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We compute the torsion-free linear maps J : su(2) → su(2), deduce a new de-
scription of the complex structures and their equivalence classes under the action
of the automorphism group for u(2) and su(2) ⊕ su(2), and prove that in both
cases the set of complex structures is a differentiable manifold. The situations of
u(2) ⊕ u(2), su(2)N and u(2)N are also considered. Extension of complex struc-
tures from u(2) to su(2)⊕ su(2) are studied, local holomorphic charts given, and
attention is paid to what representations of u(2) we can get from a substitute to
the regular representation on a space of holomorphic functions for the complex
structure.
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1. INTRODUCTION

The left invariant complex structures on the group U(2) of unitary 2× 2
matrices, i.e., complex structures on its Lie algebra u(2), have been computed
for the first time, up to equivalence, in [11] in the algebraic approach, that
is by determining the complex Lie subalgebras m of the complexification gC
of u(2) such that gC = m ⊕ m̄, bar denoting conjugation. More recently, and
more generally, all left invariant maximal rank CR-structures on any finite
dimensional compact Lie group have been classified up to equivalence in [2].
Independently, in the case of SU(2)×SU(2), the complex structures on su(2)⊕
su(2) have been computed in [4] by direct approach and computations.

In the present paper, we first compute the torsion-free linear maps J :
su(2) → su(2). They appear to be maximal rank CR-structures, of the CR0-
type in the classification of [2]. Then we show how to deduce, with the com-
puter assisted methods of [6], a new description of the complex structures and
their equivalence classes under the action of the automorphism group for the
specific cases of u(2) and su(2) ⊕ su(2), without resorting to the general re-
sults of [2]. Our method, which consists in growing dimensions starting with
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torsion-free linear maps of su(2), is new and very different from that of [4] in
the case su(2)⊕ su(2).

The cases u(2) ⊕ u(2), su(2)N , u(2)N are considered as well. In these
cases, the set of complex structures is a differentiable manifold, though we
write down explicit proofs only in the cases of u(2) and su(2) ⊕ su(2). We
also examine the extension of complex structures from u(2) to su(2) ⊕ su(2),
compute local complex charts for the complex manifolds associated to the
complex structures, and determine what representations of u(2) we can get
from a substitute to the regular representation on a space of holomorphic
functions for the complex structure.

2. PRELIMINARIES

Let G0 be a connected finite dimensional real Lie group, with Lie algebra
g. An almost complex structure on g is a linear map J : g → g such that
J2 = −1. The almost complex structure J is said to be integrable if it satisfies
the condition

(1) [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ] = 0, ∀X,Y ∈ g.

From the Newlander-Nirenberg theorem [10], condition (1) means that G0

can be given the structure of a complex manifold with the same underlying
real structure and such that the canonical complex structure on G0 is the
left invariant almost complex structure Ĵ associated to J. (For more details,
see [6], [7].) By a complex structure on g, we will mean an integrable almost
complex structure on g, that is one satisfying (1).

Let J a complex structure on g and denote by G = (G0, J) the group G0

endowed with the structure of complex manifold defined by Ĵ . The complexi-
fication gC of g splits as gC = g(1,0)⊕g(0,1) where g(1,0) = {X̃ = X− iJX; X ∈
∈ g}, g(0,1) = {X̃−X + iJX; X ∈ g}. We will denote g(1,0) by m. The inte-
grability of J amounts to m being a complex subalgebra of gC. In that way
the set of complex structures on g can be identified with the set of all com-
plex subalgebras m of gC such that gC = m ⊕ m̄, bar denoting conjugation
in gC. In particular, J is said to be abelian if m is. That is the algebraic
approach. Our approach is more elementary. We fix a basis of g, write down
the torsion equations ij|k (1 ≤ i, j, k ≤ n) obtained by projecting on xk the
equation [Jxi, Jxj ]− [xi, xj ]− J [Jxi, xj ]− J [xi, Jxj ] = 0, where (xj)1≤j≤n is
the basis of g we use, and solve them in steps by specific programs with the
computer algebra system Reduce by A. Hearn. These programs are down-
loadable in the electronic archive [3]. From now on, we will use the same
notation J for J and Ĵ as well. For any x ∈ G0, the complexification Tx(G0)C
of the tangent space also splits as the direct sum of the holomorphic vectors
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Tx(G0)
(1,0) = {X̃X − iJX; X ∈ Tx(G0)} and the antiholomorphic vectors

Tx(G0)
(0,1) = {X̃−X + iJX; X ∈ Tx(G0)}. For any open subset V ⊂ G0, the

space HC(V ) of complex valued holomorphic functions on V consists of all
complex smooth functions f on V which are annihilated by any antiholomor-
phic vector field. This is equivalent to f being annihilated by all

X̃−
j = Xj + iJXj , 1 ≤ j ≤ n

with (Xj)1≤j≤n the left invariant vector fields associated to the basis (xj)1≤j≤n
of g. Hence

HC(V ) = {f ∈ C∞(V ); X̃−
j f = 0, ∀j, 1 ≤ j ≤ n}.

Finally, the automorphism group Aut g of g acts on the set Xg of all
complex structures on g by J 7→ Φ ◦ J ◦ Φ−1 ∀Φ ∈ Aut g. Two complex
structures J, J ′ on g are said to be equivalent if they are on the same Aut g
orbit. For simply connected G0, this amounts to requiring the existence of an
f ∈ AutG0 such that f : (G0, J) → (G0, J

′) is biholomorphic.

3. U(2)

Consider the Lie algebra su(2) along with its basis {J1, J2, J3} defined
by J1 = i

2 ( 0 1
1 0 ), J2 = 1

2

(
0 −1
1 0

)
, J3 = i

2

(
1 0
0 −1

)
. One has

(2) [J1, J2] = J3, [J2, J3] = J1, [J3, J1] = J2

and the corresponding one-parameter subgroups of SU(2) are etJ1

(
cos t

2
i sin t

2

i sin t
2

cos t
2

)
,

etJ2

(
cos t

2
− sin t

2

sin t
2

cos t
2

)
, etJ3

(
ei
t
2 0

0 e−i t2

)
. By means of the basis {J1, J2, J3}, su(2)

can be identified to the euclidean vector space R3 the bracket being then
identified to the vector product ∧. Then Aut su(2) consists of the matrices
A = Mat(a,b,a ∧ b) with a,b any two orthogonal normed vectors in R3, i.e.,
Aut su(2) ∼= SO(3). Now, u(2) = su(2)⊕c where c = R J4 is the center of u(2),
J4 = i

2 ( 1 0
0 1 ) . We use the basis (J1, J2, J3, J4) for u(2). R∗ stands for R \ {0}.

Lemma 1. Aut u(2) ∼= SO(3)× R∗.

Proof. As the center is invariant, any Φ ∈ Aut u(2) is of the form

Φ =

 A
0
0
0

b41 b42 b43 b44


with A ∈ Aut su(2) ∼= SO(3) and b44 ∈ R∗. Necessarily, b41 = b42 = b43 = 0, since
Φ(Jk) ∈ [u(2), u(2)] = su(2), 1 ≤ k ≤ 3. �
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Lemma 2. Let J : su(2) → su(2) linear. J has zero torsion, i.e., satisfies
(1), if and only if there exists R ∈ SO(3) such that

(3) R−1JR

 0 1 0
−1 0 0
0 0 ξ33

 .

Proof. Let J = (ξij)1≤i,j≤3 in the basis (J1, J2, J3). The 9 torsion equa-
tions are

12|1 ξ13(ξ
2
2 + ξ11) + ξ31(ξ

2
2 − ξ11)− ξ32(ξ

2
1 + ξ12) = 0,

12|2 ξ23(ξ
2
2 + ξ11)− ξ32(ξ

2
2 − ξ11)− ξ31(ξ

2
1 + ξ12) = 0,

12|3 ξ12ξ
2
1 − ξ22ξ

1
1 − (ξ31)

2 − (ξ32)
2 + ξ33(ξ

2
2 + ξ11) + 1 = 0,

13|1 ξ11(ξ
2
1 − ξ12) + ξ23(ξ

1
3 + ξ31)− ξ33(ξ

2
1 + ξ12) = 0,

13|2 ξ13ξ
3
1 + ξ22ξ

1
1 − (ξ21)

2 − (ξ23)
2 + ξ33(ξ

2
2 − ξ11) + 1 = 0,

13|3 −ξ11(ξ23 + ξ32) + ξ21(ξ
1
3 + ξ31) + ξ33(ξ

2
3 − ξ32) = 0,

23|1 ξ32ξ
2
3 + ξ22ξ

1
1 − (ξ13)

2 − (ξ12)
2 − ξ33(ξ

2
2 − ξ11) + 1 = 0,

23|2 ξ22(ξ
2
1 − ξ12)− ξ13(ξ

2
3 + ξ32) + ξ33(ξ

2
1 + ξ12) = 0,

23|3 ξ22(ξ
3
1 + ξ13)− ξ12(ξ

2
3 + ξ32) + ξ33(ξ

3
1 − ξ13) = 0.

Again, we identify su(2) to R3 with the vector product by means of the
basis (J1, J2, J3). J has at least one real eigenvalue λ. Let f3 ∈ R3 some
normed eigenvector associated to λ. Then there exist normed vectors f1, f2 ∈
R3 such that (f1, f2, f3) is a direct orthonormal basis of R3. Hence there exists
R ∈ SO(3) such that

R−1JR =

∗ ∗ 0
∗ ∗ 0
∗ ∗ λ

 .

