Js having 1 the sign of €

€
su(2)Dsul

(e = £). Now, the map G¢ : X — R x R x (82)2 defined by

union, where X

3 (@)

6
Ge((a})) (a% + a3 +aj, €
i=1 j=4

(a%—aQ azla_aif CL2_al) (ag_ag aé_ag aé—ai)
is a smooth retraction for the restriction Fe of F' to R x R} X (82)2 . Hence F,

is an immersion and the topology of %;u@)@ u(2) is the induced topology from
X. The corollary follows. [

Remark 6. We may consider u(2) as a subalgebra of su(2)® su(2) by
identifying Jp, Ja, Js, J4 to Jl(l), 2(1), él), J:,EQ) respectively. Then the complex
structure J in (17) leaves u(2) invariant if and only if Ay = g = 0,5 = +1. For

2

1
t}13e restriction of J to u(2) to be (7), one must take A\ = 77742,/11 = —77742, v =
24 with ¢ = 2. Then
nva n
(a3)?c*¢  (aj +ajajef)e (ajajcl —af)e 0 0 ag
—(af —ajaze§)e  (a)’c*¢  (afajcs +aj)e O af
| ekt ade i —ae  @ree 0 0 d
0 0 0 0 v O
0 0 0 - 0 O

—(+1Dc%ay  —(E+1)c%ad —(€+1)cfaj 0 0 ¢

Hence any complex structure on u(2) can be extended in 2 (in general non
equivalent) ways to a complex structure on su(2) @ su(2). For example, J(&)
can be extended (here al = a? =0, a3 =1, ¢ = 1) with v = 1 to J(£,1) or
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01 0 00 0
-10 0 00 O
with vy = —1 to 8 8 S 8 o (1) which is equivalent to J(&, —1). Now,
00 0 10 0
0 0—(1+£2)0 0 —¢
5. SU22)N

The results of Lemma 4, Theorem 2, and Corollary 3 easily generalize in
the following way.

LEMMA 5. For any N € N*,

Aut (su(2)NS0(3)N U (U To (SO(3)N)> (disjoint reunion),

oeY

where ¥ is the set of circular permutations of {1,..., N} having no fixed point,
and T, = (T;)lgi,jgN with the T}s the 3 x 3 blocks T} = i oy I (I the 3 x 3
identity and i ¢ the Kronecker symbol).

THEOREM 3. Let J : su(2)V — su(2)V linear. J has zero torsion if and
only if there exist ® € SO(3)N and M = (f??;')lﬁi,jSN € gl(N,R) such that
O~1JP = J(M) with J(M) = (Ji(M))1<ij<n and the Ji(M)s the following
3 x 3 blocks

' 0 1 0
(22) J(M) -1 0 0], 1<i<N,
0 0 &
‘ 00 0
JM)[0 0 0], 1<ij<N,i#j.
00 &

(Here we used that the analogs of 16/3,26|3 36/4,36|5 at the end of the
proof of Theorem 2 are respectively, with ¢ < j,

3i—2,35[3i: -Gl =
3i—1,34[3i: &+ =0
3i,3j3j —2: &P+ &l =
3i,3j3j —1: —&7 '+ &6 =

531 1 33 2 3j-1

and give §§’; =¢&;) = 0. Then all torsion equations vanish.)
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Ezample 1. For N =4,

o 1 0 | 0 0 o0 o 0 O | 0 o0 o
-10 00 0 O fO0O 0 0/]0 0 0
0 0 |&|]0 0 (&]]0 o0 [&/]0 0 |&,
o 0 O |0 1 O {0 0 o010 0 o0
00 0 |-10 00 0 0/]0 0 0
0 0 |&]]0 0 [&]]|0 0 [&]0 0 [&,
J(M) = — — — :
() O 0 O | 0 o0 o o 1 0 | 0 0 o0
00 0|0 0 O |-10 07]0 0 0
0 0 [&]]0 0 [0 0 |&]|0 0 |&,
o 0 o |0 o0 o0 o 0 o |0 1 o0
o 0 o |0 o0 o0 o 0 o0 |-1 0 O
0 0 [&*|| 0 0 |&°]| 0 0 [&%|| 0 0 |&3

3 ¢33 (3
5 & & &
& & & &
9 9 9 9
3 & S &
12 £12 £12 (12
37 & S Si2

COROLLARY 6. For even N, any J € X o)~ is equivalent under some
member of SO(3)N to some J(M) = (J;(M))lgi,jgN with M = (fg})lgi,jgN
such that M? = —1I and JJ’(M) defined in (22). J(M) and J(M') are equiva-
lent under some member of SO(3)N (respectively 7, (SO(3)Y), o € X) if and

