LEFT INVARIANT COMPLEX STRUCTURES ON U(2) AND $SU(2) \times SU(2)$ REVISITED

LOUIS MAGNIN

We compute the torsion-free linear maps $J : \mathfrak{su}(2) \to \mathfrak{su}(2)$, deduce a new description of the complex structures and their equivalence classes under the action of the automorphism group for $\mathfrak{u}(2)$ and $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$, and prove that in both cases the set of complex structures is a differentiable manifold. The situations of $\mathfrak{u}(2) \oplus \mathfrak{u}(2)$, $\mathfrak{su}(2)^N$ and $\mathfrak{u}(2)^N$ are also considered. Extension of complex structures from $\mathfrak{u}(2)$ to $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$ are studied, local holomorphic charts given, and attention is paid to what representations of $\mathfrak{u}(2)$ we can get from a substitute to the regular representation on a space of holomorphic functions for the complex structure.

AMS 2000 Subject Classification: 17B30.

Key words: complex structure, CR-structure, zero torsion, unitary matrice, Lie algebra, representation, holomorphic functions.

1. INTRODUCTION

The left invariant complex structures on the group U(2) of unitary 2×2 matrices, i.e., complex structures on its Lie algebra $\mathfrak{u}(2)$, have been computed for the first time, up to equivalence, in [11] in the algebraic approach, that is by determining the complex Lie subalgebras \mathfrak{m} of the complexification $\mathfrak{g}_{\mathbb{C}}$ of $\mathfrak{u}(2)$ such that $\mathfrak{g}_{\mathbb{C}} = \mathfrak{m} \oplus \overline{\mathfrak{m}}$, bar denoting conjugation. More recently, and more generally, all left invariant maximal rank *CR*-structures on any finite dimensional compact Lie group have been classified up to equivalence in [2]. Independently, in the case of $SU(2) \times SU(2)$, the complex structures on $\mathfrak{su}(2) \oplus$ $\mathfrak{su}(2)$ have been computed in [4] by direct approach and computations.

In the present paper, we first compute the torsion-free linear maps $J : \mathfrak{su}(2) \to \mathfrak{su}(2)$. They appear to be maximal rank *CR*-structures, of the *CR*0-type in the classification of [2]. Then we show how to deduce, with the computer assisted methods of [6], a new description of the complex structures and their equivalence classes under the action of the automorphism group for the specific cases of $\mathfrak{u}(2)$ and $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$, without resorting to the general results of [2]. Our method, which consists in growing dimensions starting with

REV. ROUMAINE MATH. PURES APPL., 55 (2010), 4, 269-296

torsion-free linear maps of $\mathfrak{su}(2)$, is new and very different from that of [4] in the case $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$.

The cases $\mathfrak{u}(2) \oplus \mathfrak{u}(2)$, $\mathfrak{su}(2)^N$, $\mathfrak{u}(2)^N$ are considered as well. In these cases, the set of complex structures is a differentiable manifold, though we write down explicit proofs only in the cases of $\mathfrak{u}(2)$ and $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$. We also examine the extension of complex structures from $\mathfrak{u}(2)$ to $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$, compute local complex charts for the complex manifolds associated to the complex structures, and determine what representations of $\mathfrak{u}(2)$ we can get from a substitute to the regular representation on a space of holomorphic functions for the complex structure.

2. PRELIMINARIES

Let G_0 be a connected finite dimensional real Lie group, with Lie algebra \mathfrak{g} . An almost complex structure on \mathfrak{g} is a linear map $J : \mathfrak{g} \to \mathfrak{g}$ such that $J^2 = -1$. The almost complex structure J is said to be *integrable* if it satisfies the condition

(1)
$$[JX, JY] - [X, Y] - J[JX, Y] - J[X, JY] = 0, \quad \forall X, Y \in \mathfrak{g}.$$

From the Newlander-Nirenberg theorem [10], condition (1) means that G_0 can be given the structure of a complex manifold with the same underlying real structure and such that the canonical complex structure on G_0 is the left invariant almost complex structure \hat{J} associated to J. (For more details, see [6], [7].) By a complex structure on \mathfrak{g} , we will mean an *integrable* almost complex structure on \mathfrak{g} , that is one satisfying (1).