Hence we may suppose ξ13 = ξ23 = 0 in J. Now, the torsion equations 12|1 and
12|2 read respectively ξ31(ξ

2
2 − ξ11) = ξ32(ξ

2
1 + ξ12), ξ

3
1(ξ

2
1 + ξ12) = ξ32(ξ

1
1 − ξ22) and

imply the two equations (ξ31)
2(ξ22 − ξ11) = −(ξ32)

2(ξ22 − ξ11), (ξ32)
2(ξ21 + ξ12) =

−(ξ31)
2(ξ21 + ξ12). Hence each one of the conditions ξ22 6= ξ11 or ξ21 6= −ξ12 implies

ξ31 = ξ32 = 0. We now have two cases. Case 1: ξ31 = ξ32 = 0, Case 2: ξ31 , ξ
3
2

not both zero. In Case 2, one necessarily has ξ22 = ξ11 and ξ21 = −ξ12 . Then
equations 23|1 and 23|2 read −(ξ12)

2 + (ξ11)
2 + 1 = 0, ξ12ξ

1
1 = 0 and give

ξ11 = 0, ξ12 = ±1. Now equation 12|3 reads (ξ32)
2 + (ξ31)

2 = 0. Hence Case 2
doesn’t occur, i.e., one may suppose ξ31 = ξ32 = 0. Then equations 13|1 and
23|2 read resp. ξ33(ξ

2
1 + ξ12) = ξ11(ξ

2
1 − ξ12), ξ

3
3(ξ

2
1 + ξ12) = −ξ22(ξ21 − ξ12), hence

if ξ21 6= ξ12 , necessarily ξ22 = −ξ11 . Now, ξ21 = ξ12 is impossible since it would
imply either ξ33 = 0 or ξ12 = 0. In fact, first, if ξ12 = 0, equations 12|3, 13|2
and 23|1 read resp. ξ33(ξ

2
2 + ξ11) − ξ22ξ

1
1 + 1 = 0, ξ33(−ξ22 + ξ11) − ξ22ξ

1
1 − 1 = 0,
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ξ33(−ξ22 + ξ11) + ξ22ξ
1
1 + 1 = 0, so that 12|3 + 13|2 gives ξ11(ξ

3
3 − ξ22) = 0 and

12|3 + 23|1 gives ξ11ξ
3
3 = −1, hence ξ11 6= 0 and ξ33 = ξ22 , which is impossible

since then 12|3 reads (ξ22)
2 + 1 = 0. Second, if ξ33 = 0, 12|3, 13|2 read resp.

−ξ22ξ11 + (ξ12)
2 + 1 = 0, −ξ22ξ11 + (ξ12)

2 − 1 = 0, which is contradictory. Hence
we get as asserted ξ21 6= ξ12 and ξ22 = −ξ11 . Now, we prove that ξ11 = 0 and
ξ12 = ±1. Since ξ22 = −ξ11 , equations 12|3, 13|1, 13|2, 23|1 read respectively

12|3 ξ12ξ
2
1 + (ξ11)

2 + 1 = 0,
13|1 ξ33(ξ

2
1 + ξ12)− ξ11(ξ

2
1 − ξ12) = 0,

13|2 2ξ33ξ
1
1 + (ξ21)

2 + (ξ11)
2 − 1 = 0,

23|1 2ξ33ξ
1
1 − (ξ12)

2 − (ξ11)
2 + 1 = 0.

From 12|3, ξ12 6= 0 and ξ21 = −1+(ξ11)2

ξ12
. Then 13|1, 13|2, read respec-

tively Q = 0, R = 0 with Q = ξ11((ξ
1
1)

2 + (ξ12)
2 + 1) − ξ33((ξ

1
1)

2 − (ξ12)
2 + 1),

R = (ξ12)
2(2ξ33ξ

1
1 + (ξ11)

2 − 1) + ((ξ11)
2 + 1)2. Denote from 23|1, S = 2ξ33ξ

1
1 −

(ξ12)
2 − (ξ11)

2 + 1. Suppose ξ11 6= 0. Then N = R−S
ξ11

2ξ33((ξ
1
2)

2 − 1) + ξ11((ξ
1
1)

2 +

(ξ12)
2 + 3) = 0 would give, for ξ12 6= ±1, ξ33 = − ξ11((ξ11)2+(ξ12)2+3)

2((ξ12)2−1)
and then

R − ((ξ12)2−2ξ12+(ξ11)2+1)((ξ12)2+2ξ12+(ξ11)2+1)

(ξ12)2−1
which is impossible since the polyno-

mial X2 ± 2X + (ξ11)
2 + 1 has no real root. Hence ξ12 = ±1. Now, S = 0 gives

ξ33 = ξ11
2 and then R(ξ11)

2((ξ11)
2 + 4) 6= 0. Hence ξ11 = 0. Finally, that implies as

asserted ξ12 = ±1, since R = −(ξ12)
2 + 1. We conclude that ξ11 = ξ22 = 0, ξ21 =

−ξ12 , ξ12 = ±1. Changing if necessary Φ to Φ diag(( 0 1
1 0 ) ,−1)), one may suppose

ξ12 = 1. �

Remark 1. Recall that a rank r CR-structure on a real Lie algebra g
is a r-dimensional subalgebra m of the complexification gC of g such that
m ∩ m̄ = {0}. Then m = {X − iJpX; X ∈ p} where p (the real part of
m) is a vector subspace of g and Jp : p → p is a zero torsion linear map
such that J2

p = −Idp and [X,Y ] − [JpX, JpY ] ∈ p, ∀X,Y ∈ p. Alternatively,
a CR-structure can be defined by such data (p, Jp). For even-dimensional
g, CR-structures of maximal rank r = 1

2 dim g are just complex structures
on g. CR-structures of maximal rank on a real compact Lie algebra have
been classified in [2]. For odd-dimensional g, they fall essentially into two
classes: CR0 and (strict) CRI. For even-dimensional g they are all CR0.
From Lemma 2, any linear map J : su(2) → su(2) which has zero torsion is
such that ker (J2 + Id) 6= {0}, and hence defines a maximal rank CR-structure
on su(2). It is of type CR0. Let us elaborate on that point. a0 = CJ3 is a
Cartan subalgebra of su(2). The complexification sl(2) of su(2) decomposes
as sl(2) = CH− ⊕ h ⊕ CH+ with H± = iJ1 ∓ J2, H3 = iJ3, h = CH3. Any
maximal rank CR-structure of CR0-type (respectively (strict) CRI-type) is
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equivalent to m = CH+ (respectively m = C(aJ3 + H+), a ∈ R∗), and has
real part p = RJ1 ⊕ RJ2 (respectively p = RJ1 ⊕ RJ ′2, J ′2 = J2 − aJ3). The
corresponding endomorphism Jp of p has matrix

(
0 1
−1 0

)
in the basis (J1, J2)

(respectively (J1, J
′
2)) and has zero torsion on p. Any extension of Jp to su(2)

has matrix

(
0 1 ξ13
−1 0 ξ23
0 0 ξ33

)
in the basis (J1, J2, J3) (respectively (J1, J

′
2, J3)). In the

CR0 case, it has zero torsion on the whole of su(2) if and only if ξ13 = ξ23 = 0,
i.e., is of the form (3). In the CRI case, it never has zero torsion on the whole
of su(2).

Lemma 3. Let g =
⊕N

j=1 g(j), where g(j) are real Lie algebras with bases

Bj = (X(j)
k )1≤k≤nj , and let π(j) : g → g(j) be the projections. Let J : g → g be

a linear map, πij = π(i) ◦ J ◦ π(j), π̃ij = π(i) ◦ J ◦ π(j)|g(j) . If J has zero torsion,
then the two following conditions are satisfied:

(i) π̃ii has zero torsion for any i;
(ii) [πijX,π

i
jY ]πij [JX, Y ] + πij [X, JY ], ∀X,Y ∈ g(j) for any i, j such that

i 6= j.

Proof. For any i, j let X,Y ∈ g. Applying π(i) to the torsion equation (1)
we get

(4) [π(i)JX, π(i)JY ]− [π(i)X,π(i)Y ]− π(i)J [JX, Y ]− π(i)J [X, JY ] = 0.

Suppose first i = j andX,Y ∈ g(i). Then [JX, Y ][π(i)JX, Y ] = π(i)[π(i)Jπ(i)X,

Y ], and [X, JY ][X,π(i)JY ] = π(i)[X,π(i)Jπ(i)Y ], and moreover [π(i)X,π(i)Y ] =
[X,Y ], hence (4) gives [π(i)JX, π(i)JY ] − [X,Y ] − π(i)Jπ(i)[π(i)Jπ(i)X,Y ] −
π(i)Jπ(i)[X,π(i)Jπ(i)Y ] = 0, i.e.,

[π̃iiX, π̃
i
iY ]− [X,Y ]− π̃ii[π̃

i
iX,Y ]− π̃ii[X, π̃

i
iY ] = 0,

that is π̃ii has no torsion. Suppose now i 6= j andX,Y ∈ g(j). Then [π(i)X,π(i)Y ]
= 0 and (4) gives

[π(i)JX, π(i)JY ]− π(i)Jπ(j)[JX, Y ]− π(i)Jπ(j)[X, JY ] = 0,

i.e.,
[πijX,π

i
jY ]− πij [JX, Y ]− πij [X, JY ] = 0. �

Theorem 1. (i) Let J : u(2) → u(2) linear. J has zero torsion, i.e.,
satisfies (1), if and only if there exists Φ ∈ SO(3)× R∗

+ such that

Φ−1JΦ


0 1 0 0
−1 0 0 0
0 0 ξ33 ξ34
0 0 ξ43 ξ44

 ,

(
ξ33 ξ34
ξ43 ξ44

)
∈ gl(2,R).
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(ii) Any J ∈ Xu(2) is equivalent to a unique

(5) J(ξ)


0 1 0 0
−1 0 0 0
0 0 ξ 1
0 0 −(1 + ξ2) −ξ


with ξ ∈ R. J(ξ) and J(ξ′) (ξ, ξ′ ∈ R) are equivalent if and only if ξ = ξ′.