— _ 0.—1 :
only if M' = M (respectively M' = M LM = (5;’ *1((;‘)))1§i,j§N)' Here

we make use of (1,)" = 71,1 and 7,J(M')(15) "1 = (JS::((;;(M/))1<M<N'

Ezample 2. For N = 2, ¥ consists only of the transposition (1, 2);

g 8 , &5 &
M = _14(£3)? —e ] M = CHED? 3
52 3 Elg 53

For o = (1,2), the condition M’ = M°" reads ¢ = &3, 5’2 - 1+é§§)2 and is
6
that of Corollary 3.



17 Left invariant complex structures on U(2) and SU(2) x SU(2) revisited 285

6. U2) x U?2)

LEMMA 6. Aut (u(2) ®u(2))H UTH, where T = < ? é > is the switch
between the two factors of u(2) @ u(2),

d 0] 0 0
0 bi| 0 b}

H 0 g . g , ®1, @4 € SO(3), bb§ — bab§ #0 p ,
0 3| 0
0 0]|® 0

cgd [0 W e s0(3), B — bl £ 0
q)g 0 0 0 ) 25 ¥3 s U4Ug 8Y4
0 |0 o

Proof. Analogous to that of Lemma 4. [

THEOREM 4. (i) Let J : u(2) ®u(2) — u(2) @ u(2) linear. J has zero
torsion if and only if there ezists ® € (SO(3) x Ri)2 C H and M € gl(4,R)
such that ®~1J® = K (M), where

0 1.0 0}J0 0 0 O
-10 0 0,0 O O O
0 0 & &0 o0& ¢ g a8
4 ¢4 4 e4 4 ¢4 o4 g4
(23) K(M) 0 0 & &0 0 & & M & & & &
0o 0 0o 0jJ0 1 0 O & ¢ o
0o 0 0 0j-10 0 O S .8 .8 .8
0 0 & €10 0 & & & & & &
0 0 & &0 0 & &

(il) For M, M’ € gl(4,R), there exists some ® € H such that K(M') =

4 14
= ®K(M)®! if and only if there evists <Z§ Z:) € GL(2,R) such that M' =
4 78
= GMG™, with
1 0 0 O
(24) el I IR
0 0 1 0 T
0 o 0

(iii) For M, M" € gl(4,R), there exists ¥ € TH such that K(M') =
= WK(M)V~! if and only if there exists ® € H such that K(M') =
= dK(M)d L
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Proof. (i) From Lemma 3 and Theorem 1(i), there exists ® € (SO(3)x
xR%)? C H such that

0 1 0 0]& & & &
1.0 0 0]& & & g
0 0 & &8 & & &
0 0 & &|& & & &
§8ggo 100
g & &1 000
§ ¢ g a0 odd
g a8 gdgloo0éga

Hence we may suppose J of the form (25). The matrix (£!)1<i<45<j<s (res-

. §/15I4555<
pectively (£})s<i<s,1<j<4) is the matrix of ) (respectively 7?) of Lemma 3.

(25) o 1Jo

Consider u = W%Jl(Z), v = W%JQ(Q), W = W%JéZ), z =T, Jf). From Lemma 2 (ii)
one has

[11, V] = 07 [V, W] =—-V+ 5’;11, [u7 W] =—-u- E’Zvv
[uu Z] = _fgv, [Vv Z} = ggua [Wa Z] = O>

which implies u = v = 0. With the same reasoning for 77, we get

0 1.0 o]0 0 & &
-1 0 0 0|0 0 & &
0 0 ¢& &0 0 & &
sl 0 0¢& glo o0& g
0 0 & &0 1 0 0
0 0 & ¢&|1-10 0 0

0 0 & ¢|0 o0& &

8 ¢8 8 ¢8

0 0 & &0 0 & &

Now the torsion equations 17|3,27|3, 18|3,28|3, 35|7,36|7, 45|7,46|7, give the
four Cramer systems €265 — &2 =0, E2 + &3¢ = 0; 263 — €L =0, &+ £3¢8 = 0;
67— € =0,88+ 66 =0, — € =0, 8 + &6 = 0.

Hence &1 = ¢2 = ¢l = €2 =08 = €§ = & = ¢§ = 0. Then all torsion
equations vanish ([3]).