Let J a complex structure on \mathfrak{g} and denote by $G = (G_0, J)$ the group G_0 endowed with the structure of complex manifold defined by \widehat{J} . The complexification $\mathfrak{g}_{\mathbb{C}}$ of \mathfrak{g} splits as $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g}^{(1,0)} \oplus \mathfrak{g}^{(0,1)}$ where $\mathfrak{g}^{(1,0)} = \{\widetilde{X} = X - iJX; X \in \mathbb{C}\}$ $\in \mathfrak{g}\}, \mathfrak{g}^{(0,1)} = \{\widetilde{X}^- X + iJX; X \in \mathfrak{g}\}.$ We will denote $\mathfrak{g}^{(1,0)}$ by \mathfrak{m} . The integrability of J amounts to \mathfrak{m} being a complex subalgebra of $\mathfrak{g}_{\mathbb{C}}$. In that way the set of complex structures on \mathfrak{g} can be identified with the set of all complex subalgebras \mathfrak{m} of $\mathfrak{g}_{\mathbb{C}}$ such that $\mathfrak{g}_{\mathbb{C}} = \mathfrak{m} \oplus \overline{\mathfrak{m}}$, bar denoting conjugation in $\mathfrak{g}_{\mathbb{C}}$. In particular, J is said to be abelian if \mathfrak{m} is. That is the algebraic approach. Our approach is more elementary. We fix a basis of \mathfrak{g} , write down the torsion equations $ij|k \ (1 \leq i, j, k \leq n)$ obtained by projecting on x_k the equation $[Jx_i, Jx_j] - [x_i, x_j] - J[Jx_i, x_j] - J[x_i, Jx_j] = 0$, where $(x_j)_{1 \le j \le n}$ is the basis of $\mathfrak g$ we use, and solve them in steps by specific programs with the computer algebra system *Reduce* by A. Hearn. These programs are downloadable in the electronic archive [3]. From now on, we will use the same notation J for J and \widehat{J} as well. For any $x \in G_0$, the complexification $T_x(G_0)_{\mathbb{C}}$ of the tangent space also splits as the direct sum of the holomorphic vectors

 $T_x(G_0)^{(1,0)} = \{ \widetilde{X}X - iJX; X \in T_x(G_0) \}$ and the antiholomorphic vectors $T_x(G_0)^{(0,1)} = \{ \widetilde{X}^-X + iJX; X \in T_x(G_0) \}$. For any open subset $V \subset G_0$, the space $H_{\mathbb{C}}(V)$ of complex valued holomorphic functions on V consists of all complex smooth functions f on V which are annihilated by any antiholomorphic vector field. This is equivalent to f being annihilated by all

$$\overline{X}_j^- = X_j + \mathrm{i}JX_j, \quad 1 \le j \le n$$

with $(X_j)_{1 \le j \le n}$ the left invariant vector fields associated to the basis $(x_j)_{1 \le j \le n}$ of \mathfrak{g} . Hence

$$H_{\mathbb{C}}(V) = \{ f \in C^{\infty}(V); \ \widetilde{X}_{j}^{-} f = 0, \ \forall j, \ 1 \le j \le n \}.$$

Finally, the automorphism group $\operatorname{Aut} \mathfrak{g}$ of \mathfrak{g} acts on the set $\mathfrak{X}_{\mathfrak{g}}$ of all complex structures on \mathfrak{g} by $J \mapsto \Phi \circ J \circ \Phi^{-1} \quad \forall \Phi \in \operatorname{Aut} \mathfrak{g}$. Two complex structures J, J' on \mathfrak{g} are said to be *equivalent* if they are on the same $\operatorname{Aut} \mathfrak{g}$ orbit. For simply connected G_0 , this amounts to requiring the existence of an $f \in \operatorname{Aut} G_0$ such that $f : (G_0, J) \to (G_0, J')$ is biholomorphic.