Proof. (i) From Lemma 3,

J =


ξ14

J1 ξ24
ξ34

ξ41 ξ42 ξ43 ξ44


for some J1 : su(2) → su(2) with zero torsion. From Lemma 2, there exists

R ∈ SO(3) such that R−1J1R

(
0 1 0
−1 0 0
0 0 ξ33

)
, whence

Φ−1JΦ


0 1 0 ξ14
−1 0 0 ξ24
0 0 ξ33 ξ34
ξ41 ξ42 ξ43 ξ44


with Φ = diag(R, 1). Hence we may suppose J1

(
0 1 0
−1 0 0
0 0 ξ33

)
. Now the torsion

equations 13|4, 23|4 14|3, 24|3 give the two Cramer systems ξ42ξ
3
3 + ξ41 = 0,

−ξ42 + ξ33ξ
4
1 = 0; ξ24ξ

3
3 − ξ14 = 0, ξ24 + ξ33ξ

1
4 = 0. Hence ξ41 = ξ42 = ξ14 = ξ24 = 0.

Then all torsion equations vanish, and (i) is proved ([3], torsionu2.red).
(ii) From (i), we may suppose

J =


0 1 0 0
−1 0 0 0
0 0 ξ33 ξ34
0 0 ξ43 ξ44

 .

Now J ∈ Xu(2) if and only if
(
ξ33 ξ

3
4

ξ43 ξ
4
4

)2
= −I, i.e.,

J =


0 1 0 0
−1 0 0 0
0 0 ξ33 ξ34

0 0 −1+(ξ33)2

ξ34
−ξ33

 , ξ34 6= 0.
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Now, for any Φ = diag(A, b) ∈ Aut u(2) (A ∈ SO(3), b 6= 0),

(6) ΦJΦ−1

 AJ1A
−1 b−1A

 0
0
ξ34


b
(
0 0 −1+(ξ33)2

ξ34

)
A−1 −ξ33

 .

Taking A = I, b = ξ34 , we get

ΦJΦ−1


0 1 0 0
−1 0 0 0
0 0 ξ33 1
0 0 −(1 + (ξ33)

2) −ξ33

 .

Hence J is equivalent to J(ξ) in (5) with ξ = ξ33 . The last assertion of the
theorem results from (6). �

Remark 2. In [11], the equivalence classes of left invariant complex struc-
tures on u(2) are shown to be parametrized by the complex subalgebras md

with basis {J1+iJ2, 2iJ3+dJ4} with d = − 1+iξ
1+ξ2

, ξ ∈ R. The complex structure
defined by md has matrix

0 1 0 0
−1 0 0 0
0 0 ξ 2(1 + ξ2)
0 0 −1

2 −ξ

 = ΦJ(ξ)Φ−1,

with Φ = diag
(
1, 1, 1, 1

2(1+ξ2)

)
∈ Aut u(2).

Remark 3. u(2) has no abelian complex structures since, for J(ξ), m =
CJ̃1 ⊕ CJ̃3 is the solvable Lie algebra [J̃1, J̃3] = i(1− iξ)J̃1.

Corollary 1. Xu(2) consists of the matrices

(7)


(a1

4)
2c2ξ (a3

4 + a2
4a

1
4cξ)c (a3

4a
1
4cξ − a2

4)c a1
4

−(a3
4 − a2

4a
1
4cξ)c (a2

4)
2c2ξ (a3

4a
2
4cξ + a1

4)c a2
4

(a3
4a

1
4cξ + a2

4)c (a3
4a

2
4cξ − a1

4)c (a3
4)

2c2ξ a3
4

−(ξ2 + 1)c2a1
4 −(ξ2 + 1)c2a2

4 −(ξ2 + 1)c2a3
4 −ξ

 ,

with the conditions

(8) ξ ∈ R,

(
a1
4

a2
4

a3
4

)
∈ R3 \ {0}, c = ±

(
(a1

4)
2 + (a2

4)
2 + (a3

4)
2
)− 1

2 .
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Proof. As is known, any R ∈ SO(3) can be written

(9)

u
2 − v2 − w2 + s2 −2(uv + ws) 2(−uw + sv)
2(−sw + uv) u2 − v2 + w2 − s2 −2(su+ vw)
2(sv + uw) 2(su− vw) u2 + v2 − w2 − s2


for q = (u, v, w, s) ∈ S3 (R can be written in exactly 2 ways by means of q and
−q). Hence any Φ ∈ Aut u(2) can be written

Φ =

 R
0
0
0

0 0 0 c


with R as in (9) and c ∈ R∗. Then we get for ΦJ(ξ)Φ−1 the matrix (7) with

a1
4 =

2
c
(sv − uw),(10)

a2
4 = −2

c
(su+ vw),(11)

a3
4 =

1
c
(2u2 + 2v2 − 1).(12)

From u2 + v2 + w2 + s2 = 1, one gets (a1
4)

2 + (a2
4)

2 + (a3
4)

2 = 1
c2
. Conversely,

for any matrix J of the form (7) with conditions (8) there exist Φ ∈ Aut u(2)
and ξ ∈ R such that J = ΦJ(ξ)Φ−1. This amounts to the existence of q =
= (u, v, w, s) ∈ S3 such that equations (10), (11), (12) hold true, and follows
from the fact that the map S3→ S2 q 7→(ca1

4, ca
2
4, ca

3
4) is the Hopf fibration. �

Corollary 2. Xu(2) is a closed 4-dimensional (smooth) submanifold
of R16 with two connected components, each of them diffeomorphic to R ×(
R3 \ {0}

)
.

Proof. Denote X+
u(2) (respectively X−

u(2)) the subset of those J ∈ Xu(2)

with c > 0 (respectively c < 0). As c is uniquely defined by the matrix J =
(aij) ∈ Xu(2) by the formula

2c =
a3

4(a
1
2 − a2

1) + a2
4(−a1

3 + a3
1) + a1

4(a
2
3 − a3

2)
(a1

4)2 + (a2
4)2 + (a3

4)2
,

one has Xu(2) = X+
u(2) ∪ X−

u(2) with disjoint union. X+
u(2) (respectively X−

u(2))
is a closed subset of R16. It hence suffices to prove that X+

u(2) is a regular
submanifold, the case of X−

u(2) being analogous. Let F : R×
(
R3 \ {0}

)
→ X+

u(2)

be the bijection defined by F (ξ, (a1
4, a

2
4, a

3
4)) = J where J is the matrix (7)

with c =
(
(a1

4)
2 + (a2

4)
2 + (a3

4)
2
)− 1

2 . We equip X+
u(2) with the differentiable
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structure transferred from R×
(
R3 \ {0}

)
. The injection i from X+

u(2) into the
open subsetX ⊂ R16 defined by (a1

4)
2+(a2

4)
2+(a3

4)
2 6= 0 is smooth. Now, there

is a smooth retraction r : X 7→ X+
u(2) defined by r(A) = F (−a4

4, (a
1
4, a

2
4, a

3
4))

for A = (aij) ∈ X. Hence i is an immersion and the topology of X+
u(2) is the

induced topology of R16. �

4. SU(2)× SU(2)

Lemma 4. Aut (su(2)⊕ su(2)) (SO(3)× SO(3)) ∪ τ (SO(3)× SO(3))
where τ =

(
0 I
I 0

)
is the switch between the two factors of su(2)⊕ su(2).

Proof. Let J (1)
k , 1 ≤ k ≤ 3, (respectively J

(2)
` , 1 ≤ ` ≤ 3) be the basis

for the first (respectively the second) factor su(2)(1) (respectively su(2)(2)) of
su(2) ⊕ su(2) with relations (2), and π(1) (respectively π(2)) the correspon-
ding projections. Let Φ =

(
Φ1 Φ2
Φ3 Φ4

)
∈ Aut (su(2)⊕ su(2)), each Φj being a

3 × 3 matrix. Φ1 =
(
π(1) ◦ Φ

)
|su(2)(1)

is an homomorphism of su(2)(1) into
itself. Hence the three columns of Φ1 are two-by-two orthogonal vectors
in R3 and if one of them is zero, then the three of them are zero. In par-
ticular, if Φ1 6= 0, then Φ1 ∈ SO(3). With the same reasoning, the same
property holds true for Φ2,Φ3,Φ4. Suppose first Φ1 6= 0. For k, ` = 1, 2, 3,
[π(1)(Φ(J (1)

k )), π(1)(Φ(J (2)
` ))] = π(1)(Φ([J (1)

k , J
(2)
` ])) = 0. That implies that any

column of Φ1 is collinear with any column of Φ2, hence Φ2 = 0 since the
columns of Φ1 are linearly independent. Then detΦ4 6= 0, whence Φ4 ∈ SO(3)
and finally Φ3 = 0 by the above reasoning. Hence Φ =

(
Φ1 0
0 Φ4

)
∈ SO(3) ×

SO(3). Suppose now Φ1 = 0. Then det Φ2 6= 0, whence Φ2 ∈ SO(3), and
det Φ3 6= 0, whence Φ3 ∈ SO(3). By the same argument as before, Φ4 = 0.
Hence Φ =

(
0 Φ2

Φ3 0

)
τ
(

Φ3 0
0 Φ2

)
∈ τ (SO(3)× SO(3)) . �

Theorem 2. Let J : su(2)⊕ su(2) → su(2)⊕ su(2) linear. J has zero
torsion, i.e., satisfies (1), if and only if there exists Φ ∈ SO(3) × SO(3)
such that

(13) Φ−1JΦ



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 ξ33 0 0 ξ36
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 ξ63 0 0 ξ66


.
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Proof. From Lemmas 3 and 2, there exists Φ ∈ SO(3)×SO(3) such that

(14) Φ−1JΦ



0 1 0 ξ14 ξ15 ξ16
−1 0 0 ξ24 ξ25 ξ26
0 0 ξ33 ξ34 ξ35 ξ36
ξ41 ξ42 ξ43 0 1 0
ξ51 ξ52 ξ53 −1 0 0
ξ61 ξ62 ξ63 0 0 ξ66


.