(ii) Suppose there exists

&, 0|0 O
o | 0 U0 W | g g 5503, b b 20
- 0 0@40 ) 1, ¥4 ()748 847&7
0 | 0 b
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gegee gy eseded

/ . chet el , €3 ¢4 €% ¢5

such that DK (M) = K(M")®,with M = [ 34508 | M =[5354571°8
&5 &4 &7 &8 3848783

g s gy e et ey

. Al * Dl *
(ég)WlthA:<* * % *>’D:<* * % *)’

010 010 .
A = <I>1<100>,D1 = Py 180>,and KM)® = (4 8) with

One has K (M)

0 0¢ 0 0¢7 ¢’ D
A’:< 1 *>,D’=< Dj *>,A’1: —01(1)03)(1)1’1)’1:
ok ok |k kK| % 0 0¢3
010
= <018£97 ®,. Hence f’g = &, 5’; = &I and @ = diag(Ry,1), &4 =
7
= diag(R4,1), R1, Ry € SO(2). Now, since
R, 0 0 0 0 O
O 1.0 0 0 O
o_| 0 0t 0 0w
o 0 0 0 Ry O O ’
0O 0 0 0 1 0
0 0 0 0 b

we reindex the basis as the new basis (Jl(l), 2(1), 1(2), 2(2), Jél), Jil), J?()Q), Jf)),

so that ®, K(M), K(M') have respective matrices in the new basis

R 00 0 0 0

0 Ry|0 0 0 0

o—| 0 01 0 0 0

1 0 0|0 b} 0 i |’

0 00 0 1 0

0 00 bf 0 b
01 0 0[O0 0 1 0 0]O0
-10 0 0]0 -10 0 0] 0
KM)y=] 0 0 0 1]0 |, KM)=] 0 0 0 1[0
00 -10/[0 00 -10[0
0 0 0 0|M 0 0 0 oM

The conclusion follows.
(iii) One has TK(M')r = K(mi1M'm) with 71 the same as 7 yet with

2 x 2 blocks: 71 (?885) . Now, let ¥ = 7® € 7H, ® € H. Then K(M') =

= WK (M)¥~!if and only if ®K(M)®~! = 1K(M')TK(1:M'ry), i.e., there
4 14

exists (b4 bg) € GL(2,R) such that M’y = GMG~! with G as in (24), i.e.,

b b
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0
8
4

0 ) which is simply

=

4
4

) € GL(2,R) in the formula (24). O

1
M' = (nG)M(nG)~" = GyMG" with G = 1 G (8
0

SN~
0o LoD

0
0
1
0

S

bg b

the matrix corresponding to ( b pd
8 Y4

COROLLARY 7. Any J € Xyo)eu2) S equivalent under some member
of (SO(3) x Rj)Q to K(M) in (23) with M € GL(4,R), M? = —1. K(M),
K (M) are equivalent if and only if there exists some (Z% Zé) € GL(2,R) such
that M' = GM G~ with G as in (24).

Proof. Follows readily from Theorem 4. [

7. U2)N

The results of Lemma 6, Theorem 4 and Corollary 7 generalize in the
following way.

LEMMA 7. VN € N*, Aut (u(2))NHy U (U, es; 7o Hn) (disjoint reunion)
where

o Hy = {Usigens (T 0). Ui (00) G #4) @ € SO0
det (b]) # 0};

o X is the set of circular permutations of {1,...,N} having no fixed
point, and 1o = (T})1<ij<N with the T}s the 4 x 4 blocks T} = 6; 5y L (I the
4 x 4 identity and 0y ¢ the Kronecker symbol).

THEOREM 5. Let J : u(2)Y — u(2)N. J has zero torsion if and only if

there exists ® € (SO(3) x Ri)N C Hy and M = (M;)lgi,jgN € gl(2N,R),

M?
T\ &l
(26) K(M) = (Ki{(M))1<ij<n

and the K; (M)s the 4 x 4 blocks

gli-l ctim1
W=t S ) such that @1 J® = K (M) with

1
KM= -1 0
0
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(Here we used that the analogs of 173,27|3 18|3,28|3 35|7,36|7 45|7, 46|7
at the end of (i) in the proof of Theorem 4 are respectively, with i < j,

“34j - Ui -1 G50 - GG =0
4i— 2,45 —14i—1: &+ ¢ing s =
=344l —1: gt =
4i—2,4j[4i — 1 54 3;114J3:
41,45 =345 —1: &7 -6l =
4i-1,45 - 245 —1: 7 +eitlel =
40,45 — 345 —1: €7 —epimlel™ 2—0
4i, 45 — 2045 — 1 ;‘g el igl T =0

0
0
0

4j-2,4j-3 _ Aj-2
and give 543 1 54] 1§ f 1 =& 18y 7 = & 0. Then all
torsion equations vanish. )

COROLLARY 8. Any J € X,y is equivalent under some member of
(SO(3) x R{)N to K(M) in (26) with M € GL(2N,R), M? = —I. K(M),
K(M'") are equivalent if and only if there exists some (b4j)1<w<N € GL(N,R)
such that M' = GMG™" with G = (G(M)hi<izen: G (g4 )s G (00 )
i # .