3. **U**(2)

Consider the Lie algebra $\mathfrak{su}(2)$ along with its basis $\{J_1, J_2, J_3\}$ defined by $J_1 = \frac{i}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, J_2 = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, J_3 = \frac{i}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. One has

(2)
$$[J_1, J_2] = J_3, \quad [J_2, J_3] = J_1, \quad [J_3, J_1] = J_2$$

and the corresponding one-parameter subgroups of SU(2) are $e^{tJ_1} \begin{pmatrix} \cos \frac{t}{2} & i\sin \frac{t}{2} \\ i\sin \frac{t}{2} & \cos \frac{t}{2} \end{pmatrix}$, $e^{tJ_2} \begin{pmatrix} \cos \frac{t}{2} & -\sin \frac{t}{2} \\ \sin \frac{t}{2} & \cos \frac{t}{2} \end{pmatrix}$, $e^{tJ_3} \begin{pmatrix} e^{i\frac{t}{2}} & 0 \\ 0 & e^{-i\frac{t}{2}} \end{pmatrix}$. By means of the basis $\{J_1, J_2, J_3\}$, $\mathfrak{su}(2)$ can be identified to the euclidean vector space \mathbb{R}^3 the bracket being then identified to the vector product \wedge . Then $\operatorname{Aut}\mathfrak{su}(2)$ consists of the matrices $A = \operatorname{Mat}(\mathbf{a}, \mathbf{b}, \mathbf{a} \wedge \mathbf{b})$ with \mathbf{a}, \mathbf{b} any two orthogonal normed vectors in \mathbb{R}^3 , i.e., $\operatorname{Aut}\mathfrak{su}(2) \cong SO(3)$. Now, $\mathfrak{u}(2) = \mathfrak{su}(2) \oplus \mathfrak{c}$ where $\mathfrak{c} = \mathbb{R} J_4$ is the center of $\mathfrak{u}(2)$, $J_4 = \frac{i}{2} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. We use the basis (J_1, J_2, J_3, J_4) for $\mathfrak{u}(2)$. \mathbb{R}^* stands for $\mathbb{R} \setminus \{0\}$.

LEMMA 1. Aut $\mathfrak{u}(2) \cong SO(3) \times \mathbb{R}^*$.

Proof. As the center is invariant, any $\Phi \in \operatorname{Aut} \mathfrak{u}(2)$ is of the form

$$\Phi = \begin{pmatrix} & & 0 \\ A & & 0 \\ & & 0 \\ b_1^4 & b_2^4 & b_3^4 & b_4^4 \end{pmatrix}$$

with $A \in \operatorname{Aut} \mathfrak{su}(2) \cong SO(3)$ and $b_4^4 \in \mathbb{R}^*$. Necessarily, $b_1^4 = b_2^4 = b_3^4 = 0$, since $\Phi(J_k) \in [\mathfrak{u}(2), \mathfrak{u}(2)] = \mathfrak{su}(2), 1 \leq k \leq 3$. \Box

LEMMA 2. Let $J : \mathfrak{su}(2) \to \mathfrak{su}(2)$ linear. J has zero torsion, i.e., satisfies (1), if and only if there exists $R \in SO(3)$ such that

(3)
$$R^{-1}JR\begin{pmatrix} 0 & 1 & 0\\ -1 & 0 & 0\\ 0 & 0 & \xi_3^3 \end{pmatrix}.$$

Proof. Let $J = (\xi_j^i)_{1 \le i,j \le 3}$ in the basis (J_1, J_2, J_3) . The 9 torsion equations are

$$\begin{split} &12|1 & \xi_3^1(\xi_2^2+\xi_1^1)+\xi_1^3(\xi_2^2-\xi_1^1)-\xi_2^3(\xi_1^2+\xi_2^1)=0, \\ &12|2 & \xi_3^2(\xi_2^2+\xi_1^1)-\xi_2^3(\xi_2^2-\xi_1^1)-\xi_1^3(\xi_1^2+\xi_2^1)=0, \\ &12|3 & \xi_2^1\xi_1^2-\xi_2^2\xi_1^1-(\xi_1^3)^2-(\xi_2^3)^2+\xi_3^3(\xi_2^2+\xi_1^1)+1=0, \\ &13|1 & \xi_1^1(\xi_1^2-\xi_2^1)+\xi_3^2(\xi_3^1+\xi_1^3)-\xi_3^3(\xi_1^2+\xi_2^1)=0, \\ &13|2 & \xi_3^1\xi_1^3+\xi_2^2\xi_1^1-(\xi_1^2)^2-(\xi_2^3)^2+\xi_3^3(\xi_2^2-\xi_1^1)+1=0, \\ &13|3 & -\xi_1^1(\xi_3^2+\xi_2^3)+\xi_1^2(\xi_3^1+\xi_1^3)+\xi_3^3(\xi_3^2-\xi_2^3)=0, \\ &23|1 & \xi_2^3\xi_3^2+\xi_2^2\xi_1^1-(\xi_3^1)^2-(\xi_2^1)^2-\xi_3^3(\xi_2^2-\xi_1^1)+1=0, \\ &23|2 & \xi_2^2(\xi_1^2-\xi_2^1)-\xi_3^1(\xi_3^2+\xi_2^3)+\xi_3^3(\xi_1^2+\xi_2^1)=0, \\ &23|3 & \xi_2^2(\xi_1^3+\xi_3^1)-\xi_2^1(\xi_3^2+\xi_2^3)+\xi_3^3(\xi_1^3-\xi_3^1)=0. \end{split}$$