Hence we may suppose J of the form (14). The matrix (ξij)1≤i≤3,4≤j≤6 (res-
pectively (ξij)4≤i≤6,1≤j≤3) is the matrix of π1

2 (respectively π2
1) of Lemma 3.

Consider the vectors u = π1
2J

(2)
1 ,v = π1

2J
(2)
2 ,w = π1

2J
(2)
3 . From Lemma 2 (ii)

one has

[π1
2J

(2)
1 , π1

2J
(2)
2 ]π1

2 [JJ (2)
1 , J

(2)
2 ] + π1

2 [J (2)
1 , JJ

(2)
2 ] =

= π1
2 [−J (2)

2 , J
(2)
2 ] + π1

2 [J (2)
1 , J

(2)
1 ] = 0,

[π1
2J

(2)
2 , π1

2J
(2)
3 ]π1

2 [JJ (2)
2 , J

(2)
3 ] + π1

2 [J (2)
2 , JJ

(2)
3 ] =

= π1
2 [J (2)

1 , J
(2)
3 ] + π1

2 [J (2)
2 , ξ66J

(2)
3 ] = −π1

2 J
(2)
2 + ξ66π

1
2 J

(2)
1 ,

[π1
2J

(2)
1 , π1

2J
(2)
3 ]π1

2 [JJ (2)
1 , J

(2)
3 ] + π1

2 [J (2)
1 , JJ

(2)
3 ] =

= π1
2 [−J (2)

2 , J
(2)
3 ] + π1

2 [J (2)
1 , ξ66J

(2)
3 ] = −π1

2 J
(2)
1 − ξ66π

1
2 J

(2)
2 .

That is,

u ∧ v = 0, v ∧w = −v + ξ66u, u ∧w = −u− ξ66v,

which implies u = v = 0. With the same reasoning for π2
1, we get

(15) J



0 1 0 0 0 ξ16
−1 0 0 0 0 ξ26
0 0 ξ33 0 0 ξ36
0 0 ξ43 0 1 0
0 0 ξ53 −1 0 0
0 0 ξ63 0 0 ξ66


.

Now, the torsion equations 16|3, 26|3 36|4, 36|5 give the 2 Cramer systems
ξ26ξ

3
3 − ξ16 = 0, ξ26 + ξ33ξ

1
6 = 0; ξ53ξ

6
6 + ξ43 = 0, −ξ53 + ξ66ξ

4
3 = 0. Hence ξ16 =

ξ26 = ξ43 = ξ53 = 0. Then all torsion equations vanish, and the theorem is
proved ([3]). �
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Corollary 3. Any J ∈ Xsu(2)⊕su(2) is equivalent under some member
of SO(3)× SO(3) to

(16) J(ξ, η)



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 ξ 0 0 η
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 −1+ξ2

η 0 0 −ξ


with ξ, η ∈ R, η 6= 0. J(ξ, η) and J(ξ′, η′) are equivalent under some member
of SO(3) × SO(3) (respectively τ (SO(3)× SO(3))) if and only if ξ′ = ξ and
η′ = η (respectively ξ′ = −ξ and η′ = −1+ξ2

η ).

Proof. J in (13) satisfies J2 = −I if and only if ξ36 6= 0 and ξ63 = −1+(ξ33)2

ξ36
,

ξ66 = −ξ33 , leading to J(ξ, η) in (16) with ξ = ξ33 , η = ξ36 .

Suppose J(ξ′, η′)ΦJ(ξ, η)Φ−1 with Φ
(

Φ1 0
0 Φ2

)
∈ SO(3) × SO(3). Then(

0 1 0
−1 0 0
0 0 ξ′

)
Φ1

( 0 1 0
−1 0 0
0 0 ξ

)
Φ−1

1 and
(

0 1 0
−1 0 0
0 0 −ξ′

)
Φ2

( 0 1 0
−1 0 0
0 0 −ξ

)
Φ−1

2 , which imply first

ξ′ = ξ and second Φ1 = diag(R1, 1), Φ2 = diag(R2, 1) with R1, R2 ∈ SO(2).

Then
( 0 0 0

0 0 0
0 0 η′

)
Φ1

(
0 0 0
0 0 0
0 0 η

)
Φ−1

2 implies η′ = η.

Now, suppose J(ξ′, η′)=ΨJ(ξ, η)Ψ−1 with Ψ=τΦ ∈ τ (SO(3)× SO(3)) ,
Φ
(

Φ1 0
0 Φ2

)
∈ SO(3) × SO(3). Then ΦJ(ξ, η)Φ−1τJ(ξ′, η′)τ = J(−ξ′,−1+ξ′2

η′ ).

Hence ξ = −ξ′ and η = −1+ξ′2

η′ , i.e., η′ = −1+ξ2

η . �

Remark 4. Lemma 1 in [4] states that a left invariant almost complex
structure on SU(2)×SU(2) is integrable if and only if it has the form AIa,cA

−1

with A ∈ SO(3)× SO(3), a ∈ R, c ∈ R∗, and

Ia,c



a
c 0 0 −a2+c2

c 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
1
c 0 0 −a

c 0 0
0 0 0 0 0 −1
0 0 0 0 1 0


.

One has Φ−1Ia,cΦ = J(ac ,−
a2+c2

c ) with Φ = diag
((

0 0 −1
0 1 0
1 0 0

)
,
(

0 0 −1
0 1 0
1 0 0

))
∈

∈ SO(3)× SO(3).
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Remark 5. su(2) × su(2) has no abelian complex structures since, for
J(ξ, η), m = CJ̃ (1)

1 ⊕ CJ̃ (1)
3 ⊕ CJ̃ (2)

1 is the solvable Lie algebra [J̃ (1)
1 , J̃

(1)
3 ] =

i(1− iξ)J̃ (1)
1 , [J̃ (1)

3 , J̃
(2)
1 ] = 1+ξ2

η J̃
(2)
1 .

Corollary 4. Xsu(2)⊕su(2) consists of the matrices
(17)

λ2
1ξ −λ1µ1ξ + ν1 λ1ν1ξ + µ1 ηλ1λ2 −ηλ1µ2 ηλ1ν2

−λ1µ1ξ − ν1 µ2
1ξ λ1 − µ1ν1ξ −ηµ1λ2 ηµ1µ2 −ηµ1ν2

λ1ν1ξ − µ1 −λ1 − µ1ν1ξ ν2
1ξ ην1λ2 −ην1µ2 ην1ν2

− ξ2+1
η

λ1λ2
ξ2+1
η

µ1λ2 − ξ2+1
η

ν1λ2 −λ2
2ξ λ2µ2ξ + ν2 −λ2ν2ξ + µ2

ξ2+1
η

λ1µ2 − ξ2+1
η

µ1µ2
ξ2+1
η

ν1µ2 λ2µ2ξ − ν2 −µ2
2ξ λ2 + µ2ν2ξ

− ξ2+1
η

λ1ν2
ξ2+1
η

µ1ν2 − ξ2+1
η

ν1ν2 −λ2ν2ξ − µ2 −λ2 + µ2ν2ξ −ν2
2ξ


with

(18) (ξ, η) ∈ R× R∗,
(
λi
µi
νi

)
∈ S2, i = 1, 2.

Proof. Xsu(2)⊕su(2) consists of the matrices ΦJ(ξ, η)Φ−1, (ξ, η) ∈ R ×
R∗, Φ ∈ SO(3) × SO(3). Let Φ =

(
Φ1 0
0 Φ2

)
∈ SO(3) × SO(3). Φ1,Φ2 can be

written in the form (9) for respectively q1 = (u1, v1, w1, s1), q2 = (u2, v2, w2, s2)
∈ S3. Then ΦJ(ξ, η)Φ−1 is the matrix (17) with, for i = 1, 2,

λi = 2(sivi − uiwi),(19)
µi = 2(siui + viwi),(20)
νi = 2u2

i + 2v2
i − 1.(21)

One has λ2
i + µ2

i + ν2
i = 1. Conversely, for any matrix J of the form (17)

with condition (18) there exist Φ ∈ SO(3) × SO(3) and (ξ, η) ∈ R × R∗

such that J = ΦJ(ξ, η)Φ−1. This amounts to the existence for i = 1, 2 of
qi = (ui, vi, wi, si) ∈ S3 such that equations (19), (20), (21) hold true, which
again follows from the Hopf fibration. �

Corollary 5. Xsu(2)⊕su(2) is a closed 6-dimensional (smooth) submani-
fold of R36 diffeomorphic to R× R∗ × (S2)2.

Proof. Let X the open subset of R36 of those matrices
(
aij
)
1≤i,j≤6

such

that H2N1N2 6= 0, where H2 =
∑3

i=1

∑6
j=4(a

i
j)

2, N1 = (a2
3 − a3

2)
2 + (a1

3 −
a3

1)
2 + (a1

2 − a2
1)

2, N2 = (a5
6 − a6

5)
2 + (a4

6 − a6
4)

2 + (a4
5 − a5

4)
2 and consider

F : R×R∗×
(
S2
)2 → X defined by F (ξ, η, (λ1, µ1, ν1), (λ2, µ2, ν2)) = J , where

J is the matrix (17).
Observe first that F is injective. In fact, ξ, (λ1, µ1, ν1), (λ2, µ2, ν2) can be

retrieved from (aij)F (ξ, η, (λ1, µ1, ν1), (λ2, µ2, ν2)) by the formulas ξ = a1
1+a

2
2+
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a3
3, (λ1, µ1, ν1)

(
a2
3−a3

2√
N1

,
a1
3−a3

1√
N1

,
a1
2−a2

1√
N1

)
, (λ2, µ2, ν2)

(
a5
6−a6

5√
N2

,
a4
6−a6

4√
N2

,
a4
5−a5

4√
N2

)
; hence

F (ξ, η, (λ1, µ1, ν1), (λ2, µ2, ν2))F (ξ′, η′, (λ′1, µ
′
1, ν

′
1), (λ

′
2, µ

′
2, ν

′
2)) implies ξ = ξ′,

(λ′1, µ
′
1, ν

′
1) = (λ1, µ1, ν1), (λ′2, µ

′
2, ν

′
2)(λ2, µ2, ν2), and then η = η′ since λ1λ2 −λ1µ2 λ1ν2

−µ1λ2 µ1µ2 −µ1ν2

ν1λ2 −ν1µ2 ν1ν2

 6= 0.