Remark 7. The closed set R = {M € GL(2N,R); M? = —I} consists of

the conjugates of 7 = (I?v _IN) (In the N x N identity) under the action

of GL(2N,R). Hence it is a 2N2-dimensional submanifold of RYY? with a
diffeomorphism

x:GL2N,R)/S — R,

S = {Q = (g ) R,S € GL(N,R), detQ # 0} the stabilizer of 7, and x
defined by x [P] = PTP~! for [P] the class mod S of P € GL(2N,R). For

- 3
N =2 x [( 577(1))} = <1+52 77£>’ (&,m) € R x R*. For general N and for

n
G € GL(2N,R), M = x[P], M'x[P'] € R, GMG~'x|GP] and the condition
= GMG™! reads [P']|GP).
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8. LOCAL CHART AND A REPRESENTATION FOR (U(2), J(£))
8.1. Local chart

For any fixed £ € R, denote simply J the complex structure J(&) on u(2)
and by G the group U(2) endowed with the left invariant structure of complex
manifold defined by J. For any open subset V' C U(2), the space Hc(V) of
complex valued holomorphic functions on V' (considered here as a subset of
@) consists of all complex smooth functions f on V' which are annihilated by

all )A(:_ = X; +iJX;, 1 <j <4, with (Xj)1<j<4 (respectively (JX;)) the left

1nvar1ant vector fields associated to the basis (J;)1<j<a of u(2) (respectively
o (JJj)). One has X] = X1 —iXa, X; = iX;, X; = iX3 + (1 —i€) Xy,

X3_ =—i(l+ 1§)X4 , hence

(27) He(V) = {f € C*(V); X[ fX; f =0}

As is known, the map S' x SU(2) — U(2) defined by

(5 1)4

is a diffeomorphism of manifolds (not of groups). Introducing Euler angles as
coordinates in the open subset Q = SU(2) \ (e®/t Ue™sef/1) of SU(2), one
gets the coordinates (s, 6, ¢, 1) in the open subset

(28) V= (8" {-1}) x 0
such that u defined by

eis 0 0J3 _0J1 3 eiseiwgw cosg ieisei% sing
(29) u(s, 0, ¢, 1) g 1)e7 e e et o et
ie 2 sing e 2 cosg
is a diffeomorphism of | — m, 7| x |0, 7[ x |0,27] x | — 27, 27[ on V. Then one
gets on V (see e.g. [12], p. 141)
siny 0
X, = t 6
1= COSI/’@@ tsing 9p Smwa@z)
0
Xy = —sinw% Z?ZZ) 8 —cotfcosy — %Z)
0
Xo—
3 81/1’
0 8
Xy=—— —
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Hence f € C*°(V) is in Hc(V) if and only if it satisfies the two equations

isinﬁag—i-gf—co Hgi 0,
The two functions
(30) w' = ) ot g,
(31) w? = P % Vsin g

are holomorphic on V. Let F : V — C? defined by F = (wh, w?). Tt is easily
seen that F is injective, with jacobian —m el+€2 (cot g)g # 0, hence F is
a biholomorphic bijection of V onto an open subset F(V) of C?, i.e., (V, F) is

a chart of G. F(V) is the set of those (w!,w?) € C? satisfying the following

conditions, where r1 = |w!|, ro = |w?| and w(ry,r2) = logrs — 1 log 12”

rire # 0, ,/1%:1 o A < ro < %62(1“2), argwy # 2(1 4 €2)w(ry,m2)

mod 27, argwg # {w(ry,r2) + 7 mod 2. For example, if & = 0,

v U U (( (1)\{arg—20}(7"1,7“2)})><(ng)\{argzw})) ’

r1>0 e_%y(r1)<r2<e%y(r1)

where Cﬁj, j = 1,2 is the circle with radius r; in the w’-plane and y(z) =

2
= H%,l’>0

8.2. A representation on a space of holomorphic functions

As U(2) is compact, there are no nonconstant holomorphic functions
on the whole of U(2). Instead, we consider the space Hc (V) of holomorphic
functions on the open subset V' (28), and we compute (as kind of substitute
for the regular representation) the representation A of the Lie algebra u(2) we
get by Lie derivatives on H¢ (V). First, note that for any = = (g g) €V asin
(29), the complex coordinates w!, w? of z (30), (31) satisfy

w! = —ie_isg,
b
_ g1t
(w2)2 = 2iabe’1+€2
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Then, one gets for the complex coordinates w;,wlx, wg,thx of etz (z €V,
t € R sufficiently small)