Again, we identify $\mathfrak{su}(2)$ to \mathbb{R}^3 with the vector product by means of the basis (J_1, J_2, J_3) . J has at least one real eigenvalue λ . Let $\mathbf{f}_3 \in \mathbb{R}^3$ some normed eigenvector associated to λ . Then there exist normed vectors $\mathbf{f}_1, \mathbf{f}_2 \in \mathbb{R}^3$ such that $(\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ is a direct orthonormal basis of \mathbb{R}^3 . Hence there exists $R \in SO(3)$ such that

$$R^{-1}JR = \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ * & * & \lambda \end{pmatrix}.$$

Hence we may suppose $\xi_3^1 = \xi_3^2 = 0$ in *J*. Now, the torsion equations 12|1 and 12|2 read respectively $\xi_1^3(\xi_2^2 - \xi_1^1) = \xi_2^3(\xi_1^2 + \xi_2^1)$, $\xi_1^3(\xi_1^2 + \xi_2^1) = \xi_2^3(\xi_1^1 - \xi_2^2)$ and imply the two equations $(\xi_1^3)^2(\xi_2^2 - \xi_1^1) = -(\xi_2^3)^2(\xi_2^2 - \xi_1^1)$, $(\xi_2^3)^2(\xi_1^2 + \xi_2^1) = -(\xi_1^3)^2(\xi_1^2 + \xi_2^1)$. Hence each one of the conditions $\xi_2^2 \neq \xi_1^1$ or $\xi_1^2 \neq -\xi_2^1$ implies $\xi_1^3 = \xi_2^3 = 0$. We now have two cases. Case 1: $\xi_1^3 = \xi_2^3 = 0$, Case 2: ξ_1^3, ξ_2^3 not both zero. In Case 2, one necessarily has $\xi_2^2 = \xi_1^1$ and $\xi_1^2 = -\xi_2^1$. Then equations 23|1 and 23|2 read $-(\xi_2^1)^2 + (\xi_1^1)^2 + 1 = 0$, $\xi_2^1\xi_1^1 = 0$ and give $\xi_1^1 = 0$, $\xi_2^1 = \pm 1$. Now equation 12|3 reads $(\xi_2^3)^2 + (\xi_1^3)^2 = 0$. Hence Case 2 doesn't occur, i.e., one may suppose $\xi_1^3 = \xi_2^3 = 0$. Then equations 13|1 and 23|2 read resp. $\xi_3^3(\xi_1^2 + \xi_2^1) = \xi_1^1(\xi_1^2 - \xi_2^1)$, $\xi_3^3(\xi_1^2 + \xi_2^1) = -\xi_2^2(\xi_1^2 - \xi_2^1)$, hence if $\xi_1^2 \neq \xi_2^1$, necessarily $\xi_2^2 = -\xi_1^1$. Now, $\xi_1^2 = \xi_2^1$ is impossible since it would imply either $\xi_3^3 = 0$ or $\xi_2^1 = 0$. In fact, first, if $\xi_2^1 = 0$, equations 12|3, 13|2 and 23|1 read resp. $\xi_3^3(\xi_2^2 + \xi_1^1) - \xi_2^2\xi_1^1 + 1 = 0$, $\xi_3^3(-\xi_2^2 + \xi_1^1) - \xi_2^2\xi_1^1 - 1 = 0$, 5