From the injectivity of F , Xsu(2)⊕su(2)X
+
su(2)⊕su(2) ∪ X−

su(2)⊕su(2) with disjoint
union, where Xε

su(2)⊕su(2) denotes the set of those Js having η the sign of ε

(ε = ±). Now, the map Gε : X → R× R∗
ε ×

(
S2
)2 defined by

Gε(
(
aij
)
)

(
a1

1 + a2
2 + a3

3, ε

√√√√ 3∑
i=1

6∑
j=4

(
aij

)2
,

(
a2

3 − a3
2√

N1
,
a1

3 − a3
1√

N1
,
a1

2 − a2
1√

N1

)
,

(
a5

6 − a6
5√

N2
,
a4

6 − a6
4√

N2
,
a4

5 − a5
4√

N2

))

is a smooth retraction for the restriction Fε of F to R×R∗
ε ×
(
S2
)2
. Hence Fε

is an immersion and the topology of Xε
su(2)⊕su(2) is the induced topology from

X. The corollary follows. �

Remark 6. We may consider u(2) as a subalgebra of su(2)⊕ su(2) by
identifying J1, J2, J3, J4 to J (1)

1 , J
(1)
2 , J

(1)
3 , J

(2)
3 respectively. Then the complex

structure J in (17) leaves u(2) invariant if and only if λ2 = µ2 = 0, ν2 = ±1. For
the restriction of J to u(2) to be (7), one must take λ1 = a1

4
ην2
, µ1 = − a2

4
ην2
, ν1 =

a3
4

ην2
with c = ν2

η . Then

J



(a1
4)

2c2ξ (a3
4 + a2

4a
1
4cξ)c (a3

4a
1
4cξ − a2

4)c 0 0 a1
4

−(a3
4 − a2

4a
1
4cξ)c (a2

4)
2c2ξ (a3

4a
2
4cξ + a1

4)c 0 0 a2
4

(a3
4a

1
4cξ + a2

4)c (a3
4a

2
4cξ − a1

4)c (a3
4)

2c2ξ 0 0 a3
4

0 0 0 0 ν2 0
0 0 0 −ν2 0 0

−(ξ2 + 1)c2a1
4 −(ξ2 + 1)c2a2

4 −(ξ2 + 1)c2a3
4 0 0 −ξ


.

Hence any complex structure on u(2) can be extended in 2 (in general non
equivalent) ways to a complex structure on su(2)⊕ su(2). For example, J(ξ)
can be extended (here a1

4 = a2
4 = 0, a3

4 = 1, c = 1) with ν2 = 1 to J(ξ, 1) or
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with ν2 = −1 to


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 ξ 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 −(1+ξ2) 0 0 −ξ

 which is equivalent to J(ξ,−1). Now,

J(ξ,−1) ∼= J(ξ, 1) ⇔ ξ = 0.

5. SU(2)N

The results of Lemma 4, Theorem 2, and Corollary 3 easily generalize in
the following way.

Lemma 5. For any N ∈ N∗,

Aut (su(2))NSO(3)N ∪

(⋃
σ∈Σ

τσ
(
SO(3)N

))
(disjoint reunion),

where Σ is the set of circular permutations of {1, . . . , N} having no fixed point,
and τσ = (T ij )1≤i,j≤N with the T ij s the 3 × 3 blocks T ij = δi,σ(j) I (I the 3 × 3
identity and δk,` the Kronecker symbol).

Theorem 3. Let J : su(2)N → su(2)N linear. J has zero torsion if and
only if there exist Φ ∈ SO(3)N and M = (ξ3i3j)1≤i,j≤N ∈ gl(N,R) such that
Φ−1JΦ = J(M) with J(M) = (J ij(M))1≤i,j≤N and the J ij(M)s the following
3× 3 blocks

J ii (M)

 0 1 0
−1 0 0
0 0 ξ3i3i

 , 1 ≤ i ≤ N,(22)

J ij(M)

0 0 0
0 0 0
0 0 ξ3i3j

 , 1 ≤ i, j ≤ N, i 6= j.

(Here we used that the analogs of 16|3, 26|3 36|4, 36|5 at the end of the
proof of Theorem 2 are respectively, with i < j,

3i− 2, 3j|3i : ξ3i−2
3j − ξ3i3iξ

3i−1
3j = 0

3i− 1, 3j|3i : ξ3i−1
3j + ξ3i3iξ

3i−2
3j = 0

3i, 3j|3j − 2 : ξ3j−2
3i + ξ3j3j ξ

3j−1
3i = 0

3i, 3j|3j − 1 : −ξ3j−1
3i + ξ3j3j ξ

3j−2
3i = 0

and give ξ3i−2
3j = ξ3i−1

3j ξ3j−2
3i = ξ3j−1

3i = 0. Then all torsion equations vanish.)
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Example 1. For N = 4,

J(M) =



0 1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0

0 0 ξ33 0 0 ξ36 0 0 ξ39 0 0 ξ312

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0

0 0 ξ63 0 0 ξ66 0 0 ξ69 0 0 ξ612

0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0

0 0 ξ93 0 0 ξ96 0 0 ξ99 0 0 ξ912

0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 −1 0 0

0 0 ξ12
3 0 0 ξ126 0 0 ξ129 0 0 ξ1212



,

M


ξ33 ξ36 ξ39 ξ312

ξ63 ξ66 ξ69 ξ612

ξ93 ξ96 ξ99 ξ912

ξ123 ξ126 ξ129 ξ1212

 .

Corollary 6. For even N, any J ∈ Xsu(2)N is equivalent under some
member of SO(3)N to some J(M) = (J ij(M))1≤i,j≤N with M = (ξ3i3j)1≤i,j≤N
such that M2 = −I and J ij(M) defined in (22). J(M) and J(M ′) are equiva-
lent under some member of SO(3)N (respectively τσ

(
SO(3)N

)
, σ ∈ Σ) if and

only if M ′ = M (respectively M ′ = Mσ−1
, Mσ−1

=
(
ξ
3σ−1(i)
3σ−1(j)

)
1≤i,j≤N ). Here

we make use of (τσ)−1 = τσ−1 and τσJ(M ′)(τσ)−1 =
(
J
σ−1(i)
σ−1(j)

(M ′)
)
1≤i,j≤N .

Example 2. For N = 2, Σ consists only of the transposition (1, 2);

M =

 ξ33 ξ36

−1+(ξ33)2

ξ36
−ξ33

 , M ′ =

 ξ′33 ξ′36

−1+(ξ′33)2

ξ′36
−ξ′33

 .

For σ = (1, 2), the condition M ′ = Mσ−1
reads ξ′33 = −ξ33 , ξ′

3
6 −

1+(ξ33)2

ξ36
and is

that of Corollary 3.



17 Left invariant complex structures on U(2) and SU(2)× SU(2) revisited 285

6. U(2)×U(2)

Lemma 6. Aut (u(2)⊕ u(2))H ∪ τH, where τ =
(

0 I
I 0

)
is the switch

between the two factors of u(2)⊕ u(2),

H




Φ1 0 0 0
0 b44 0 b48
0 0 Φ4 0
0 b84 0 b88

, Φ1,Φ4 ∈ SO(3), b44b
8
8 − b48b

8
4 6= 0

 ,

τH




0 0 Φ2 0
0 b44 0 b48
Φ3 0 0 0
0 b84 0 b88

, Φ2,Φ3 ∈ SO(3), b44b
8
8 − b48b

8
4 6= 0

 .

Proof. Analogous to that of Lemma 4. �

Theorem 4. (i) Let J : u(2)⊕ u(2) → u(2)⊕ u(2) linear. J has zero
torsion if and only if there exists Φ ∈

(
SO(3)× R∗

+

)2 ⊂ H and M ∈ gl(4,R)
such that Φ−1JΦ = K(M), where

(23) K(M)



0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 ξ33 ξ34 0 0 ξ37 ξ38
0 0 ξ43 ξ44 0 0 ξ47 ξ48
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 ξ73 ξ74 0 0 ξ77 ξ78
0 0 ξ83 ξ84 0 0 ξ87 ξ88


, M


ξ33 ξ34 ξ37 ξ38

ξ43 ξ44 ξ47 ξ48

ξ73 ξ74 ξ77 ξ78

ξ83 ξ84 ξ87 ξ88

 .

(ii) For M,M ′ ∈ gl(4,R), there exists some Φ ∈ H such that K(M ′) =

= ΦK(M)Φ−1 if and only if there exists
(
b44 b

4
8

b84 b
8
8

)
∈ GL(2,R) such that M ′ =

= GMG−1, with

(24) G


1 0 0 0
0 b44 0 b48
0 0 1 0
0 b84 0 b88

 ∈ GL(4,R).