1+ w! cot%

1 _
we—tJl:E - COt% — wl )
2
2 2 o 2 sint 1 — (wl)
(we_tjlaj) = (w ) (COSt + T T .
Whence for any f € Hc(V), denoting Jp f instead of A(J1)f,
d 14 (wh)? of
(J1f) (w',w?) = [dtf (Wi 4 wzmﬂ 2 dwl

w? (1 — (w1)2) of .

+ 4wt ow?

In the same way,

s b 1 t
. lsing +w" cos gy
—i 13 1gipnt’
1cos 5 +w" sin 3
. 2
. sint 1+(w1) )
)

2
(W2isy,)? = (0?) (cost i —

i(1—(wh?) of  iw®(1+w")?) of

1 —_ —
Wty , =

2 ow! 4l ow?’
Wiy = e, ()2 = (),
of
J. L w?) = it =24,
(J3f) (w™,w?) w' =
Finally,
14
w;*t‘hm = w17 (wzftllex)z = (wz) e t1+§27
1+i€ af
1 2\ 2

In the complexification s[(2) & CJy of u(2), introduce as usual
Hy =iJ1 ¥ J2, Hz=iJs,

so that
[Hs,Hy|=+Hy, [Hy,H_]=2Hs.
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Then, extending the representation A to s[(2) @ CJy, one has, with Hy =
—(1 —i&)Jy,

(Hif) (wh,w?) =i ((w1)2££ _ %wlwz ;uj;) ’
[ Of 2 of
(H_f> (w17w2) - (81{)1 + ;;1 811)2) ’

(Hsf) (w',w?) = wlaaufl’ (Hyf) (wh, w?) = w? ;2;

8.3. A subrepresentation

We restrict A to H(C* x C*), C* = C\ {0}, and denote ¢, 4 the function

opq(wl w?) = (wh)P(w?)? for p,q € Z. The system (ppq)pqez is total in

H(C* x C*), and one has

. q
(32) Hyppg=1 (P - 5) Pp+1,q5
. q
(33) H_¢pq=1i (P + 5) Pp—1,q5
(34) Hs vpq=D¢pg
(35) Hyopq=qepg-

For any ¢ € Z, the subspace H, of functions of the form (w?)%g(w'), g €
H(C*), is a closed invariant subspace of H(C* x C*), and H(C* x C¥) is the
closure of @7 Hy-

8.4. A lemma

LEMMA 8. Let & = H(C*) the Fréchet space of holomorphic functions
of the complex variable z on C*. Let F be any closed vector subspace of &
that is invariant by the operator z%. Let f € F and f(z) = ;;O'ioo cpaP its
Laurent expansion in C*. If for some p € Z, c, # 0, then the function z — 2P

belongs to F.

Proof. We show first that the function z — f(e'2) belongs to F, V6 € R,
Vf e F. Let f € Fand f(z) = ;,:’ioo cpzP its Laurent expansion in C*.
Since it is uniformly and absolutely convergent on compact subsets of C*, and
since the operator H = z% is continuous on &,
(10)" o (i6p)*
o (H*(2) > o 2 VEEN,VIER, vz eC",

p=—00
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On the other hand, for any fixed 8 € R, the double series

oo +o0 19p
P
2

is absolutely and uniformly summable in the annulus A(r, R) for any 0 < r <
R < 400 since
SS9 ol)*
Do lel 2 < 3l )+ el (eR)” < oo
k=0 p=—00 p<0 p>0

From the associativity theorem for summable families, we have

- i0
re%) S SO ey

k=0
with the series uniformly and absolutely convergent on compact subsets of C*.
The conclusion follows, since HXf € F, Vk. Now we use the same trick as in
[5], p. 14. For any z € C*, denote f, the periodic function on R : § — f(el2).
Its Fourier expansion is f(e'z) = ;fioo ¢p(2)e'?? where

1

Ep(z) = P )

The function z — ¢,(2) belongs to F as the right-hand side is a limit in
£ of linear combinations of functions z — f(el’z). But with the Laurent
expansion of f one gets f(el?z) = ;;’ioo cpzpeipe. For any z, that series is
a trigonometric series that converges uniformly on R, hence it coincides with
the Fourier series of f, and ¢,(z) = ¢p2P, Vp € Z. Hence if for some p € Z,

cp 7 0, then the function z — 2 belongs to 7. [

f(eiez)e_ipedﬁ.