 $\begin{array}{l} \xi_3^3(-\xi_2^2+\xi_1^1)+\xi_2^2\xi_1^1+1=0, \mbox{ so that } 12|3+13|2 \mbox{ gives } \xi_1^1(\xi_3^3-\xi_2^2)=0 \mbox{ and } 12|3+23|1 \mbox{ gives } \xi_1^1\xi_3^3=-1, \mbox{ hence } \xi_1^1\neq 0 \mbox{ and } \xi_3^3=\xi_2^2, \mbox{ which is impossible } \mbox{ since then } 12|3 \mbox{ reads } (\xi_2^2)^2+1=0. \mbox{ Second, if } \xi_3^3=0, \mbox{ } 12|3, \mbox{ } 13|2 \mbox{ read resp. } -\xi_2^2\xi_1^1+(\xi_2^1)^2+1=0, \mbox{ } -\xi_2^2\xi_1^1+(\xi_2^1)^2-1=0, \mbox{ which is contradictory. Hence } \mbox{ we get as asserted } \xi_1^2\neq\xi_2^1\mbox{ and } \xi_2^2=-\xi_1^1. \mbox{ Now, we prove that } \xi_1^1=0 \mbox{ and } \xi_2^1=\pm1. \mbox{ Since } \xi_2^2=-\xi_1^1, \mbox{ equations } 12|3, \mbox{ } 13|1, \mbox{ } 13|2, \mbox{ } 23|1 \mbox{ read respectively } \end{array}$

$$\begin{aligned} &12|3 & \xi_{1}^{1}\xi_{1}^{2} + (\xi_{1}^{1})^{2} + 1 = 0, \\ &13|1 & \xi_{3}^{3}(\xi_{1}^{2} + \xi_{2}^{1}) - \xi_{1}^{1}(\xi_{1}^{2} - \xi_{2}^{1}) = 0, \\ &13|2 & 2\xi_{3}^{3}\xi_{1}^{1} + (\xi_{1}^{2})^{2} + (\xi_{1}^{1})^{2} - 1 = 0, \\ &23|1 & 2\xi_{3}^{3}\xi_{1}^{1} - (\xi_{2}^{1})^{2} - (\xi_{1}^{1})^{2} + 1 = 0. \end{aligned}$$

From 12|3, $\xi_1^1 \neq 0$ and $\xi_1^2 = -\frac{1+(\xi_1^1)^2}{\xi_2^1}$. Then 13|1, 13|2, read respectively Q = 0, R = 0 with $Q = \xi_1^1((\xi_1^1)^2 + (\xi_2^1)^2 + 1) - \xi_3^3((\xi_1^1)^2 - (\xi_2^1)^2 + 1)$, $R = (\xi_2^1)^2(2\xi_3^3\xi_1^1 + (\xi_1^1)^2 - 1) + ((\xi_1^1)^2 + 1)^2$. Denote from 23|1, $S = 2\xi_3^3\xi_1^1 - (\xi_2^1)^2 - (\xi_1^1)^2 + 1$. Suppose $\xi_1^1 \neq 0$. Then $N = \frac{R-S}{\xi_1^1} 2\xi_3^3((\xi_2^1)^2 - 1) + \xi_1^1((\xi_1^1)^2 + (\xi_2^1)^2 + 3) = 0$ would give, for $\xi_2^1 \neq \pm 1$, $\xi_3^3 = -\frac{\xi_1^1((\xi_1^1)^2 + (\xi_2^1)^2 + 3)}{2((\xi_2^1)^2 - 1)}$ and then $R - \frac{((\xi_2^1)^2 - 2\xi_2^1 + (\xi_1^1)^2 + 1)((\xi_2^1)^2 + 2\xi_2^1 + (\xi_1^1)^2 + 1)}{(\xi_2^1)^2 - 1}$ which is impossible since the polynomial $X^2 \pm 2X + (\xi_1^1)^2 + 1$ has no real root. Hence $\xi_1^1 = \pm 1$. Now, S = 0 gives $\xi_3^3 = \frac{\xi_1^1}{2}$ and then $R(\xi_1^1)^2((\xi_1^1)^2 + 4) \neq 0$. Hence $\xi_1^1 = 0$. Finally, that implies as asserted $\xi_2^1 = \pm 1$, since $R = -(\xi_2^1)^2 + 1$. We conclude that $\xi_1^1 = \xi_2^2 = 0, \xi_1^2 = -\xi_2^1, \xi_2^1 = \pm 1$. Changing if necessary Φ to Φ diag $(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, -1)$), one may suppose $\xi_2^1 = 1$. \Box