(iii) For M,M ′ ∈ gl(4,R), there exists Ψ ∈ τH such that K(M ′) =
= ΨK(M)Ψ−1 if and only if there exists Φ ∈ H such that K(M ′) =
= ΦK(M)Φ−1.
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Proof. (i) From Lemma 3 and Theorem 1(i), there exists Φ ∈ (SO(3)×
×R∗

+)2 ⊂ H such that

(25) Φ−1JΦ



0 1 0 0 ξ15 ξ16 ξ17 ξ18
−1 0 0 0 ξ25 ξ26 ξ27 ξ28
0 0 ξ33 ξ34 ξ35 ξ36 ξ37 ξ38
0 0 ξ43 ξ44 ξ35 ξ36 ξ47 ξ48
ξ51 ξ52 ξ53 ξ54 0 1 0 0
ξ61 ξ62 ξ63 ξ64 −1 0 0 0
ξ71 ξ72 ξ73 ξ74 0 0 ξ77 ξ78
ξ81 ξ82 ξ83 ξ84 0 0 ξ87 ξ88


.

Hence we may suppose J of the form (25). The matrix (ξij)1≤i≤4,5≤j≤8 (res-
pectively (ξij)5≤i≤8,1≤j≤4) is the matrix of π1

2 (respectively π2
1) of Lemma 3.

Consider u = π1
2J

(2)
1 , v = π1

2J
(2)
2 , w = π1

2J
(2)
3 , z = π1

2J
(2)
4 . From Lemma 2 (ii)

one has

[u,v] = 0, [v,w] = −v + ξ77u, [u,w] = −u− ξ77v,

[u, z] = −ξ78v, [v, z] = ξ78u, [w, z] = 0,

which implies u = v = 0. With the same reasoning for π2
1, we get

J



0 1 0 0 0 0 ξ17 ξ18
−1 0 0 0 0 0 ξ27 ξ28
0 0 ξ33 ξ34 0 0 ξ37 ξ38
0 0 ξ43 ξ44 0 0 ξ47 ξ48
0 0 ξ53 ξ54 0 1 0 0
0 0 ξ63 ξ64 −1 0 0 0
0 0 ξ73 ξ74 0 0 ξ77 ξ78
0 0 ξ83 ξ84 0 0 ξ87 ξ88


.

Now the torsion equations 17|3, 27|3, 18|3, 28|3, 35|7, 36|7, 45|7, 46|7, give the
four Cramer systems ξ27ξ

3
3− ξ17 = 0, ξ27 + ξ33ξ

1
7 = 0; ξ28ξ

3
3− ξ18 = 0, ξ28 + ξ33ξ

1
8 = 0;

ξ63ξ
7
7 − ξ53 = 0, ξ63 + ξ77ξ

5
3 = 0, ξ64ξ

7
7 − ξ54 = 0, ξ64 + ξ77ξ

5
4 = 0.

Hence ξ17 = ξ27 = ξ18 = ξ28 = 0ξ53 = ξ63 = ξ54 = ξ64 = 0. Then all torsion
equations vanish ([3]).

(ii) Suppose there exists

Φ =


Φ1 0 0 0
0 b44 0 b48
0 0 Φ4 0
0 b84 0 b88

 ∈ H, Φ1,Φ4 ∈ SO(3), b44b
8
8 − b48b

8
4 6= 0,
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such that ΦK(M) = K(M ′)Φ, withM =

 ξ33 ξ
3
4 ξ

3
7 ξ

3
8

ξ43 ξ
4
4 ξ

4
7 ξ

4
8

ξ73 ξ
7
4 ξ

7
7 ξ

7
8

ξ83 ξ
8
4 ξ

8
7 ξ

8
8

 , M ′ =

ξ′33 ξ
′3
4 ξ

′3
7 ξ

′3
8

ξ′43 ξ
′4
4 ξ

′4
7 ξ

′4
8

ξ′73 ξ
′7
4 ξ

′7
7 ξ

′7
8

ξ′83 ξ
′8
4 ξ

′8
7 ξ

′8
8

.

One has ΦK(M) =
(
A B
C D

)
withA =

(
A1 ∗

∗ ∗ ∗ ∗

)
, D =

(
D1 ∗

∗ ∗ ∗ ∗

)
,

A1 = Φ1

(
0 1 0
−1 0 0
0 0 ξ33

)
, D1 = Φ4

(
0 1 0
−1 0 0
0 0 ξ77

)
, and K(M ′)Φ =

(
A′ B′

C′ D′

)
with

A′ =
(

A′1 ∗
∗ ∗ ∗ ∗

)
, D′ =

(
D′

1 ∗
∗ ∗ ∗ ∗

)
, A′1 =

(
0 1 0
−1 0 0
0 0 ξ′33

)
Φ1, D

′
1 =

=
(

0 1 0
−1 0 0
0 0 ξ′77

)
Φ4. Hence ξ′33 = ξ33 , ξ

′7
7 = ξ77 , and Φ1 = diag(R1, 1), Φ4 =

= diag(R4, 1), R1, R4 ∈ SO(2). Now, since

Φ =


R1 0 0 0 0 0
0 1 0 0 0 0
0 0 b44 0 0 b48
0 0 0 R4 0 0
0 0 0 0 1 0
0 0 b84 0 0 b88

 ,

we reindex the basis as the new basis (J (1)
1 , J

(1)
2 , J

(2)
1 , J

(2)
2 , J

(1)
3 , J

(1)
4 , J

(2)
3 , J

(2)
4 ),

so that Φ, K(M), K(M ′) have respective matrices in the new basis

Φ =


R1 0 0 0 0 0
0 R4 0 0 0 0
0 0 1 0 0 0
0 0 0 b44 0 b48
0 0 0 0 1 0
0 0 0 b84 0 b88

 ,

K(M) =


0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 M

 , K(M ′) =


0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 M ′

 .

The conclusion follows.
(iii) One has τK(M ′)τ = K(τ1M ′τ1) with τ1 the same as τ yet with

2 × 2 blocks: τ1

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
. Now, let Ψ = τΦ ∈ τH, Φ ∈ H. Then K(M ′) =

= ΨK(M)Ψ−1 if and only if ΦK(M)Φ−1 = τK(M ′)τK(τ1M ′τ1), i.e., there
exists

(
b44 b

4
8

b84 b
8
8

)
∈ GL(2,R) such that τ1M ′τ1 = GMG−1 with G as in (24), i.e.,
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M ′ = (τ1G)M(τ1G)−1 = G1MG−1
1 with G1 = τ1G

(
1 0 0 0
0 b88 0 b84
0 0 1 0
0 b48 0 b44

)
which is simply

the matrix corresponding to
(
b88 b

8
4

b48 b
4
4

)
∈ GL(2,R) in the formula (24). �

Corollary 7. Any J ∈ Xu(2)⊕u(2) is equivalent under some member
of
(
SO(3)× R∗

+

)2 to K(M) in (23) with M ∈ GL(4,R), M2 = −I. K(M),

K(M ′) are equivalent if and only if there exists some
(
b44 b

4
8

b84 b
8
8

)
∈ GL(2,R) such

that M ′ = GMG−1 with G as in (24).

Proof. Follows readily from Theorem 4. �

7. U(2)N

The results of Lemma 6, Theorem 4 and Corollary 7 generalize in the
following way.

Lemma 7. ∀N ∈ N∗, Aut (u(2))NHN ∪
(⋃

σ∈Σ τσHN

)
(disjoint reunion)

where
• HN =

{
(U ij)1≤i,j≤N ; U ii

(
Φi 0
0 bii

)
, U ij

(
0 0
0 bji

)
(i 6= j), Φi ∈ SO(3),

det (bji ) 6= 0
}

;
• Σ is the set of circular permutations of {1, . . . , N} having no fixed

point, and τσ = (T ij )1≤i,j≤N with the T ij s the 4× 4 blocks T ij = δi,σ(j) I (I the
4× 4 identity and δk,` the Kronecker symbol).

Theorem 5. Let J : u(2)N → u(2)N . J has zero torsion if and only if
there exists Φ ∈

(
SO(3)× R∗

+

)N ⊂ HN and M = (M i
j)1≤i,j≤N ∈ gl(2N,R),

M i
j

(
ξ4i−1
4j−1 ξ4i−1

4j

ξ4i4j−1 ξ4i4j

)
, such that Φ−1JΦ = K(M) with

(26) K(M) = (Ki
j(M))1≤i,j≤N

and the Ki
j(M)s the 4× 4 blocks

Ki
i (M) =

 0 1 0
−1 0 0
0 0 M i

i

 , 1 ≤ i ≤ N,

Ki
j(M) =

 0 0 0
0 0 0
0 0 M i

j

 , 1 ≤ i, j ≤ N, i 6= j.
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(Here we used that the analogs of 17|3, 27|3 18|3, 28|3 35|7, 36|7 45|7, 46|7
at the end of (i) in the proof of Theorem 4 are respectively, with i < j,

4i− 3, 4j − 1|4i− 1 : ξ4i−3
4j−1 − ξ4i−1

4i−1ξ
4i−2
4j−1 = 0

4i− 2, 4j − 1|4i− 1 : ξ4i−2
4j−1 + ξ4i−1

4i−1ξ
4i−3
4j−1 = 0

4i− 3, 4j|4i− 1 : ξ4i−3
4j − ξ4i−1

4i−1ξ
4i−2
4j = 0

4i− 2, 4j|4i− 1 : ξ4i−2
4j + ξ4i−1

4i−1ξ
4i−3
4j = 0

4i− 1, 4j − 3|4j − 1 : ξ4j−3
4i−1 − ξ4j−1

4j−1ξ
4j−2
4i−1 = 0

4i− 1, 4j − 2|4j − 1 : ξ4j−2
4i−1 + ξ4j−1

4j−1ξ
4j−3
4i−1 = 0

4i, 4j − 3|4j − 1 : ξ4j−3
4i − ξ4j−1

4j−1ξ
4j−2
4i = 0

4i, 4j − 2|4j − 1 : ξ4j−2
4i + ξ4j−1

4j−1ξ
4j−3
4i = 0

and give ξ4i−3
4j−1 = ξ4i−2

4j−1ξ
4i−3
4j = ξ4i−2

4j ξ4j−3
4i−1 = ξ4j−2

4i−1 ξ
4j−3
4i = ξ4j−2

4i 0. Then all
torsion equations vanish.)