8.5. A closer look at the subrepresentation

Introduce the Casimir C' = Hy H_ + (H3)* — Hz. On H,, C = u(u + 1)
with v = %. Now, we distinguish three cases. We use both the notation 1%,
D1(2k), etc., of [8], Theorem 2.3, for representations of u(2) and the usual
notation of, e.g., [9], 7.3, T4, D®) | ete. for representations of s[(2). One has

I =1, ®q, DI(2k) = D®) @ ¢ etc.

Case 1: ¢ = —2k, £k € N\ {0}. Then from (32), (33), the closed
subspace ’H(E (respectively Hé) generated by {pringq, n € N} (respectively
{¢—k-ng> m € N}) which consists of the functions (w?)=2k(w!)*g(w?) (res-
pectively (w?)~2 (wl)_kg(ﬁ)), g € H(C), is invariant and topologically ir-

reducible from Lemma 8. H(E =17,=1_k ®gq, Hé =19, =]k ®q. Hqis
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indecomposable and H,/ (Hg @ Hé) is topologically irreducible and equal to
Di(2(k — 1)) = D*1 ® ¢, i.e., H, is a nontrivial extension of DI(2(k — 1))
by 17, @19, .

Case 2: q = 2k, k € N. The closed subspace 'H{? generated by {¢_kin.q,
n €N, 0 < n < 2k}, which consists of the functions (w?)?*(w!)=*P(w), P €
Clw!], deg P < 2k, is invariant and topologically irreducible from Lemma 8,
and Hfl) = D9(2k) = D¥) ® q. There are exactly 2 closed invariant (nontrivi-
al) subspaces containing H? . Each one is indecomposable, with topologically
irreducible quotient by 'H? equal respectively to 1% k1 OT 17 1 -

Case 3: ¢ ¢ 27Z. In that case Hy = D%(u,0) is topologically irreducible.

We see that A is quite different from the regular representation, since the

differentials of the representation in the unitary dual of U(2) are D) @ m,
20 € N, m € Z, with 20 +m even ([1], p. 87).

9. CHART FOR (SU(2) x SU(2),J(&,n))

In this last section, we compute an holomorphic chart for J(&,7n), (£,1) €
€ R x R*, in the open subset W = Q x Q of SU(2) x SU(2) with Euler
angles coordinates (61, @1, 11,02, ¢2,12). The space He(W) of complex valued
holomorphic functions on W consists of all complex smooth functions f on W
which are annihilated by all

()
X;

=xPrix® 1<j<3 1<k<2,

(X](-k)) the left invariant vector fields associated to the basis (Jl(l), 2(1), él),
T3 I8 T of su(2) @ su(2). One has XP = x¥ —ix(M, X =
=ix" k=12 XP =ix{’ + (1 -iox?, X{ —iHEXP . For
k=1,2,

X{k) = Ccos Yy, G(Zk + Ssllrrllqg: 8(33;,3 — cot 0y, sin Yy, azka
X = siny, a(zk + ‘:i‘;: 86)% — cot O, cos ¥, azk,
XM = azk.
Hence f € C*°(W) is in Hc(W) if and only if it satisfies the equations
isin 6, of + 9 _ cos 0 9 _ 0,

001 Oy o1
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.., of Of of _ . of _in9f _
isin 6, 802+8g02 cos 03 i =0, 1naw1+(1 1§)aw2 = 0.

The functions
yy (e ¥o

: 01 - 0 ¥1 - .
2t =61 cot 5 2% = el%2 cot 5 =63 e 142 2 \/sinf+/sin by

are holomorphic on W. Let Z : W — C3 defined by Z = (z',22,23). Z is

_n _
injective, with jacobian — - eT+eZ 2 (cot %)%(cot £)2 # 0, hence Z is a

A(1+¢7)

biholomorphic bijection of W onto an open subset of C3, i.e., (W, Z) is a local

chart for SU(2) x SU(2) equipped with the complex structure J(&, 7).
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