Remark 1. Recall that a rank $r \ CR$ -structure on a real Lie algebra \mathfrak{g} is a r-dimensional subalgebra \mathfrak{m} of the complexification $\mathfrak{g}_{\mathbb{C}}$ of \mathfrak{g} such that $\mathfrak{m} \cap \overline{\mathfrak{m}} = \{0\}$. Then $\mathfrak{m} = \{X - iJ_{\mathfrak{p}}X; X \in \mathfrak{p}\}$ where \mathfrak{p} (the real part of \mathfrak{m}) is a vector subspace of \mathfrak{g} and $J_{\mathfrak{p}} : \mathfrak{p} \to \mathfrak{p}$ is a zero torsion linear map such that $J_{\mathfrak{p}}^2 = -\mathrm{Id}_{\mathfrak{p}}$ and $[X, Y] - [J_{\mathfrak{p}}X, J_{\mathfrak{p}}Y] \in \mathfrak{p}, \forall X, Y \in \mathfrak{p}$. Alternatively, a CR-structure can be defined by such data $(\mathfrak{p}, J_{\mathfrak{p}})$. For even-dimensional \mathfrak{g} , CR-structures of maximal rank $r = \frac{1}{2}$ dim \mathfrak{g} are just complex structures on \mathfrak{g} . CR-structures of maximal rank on a real compact Lie algebra have been classified in [2]. For odd-dimensional \mathfrak{g} , they fall essentially into two classes: CR0 and (strict) CRI. For even-dimensional \mathfrak{g} they are all CR0. From Lemma 2, any linear map $J : \mathfrak{su}(2) \to \mathfrak{su}(2)$ which has zero torsion is such that ker $(J^2 + \mathrm{Id}) \neq \{0\}$, and hence defines a maximal rank CR-structure on $\mathfrak{su}(2)$. It is of type CR0. Let us elaborate on that point. $\mathfrak{a}_0 = \mathbb{C}J_3$ is a Cartan subalgebra of $\mathfrak{su}(2)$. The complexification $\mathfrak{sl}(2)$ of $\mathfrak{su}(2)$ decomposes as $\mathfrak{sl}(2) = \mathbb{C}H_- \oplus \mathfrak{h} \oplus \mathbb{C}H_+$ with $H_{\pm} = iJ_1 \mp J_2$, $H_3 = iJ_3$, $\mathfrak{h} = \mathbb{C}H_3$. Any maximal rank CR-structure of CR0-type (respectively (strict) CRI-type) is equivalent to $\mathfrak{m} = \mathbb{C}H_+$ (respectively $\mathfrak{m} = \mathbb{C}(aJ_3 + H_+)$, $a \in \mathbb{R}^*$), and has real part $\mathfrak{p} = \mathbb{R}J_1 \oplus \mathbb{R}J_2$ (respectively $\mathfrak{p} = \mathbb{R}J_1 \oplus \mathbb{R}J'_2$, $J'_2 = J_2 - aJ_3$). The corresponding endomorphism $J_{\mathfrak{p}}$ of \mathfrak{p} has matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ in the basis (J_1, J_2) (respectively (J_1, J'_2)) and has zero torsion on \mathfrak{p} . Any extension of $J_{\mathfrak{p}}$ to $\mathfrak{su}(2)$ has matrix $\begin{pmatrix} 0 & 1 & \xi_3^1 \\ -1 & 0 & \xi_3^2 \\ 0 & 0 & \xi_3^3 \end{pmatrix}$ in the basis (J_1, J_2, J_3) (respectively (J_1, J'_2, J_3)). In the *CR0* case, it has zero torsion on the whole of $\mathfrak{su}(2)$ if and only if $\xi_3^1 = \xi_3^2 = 0$,

CR0 case, it has zero torsion on the whole of $\mathfrak{su}(2)$ if and only if $\xi_3^1 = \xi_3^2 = 0$, i.e., is of the form (3). In the CRI case, it never has zero torsion on the whole of $\mathfrak{su}(2)$.