Corollary 8. Any J ∈ Xu(2)N is equivalent under some member of
(SO(3) × R∗

+)N to K(M) in (26) with M ∈ GL(2N,R), M2 = −I. K(M),
K(M ′) are equivalent if and only if there exists some

(
b4i4j
)
1≤i,j≤N ∈ GL(N,R)

such that M ′ = GMG−1 with G = (Gij(M))1≤i,j≤N , Gii
(

1 0

0 b4i4i

)
, Gij

(
0 0

0 b4i4j

)
,

i 6= j.

Remark 7. The closed set R = {M ∈ GL(2N,R); M2 = −I} consists of
the conjugates of T =

(
0 −IN
IN 0

)
(IN the N × N identity) under the action

of GL(2N,R). Hence it is a 2N2-dimensional submanifold of R4N2
with a

diffeomorphism

χ : GL(2N,R) / S → R,

S =
{
Q =

(
R −S
S R

)
; R,S ∈ GL(N,R), detQ 6= 0

}
the stabilizer of T , and χ

defined by χ [P ] = PT P−1 for [P ] the class mod S of P ∈ GL(2N,R). For

N = 2, χ
[(

−η 0
ξ 1

)]
=
(

ξ η

− 1+ξ2

η
−ξ

)
, (ξ, η) ∈ R × R∗. For general N and for

G ∈ GL(2N,R), M = χ[P ], M ′χ[P ′] ∈ R, GMG−1χ[GP ] and the condition
M ′ = GMG−1 reads [P ′][GP ].
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8. LOCAL CHART AND A REPRESENTATION FOR (U(2),J(ξ))

8.1. Local chart

For any fixed ξ ∈ R, denote simply J the complex structure J(ξ) on u(2)
and by G the group U(2) endowed with the left invariant structure of complex
manifold defined by J . For any open subset V ⊂ U(2), the space HC(V ) of
complex valued holomorphic functions on V (considered here as a subset of
G) consists of all complex smooth functions f on V which are annihilated by
all X̃−

j = Xj + iJXj , 1 ≤ j ≤ 4, with (Xj)1≤j≤4 (respectively (JXj)) the left
invariant vector fields associated to the basis (Jj)1≤j≤4 of u(2) (respectively
to (J Jj)). One has X̃−

1 = X1 − iX2, X̃
−
2 = iX̃−

1 , X̃
−
4 = iX3 + (1 − iξ)X4,

X̃−
3 = −i(1 + iξ)X̃−

4 , hence

(27) HC(V ) = {f ∈ C∞(V ); X̃−
1 fX̃−

4 f = 0}.

As is known, the map S1 × SU(2) → U(2) defined by

(ζ, A) 7→
(
ζ 0
0 1

)
A

is a diffeomorphism of manifolds (not of groups). Introducing Euler angles as
coordinates in the open subset Ω = SU(2) \

(
eRJ1 ∪ eπJ3eRJ1

)
of SU(2), one

gets the coordinates (s, θ, ϕ, ψ) in the open subset

(28) V =
(
S1 \ {−1}

)
× Ω

such that u defined by

(29) u(s, θ, ϕ, ψ)
(

eis 0
0 1

)
eϕJ3eθJ1eψJ3

(
eisei

ϕ+ψ
2 cos θ

2
ieisei

ϕ−ψ
2 sin θ

2

ie−i
ϕ−ψ

2 sin θ
2

e−i
ϕ+ψ

2 cos θ
2

)
is a diffeomorphism of ]− π, π[ × ]0, π[ × ]0, 2π[ × ]− 2π, 2π[ on V. Then one
gets on V (see e.g. [12], p. 141)

X1 = cosψ
∂

∂θ
+

sinψ
sin θ

∂

∂ϕ
− cot θ sinψ

∂

∂ψ
,

X2 = − sinψ
∂

∂θ
+

cosψ
sin θ

∂

∂ϕ
− cot θ cosψ

∂

∂ψ
,

X3 =
∂

∂ψ
,

X4 =
∂

∂s
− ∂

∂ϕ
.
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Hence f ∈ C∞(V ) is in HC(V ) if and only if it satisfies the two equations

i sin θ
∂f

∂θ
+
∂f

∂ϕ
− cos θ

∂f

∂ψ
= 0,

i
∂f

∂ψ
+ (1− iξ)

(
∂f

∂s
− ∂f

∂ϕ

)
= 0.

The two functions

w1 = ei(s+ϕ) cot
θ

2
,(30)

w2 = e
(1+iξ) s

2(1+ξ2) eiψ
2

√
sin θ(31)

are holomorphic on V. Let F : V → C2 defined by F = (w1, w2). It is easily
seen that F is injective, with jacobian − 1

4(1+ξ2)
e

s
1+ξ2 (cot θ2)2 6= 0, hence F is

a biholomorphic bijection of V onto an open subset F (V ) of C2, i.e., (V, F ) is
a chart of G. F (V ) is the set of those (w1, w2) ∈ C2 satisfying the following
conditions, where r1 = |w1|, r2 = |w2| and ω(r1, r2) = log r2 − 1

2 log 2r1
1+r21

:

r1r2 6= 0,
√

2r1
1+r21

e
− π

2(1+ξ2) < r2 <
√

2r1
1+r21

e
π

2(1+ξ2) , argw1 6≡ 2(1 + ξ2)ω(r1, r2)

mod 2π, argw2 6≡ ξω(r1, r2) + π mod 2π. For example, if ξ = 0,

V
⋃
r1>0

⋃
e−

π
2 y(r1)<r2<e

π
2 y(r1)

((
C(1)
r1 \ {arg ≡ 2ω(r1, r2)}

)
×
(
C(2)
r2 \ {arg ≡ π}

))
,

where Cjrj , j = 1, 2 is the circle with radius rj in the wj-plane and y(x) =

=
√

2x
1+x2 , x > 0.

8.2. A representation on a space of holomorphic functions

As U(2) is compact, there are no nonconstant holomorphic functions
on the whole of U(2). Instead, we consider the space HC(V ) of holomorphic
functions on the open subset V (28), and we compute (as kind of substitute
for the regular representation) the representation λ of the Lie algebra u(2) we
get by Lie derivatives on HC(V ). First, note that for any x =

(
a b
c d

)
∈ V as in

(29), the complex coordinates w1, w2 of x (30), (31) satisfy

w1 = −ie−isa

b̄
,(

w2
)2 = 2iab̄ es

1+iξ

1+ξ2 .
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Then, one gets for the complex coordinates w1
e−tJ1x

, w2
e−tJ1x

of e−tJ1x (x ∈ V,
t ∈ R sufficiently small)

w1
e−tJ1x =

1 + w1 cot t
2

cot t
2 − w1

,

(w2
e−tJ1x)

2 =
(
w2
)2(cos t+

sin t
2

1−
(
w1
)2

w1

)
.

Whence for any f ∈ HC(V ), denoting J1f instead of λ(J1)f ,

(J1f) (w1, w2) =
[

d
dt
f(w1

e−tJ1x, w
2
e−tJ1x)

]
t=0

1 + (w1)2

2
∂f

∂w1
+

+
w2
(
1− (w1)2

)
4w1

∂f

∂w2
.

In the same way,

w1
e−tJ2x = −i

i sin t
2 + w1 cos t

2

−i cos t
2 + w1 sin t

2

,

(w2
e−tJ2x)

2 =
(
w2
)2(cos t+ i

sin t
2

1 +
(
w1
)2

w1

)
,

(J2f) (w1, w2) =
i(1− (w1)2)

2
∂f

∂w1
+

iw2
(
1 + (w1)2

)
4w1

∂f

∂w2
,

w1
e−tJ3x = e−itw1, (w2

e−tJ3x)
2 =

(
w2
)2
,

(J3f) (w1, w2) = −iw1 ∂f

∂w1
.

Finally,

w1
e−tJ4x = w1, (w2

e−tJ4x)
2 =

(
w2
)2 e−t

1+iξ

1+ξ2 ,

(J4f) (w1, w2) = − 1 + iξ
1 + ξ2

w2 ∂f

∂w2
.

In the complexification sl(2)⊕ CJ4 of u(2), introduce as usual

H± = iJ1 ∓ J2, H3 = iJ3,

so that

[H3,H±] = ±H±, [H+,H−] = 2H3.
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Then, extending the representation λ to sl(2) ⊕ CJ4, one has, with H4 =
−(1− iξ)J4,

(H+f) (w1, w2) = i
(

(w1)2
∂f

∂w1
− 1

2
w1w2 ∂f

∂w2

)
,

(H−f) (w1, w2) = i
(
∂f

∂w1
+

w2

2w1

∂f

∂w2

)
,

(H3f) (w1, w2) = w1 ∂f

∂w1
, (H4f) (w1, w2) = w2 ∂f

∂w2
.

8.3. A subrepresentation

We restrict λ to H(C∗×C∗), C∗ = C \ {0}, and denote ϕp,q the function
ϕp,q(w1, w2) = (w1)p(w2)q for p, q ∈ Z. The system (ϕp,q)p,q∈Z is total in
H(C∗ × C∗), and one has

H+ ϕp,q = i
(
p− q

2

)
ϕp+1,q,(32)

H− ϕp,q = i
(
p+

q

2

)
ϕp−1,q,(33)

H3 ϕp,q = pϕp,q,(34)

H4 ϕp,q = q ϕp,q.(35)

For any q ∈ Z, the subspace Hq of functions of the form (w2)qg(w1), g ∈
H(C∗), is a closed invariant subspace of H(C∗ × C∗), and H(C∗ × C∗) is the
closure of

⊕
q∈ZHq.