LEMMA 3. Let $\mathfrak{g} = \bigoplus_{j=1}^{N} \mathfrak{g}^{(j)}$, where $\mathfrak{g}^{(j)}$ are real Lie algebras with bases $\mathcal{B}_j = (X_k^{(j)})_{1 \leq k \leq n_j}$, and let $\pi^{(j)} : \mathfrak{g} \to \mathfrak{g}^{(j)}$ be the projections. Let $J : \mathfrak{g} \to \mathfrak{g}$ be a linear map, $\pi_j^i = \pi^{(i)} \circ J \circ \pi^{(j)}$, $\tilde{\pi}_j^i = \pi^{(i)} \circ J \circ \pi^{(j)}|_{\mathfrak{g}^{(j)}}$. If J has zero torsion, then the two following conditions are satisfied:

(i) $\widetilde{\pi}_i^i$ has zero torsion for any *i*;

(ii) $[\pi_j^i X, \pi_j^i Y] \pi_j^i [JX, Y] + \pi_j^i [X, JY], \forall X, Y \in \mathfrak{g}^{(j)} \text{ for any } i, j \text{ such that } i \neq j.$

Proof. For any i, j let $X, Y \in \mathfrak{g}$. Applying $\pi^{(i)}$ to the torsion equation (1) we get

(4)
$$[\pi^{(i)}JX,\pi^{(i)}JY] - [\pi^{(i)}X,\pi^{(i)}Y] - \pi^{(i)}J[JX,Y] - \pi^{(i)}J[X,JY] = 0.$$

Suppose first i = j and $X, Y \in \mathfrak{g}^{(i)}$. Then $[JX, Y][\pi^{(i)}JX, Y] = \pi^{(i)}[\pi^{(i)}J\pi^{(i)}X, Y]$, and $[X, JY][X, \pi^{(i)}JY] = \pi^{(i)}[X, \pi^{(i)}J\pi^{(i)}Y]$, and moreover $[\pi^{(i)}X, \pi^{(i)}Y] = [X, Y]$, hence (4) gives $[\pi^{(i)}JX, \pi^{(i)}JY] - [X, Y] - \pi^{(i)}J\pi^{(i)}[\pi^{(i)}J\pi^{(i)}X, Y] - \pi^{(i)}J\pi^{(i)}[X, \pi^{(i)}J\pi^{(i)}Y] = 0$, i.e.,

$$[\widetilde{\pi}_i^i X, \widetilde{\pi}_i^i Y] - [X, Y] - \widetilde{\pi}_i^i [\widetilde{\pi}_i^i X, Y] - \widetilde{\pi}_i^i [X, \widetilde{\pi}_i^i Y] = 0,$$

that is $\widetilde{\pi}_i^i$ has no torsion. Suppose now $i \neq j$ and $X, Y \in \mathfrak{g}^{(j)}$. Then $[\pi^{(i)}X, \pi^{(i)}Y] = 0$ and (4) gives

$$[\pi^{(i)}JX,\pi^{(i)}JY] - \pi^{(i)}J\pi^{(j)}[JX,Y] - \pi^{(i)}J\pi^{(j)}[X,JY] = 0,$$

i.e.,

$$[\pi_j^i X, \pi_j^i Y] - \pi_j^i [JX, Y] - \pi_j^i [X, JY] = 0. \quad \Box$$

THEOREM 1. (i) Let $J : \mathfrak{u}(2) \to \mathfrak{u}(2)$ linear. J has zero torsion, i.e., satisfies (1), if and only if there exists $\Phi \in SO(3) \times \mathbb{R}^*_+$ such that

$$\Phi^{-1}J\Phi\begin{pmatrix} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & \xi_3^3 & \xi_4^3\\ 0 & 0 & \xi_3^4 & \xi_4^4 \end{pmatrix}, \quad \begin{pmatrix} \xi_3^3 & \xi_4^3\\ \xi_3^4 & \xi_4^4 \end{pmatrix} \in \operatorname{gl}(2,\mathbb{R}).$$

(ii) Any $J \in \mathfrak{X}_{\mathfrak{u}(2)}$ is equivalent to a unique

(5)
$$J(\xi) \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & \xi & 1 \\ 0 & 0 & -(1+\xi^2) & -\xi \end{pmatrix}$$

with $\xi \in \mathbb{R}$. $J(\xi)$ and $J(\xi')$ $(\xi, \xi' \in \mathbb{R})$ are equivalent if and only if $\xi = \xi'$.