8.4. A lemma

Lemma 8. Let E = H(C∗) the Fréchet space of holomorphic functions
of the complex variable z on C∗. Let F be any closed vector subspace of E
that is invariant by the operator z d

dz . Let f ∈ F and f(z) =
∑+∞

p=−∞ cpz
p its

Laurent expansion in C∗. If for some p ∈ Z, cp 6= 0, then the function z 7→ zp

belongs to F .

Proof. We show first that the function z 7→ f(eiθz) belongs to F , ∀θ ∈ R,
∀f ∈ F . Let f ∈ F and f(z) =

∑+∞
p=−∞ cpz

p its Laurent expansion in C∗.
Since it is uniformly and absolutely convergent on compact subsets of C∗, and
since the operator H = z d

dz is continuous on E ,

(iθ)k

k!
(Hkf)(z)

∞∑
p=−∞

cp
(iθp)k

k!
zp, ∀k ∈ N, ∀θ ∈ R, ∀z ∈ C∗.
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On the other hand, for any fixed θ ∈ R, the double series
+∞∑
k=0

+∞∑
p=−∞

cp
(iθp)k

k!
zp

is absolutely and uniformly summable in the annulus A(r,R) for any 0 < r <
R < +∞ since

+∞∑
k=0

+∞∑
p=−∞

|cp|
(|θ| |p|)k

k!
|z|p ≤

∑
p<0

|cp|
(
e−|θ|r

)p +
∑
p>0

|cp|
(
e|θ|R

)p
< +∞.

From the associativity theorem for summable families, we have

f(eiθz)
+∞∑
k=0

(iθ)k

k!
(Hkf)(z)

with the series uniformly and absolutely convergent on compact subsets of C∗.
The conclusion follows, since Hkf ∈ F , ∀k. Now we use the same trick as in
[5], p. 14. For any z ∈ C∗, denote fz the periodic function on R : θ 7→ f(eiθz).
Its Fourier expansion is f(eiθz) =

∑+∞
p=−∞ c̃p(z)eipθ where

c̃p(z) =
1
2π

∫ 2π

0
f(eiθz)e−ipθdθ.

The function z 7→ c̃p(z) belongs to F as the right-hand side is a limit in
E of linear combinations of functions z 7→ f(eiθz). But with the Laurent
expansion of f one gets f(eiθz) =

∑+∞
p=−∞ cpz

peipθ. For any z, that series is
a trigonometric series that converges uniformly on R, hence it coincides with
the Fourier series of fz and c̃p(z) = cpz

p, ∀p ∈ Z. Hence if for some p ∈ Z,
cp 6= 0, then the function z 7→ zp belongs to F . �

8.5. A closer look at the subrepresentation

Introduce the Casimir C = H+H− + (H3)
2 −H3. On Hq, C = u(u + 1)

with u = q
2 . Now, we distinguish three cases. We use both the notation ↑qu,

Dq(2k), etc., of [8], Theorem 2.3, for representations of u(2) and the usual
notation of, e.g., [9], 7.3, ↑u, D(k), etc. for representations of sl(2). One has
↑qu = ↑u ⊗ q, Dq(2k) = D(k) ⊗ q etc.

Case 1: q = −2k, k ∈ N \ {0}. Then from (32), (33), the closed
subspace H↑

q (respectively H↓
q) generated by {ϕk+n,q, n ∈ N} (respectively

{ϕ−k−n,q, n ∈ N}) which consists of the functions (w2)−2k(w1)kg(w1) (res-
pectively (w2)−2k (w1)−kg( 1

w1 )), g ∈ H(C), is invariant and topologically ir-
reducible from Lemma 8. H↑

q = ↑q−k= ↑−k ⊗ q, H↓
q = ↓q−k= ↓−k ⊗ q. Hq is
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indecomposable and Hq/
(
H↑
q ⊕ H↓

q

)
is topologically irreducible and equal to

Dq(2(k − 1)) = D(k−1) ⊗ q, i.e., Hq is a nontrivial extension of Dq(2(k − 1))
by ↑q−k ⊕ ↓q−k .

Case 2: q = 2k, k ∈ N. The closed subspace HD
q generated by {ϕ−k+n,q,

n ∈ N, 0 ≤ n ≤ 2k}, which consists of the functions (w2)2k(w1)−kP (w1), P ∈
C[w1], degP ≤ 2k, is invariant and topologically irreducible from Lemma 8,
and HD

q = Dq(2k) = D(k) ⊗ q. There are exactly 2 closed invariant (nontrivi-
al) subspaces containing HD

q . Each one is indecomposable, with topologically
irreducible quotient by HD

q equal respectively to ↑q−k−1 or ↓q−k−1 .

Case 3: q 6∈ 2Z. In that case Hq = Dq(u, 0) is topologically irreducible.
We see that λ is quite different from the regular representation, since the

differentials of the representation in the unitary dual of U(2) are D(`) ⊗ m,
2` ∈ N, m ∈ Z, with 2`+m even ([1], p. 87).

9. CHART FOR (SU(2)× SU(2),J(ξ, η))

In this last section, we compute an holomorphic chart for J(ξ, η), (ξ, η) ∈
∈ R × R∗, in the open subset W = Ω × Ω of SU(2) × SU(2) with Euler
angles coordinates (θ1, φ1, ψ1, θ2, φ2, ψ2). The space HC(W ) of complex valued
holomorphic functions on W consists of all complex smooth functions f on W
which are annihilated by all

X̃
(k)
j

−
= X

(k)
j + iJX(k)

j , 1 ≤ j ≤ 3, 1 ≤ k ≤ 2,(
X

(k)
j

)
the left invariant vector fields associated to the basis

(
J

(1)
1 , J

(1)
2 , J (1)

3 ,

J
(2)
1 , J

(2)
2 , J (2)

3

)
of su(2) ⊕ su(2). One has X̃

(k)
1

−
= X

(k)
1 − iX(k)

2 , X̃
(k)
2

−
=

= iX̃(k)
1

−
, k = 1, 2, X̃(2)

3

−
= iηX(1)

3 + (1− iξ)X(2)
3 , X̃

(1)
3

−
− i1+iξ

η X̃
(2)
3

−
. For

k = 1, 2,

X
(k)
1 = cosψk

∂

∂θk
+

sinψk
sin θk

∂

∂ϕk
− cot θk sinψk

∂

∂ψk
,

X
(k)
2 = − sinψk

∂

∂θk
+

cosψk
sin θk

∂

∂ϕk
− cot θk cosψk

∂

∂ψk
,

X
(k)
3 =

∂

∂ψk
.

Hence f ∈ C∞(W ) is in HC(W ) if and only if it satisfies the equations

i sin θ1
∂f

∂θ1
+

∂f

∂ϕ1
− cos θ1

∂f

∂ψ1
= 0,
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i sin θ2
∂f

∂θ2
+

∂f

∂ϕ2
− cos θ2

∂f

∂ψ2
= 0, iη

∂f

∂ψ1
+ (1− iξ)

∂f

∂ψ2
= 0.

The functions

z1 = eiϕ1 cot
θ1
2
, z2 = eiϕ2 cot

θ2
2
, z3 = ei

ψ1
2 e

η(1+iξ)

1+ξ2
ψ2
2
√

sin θ1
√

sin θ2

are holomorphic on W. Let Z : W → C3 defined by Z = (z1, z2, z3). Z is
injective, with jacobian − η

4(1+ξ2)
e

η

1+ξ2
ψ2(cot θ12 )2(cot θ22 )2 6= 0, hence Z is a

biholomorphic bijection of W onto an open subset of C3, i.e., (W,Z) is a local
chart for SU(2)× SU(2) equipped with the complex structure J(ξ, η).
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[1] T. Bröcker and T. Dieck, Representations of Compact Lie Groups. Graduate Texts in
Math. 98. Springer, New York, 1985.

[2] J.-Y. Charbonnel and H.O. Khalgui, Classification des structures CR invariantes pour
les groupes de Lie compacts. J. Lie Theory 14 (2004), 165–198.

[3] http://www.u-bourgogne.fr/monge/l.magnin/CSu2/CSu2index.html or
http://math.u-bourgogne.fr/IMB/magnin/public html/CSu2/CSu2index.html

[4] N.A. Daurtseva, Invariant complex structures on S3 × S3. Electronic journal “Investi-
gated in Russia”, 2004, 888–893.
English version http://zhurnal.ape.relarn.ru/articles/2004/081e.pdf

Russian version http://zhurnal.ape.relarn.ru/articles/2004/081.pdf

[5] S. Helgason, Groups and Geometric Analysis (Integral Geometry, Invariant Differential
Operators and Spherical Functions). Academic Press, Orlando, 1984.

[6] L. Magnin, Complex structures on indecomposable 6-dimensional nilpotent real Lie al-
gebras. Internat. J. Alg. Comput. 17 (2007), 77–113.

[7] L. Magnin, Left invariant complex structures on real 6-dimensional simply connected
indecomposable nilpotent Lie groups. Internat. J. Alg. Comput. 17 (2007), 115–139.

[8] W. Miller Jr., Lie Theory and Special Functions. Academic Press, New York, 1968.
[9] W. Miller Jr., Symmetry Groups and their Applications. Academic Press, New York,

1972.
[10] A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex mani-

folds, Ann. of Math. 65 (1957), 391–404.
[11] T. Sasaki, Classification of left invariant complex structures on GL(2, R) and U(2).

Kumamoto J. Sci. (Math) 14 (1981), 115–123.
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