Proof. (i) From Lemma 3,

$$J = \begin{pmatrix} & & \xi_4^1 \\ & J_1 & & \xi_4^2 \\ & & & \xi_4^3 \\ \xi_1^4 & \xi_2^4 & \xi_3^4 & \xi_4^4 \end{pmatrix}$$

for some $J_1 : \mathfrak{su}(2) \to \mathfrak{su}(2)$ with zero torsion. From Lemma 2, there exists $R \in SO(3)$ such that $R^{-1}J_1R\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & \xi_3^3 \end{pmatrix}$, whence

$$\Phi^{-1}J\Phi\begin{pmatrix} 0 & 1 & 0 & \xi_4^1 \\ -1 & 0 & 0 & \xi_4^2 \\ 0 & 0 & \xi_3^3 & \xi_4^3 \\ \xi_1^4 & \xi_2^4 & \xi_3^4 & \xi_4^4 \end{pmatrix}$$

with $\Phi = \text{diag}(R, 1)$. Hence we may suppose $J_1\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & \xi_3^3 \end{pmatrix}$. Now the torsion equations 13|4,23|4 14|3,24|3 give the two Cramer systems $\xi_2^4 \xi_3^3 + \xi_1^4 = 0$, $-\xi_2^4 + \xi_3^3 \xi_1^4 = 0$; $\xi_4^2 \xi_3^3 - \xi_4^1 = 0$, $\xi_4^2 + \xi_3^3 \xi_4^1 = 0$. Hence $\xi_1^4 = \xi_2^4 = \xi_4^1 = \xi_4^2 = 0$. Then all torsion equations vanish, and (i) is proved ([3], torsionu2.red).

(ii) From (i), we may suppose

$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & \xi_3^3 & \xi_4^3 \\ 0 & 0 & \xi_4^4 & \xi_4^4 \end{pmatrix}.$$

Now $J \in \mathfrak{X}_{\mathfrak{u}(2)}$ if and only if $\begin{pmatrix} \xi_3^3 & \xi_4^3 \\ \xi_3^4 & \xi_4^4 \end{pmatrix}^2 = -I$, i.e.,
$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & \xi_3^3 & \xi_4^3 \\ 0 & 0 & -\frac{1+(\xi_3^3)^2}{\xi_4^3} & -\xi_3^3 \end{pmatrix}, \quad \xi_4^3 \neq 0.$$

Now, for any $\Phi = \operatorname{diag}(A, b) \in \operatorname{Aut} \mathfrak{u}(2) \ (A \in SO(3), b \neq 0),$

(6)
$$\Phi J \Phi^{-1} \begin{pmatrix} A J_1 A^{-1} & b^{-1} A \begin{pmatrix} 0 \\ 0 \\ \xi_4^3 \end{pmatrix} \\ b \left(0 & 0 & -\frac{1 + (\xi_3^3)^2}{\xi_4^3} \right) A^{-1} & -\xi_3^3 \end{pmatrix}.$$

Taking A = I, $b = \xi_4^3$, we get

$$\Phi J \Phi^{-1} \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & \xi_3^3 & 1 \\ 0 & 0 & -(1 + (\xi_3^3)^2) & -\xi_3^3 \end{pmatrix}.$$

Hence J is equivalent to $J(\xi)$ in (5) with $\xi = \xi_3^3$. The last assertion of the theorem results from (6). \Box

Remark 2. In [11], the equivalence classes of left invariant complex structures on $\mathfrak{u}(2)$ are shown to be parametrized by the complex subalgebras \mathfrak{m}_d with basis $\{J_1+\mathrm{i}J_2, 2\mathrm{i}J_3+dJ_4\}$ with $d=-\frac{1+\mathrm{i}\xi}{1+\xi^2}, \xi \in \mathbb{R}$. The complex structure defined by \mathfrak{m}_d has matrix

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & \xi & 2(1+\xi^2) \\ 0 & 0 & -\frac{1}{2} & -\xi \end{pmatrix} = \Phi J(\xi) \Phi^{-1},$$

with $\Phi = \operatorname{diag}\left(1, 1, 1, \frac{1}{2(1+\xi^2)}\right) \in \operatorname{Aut} \mathfrak{u}(2).$

Remark 3. $\mathfrak{u}(2)$ has no abelian complex structures since, for $J(\xi)$, $\mathfrak{m} = \mathbb{C}\widetilde{J}_1 \oplus \mathbb{C}\widetilde{J}_3$ is the solvable Lie algebra $[\widetilde{J}_1, \widetilde{J}_3] = \mathfrak{i}(1 - \mathfrak{i}\xi)\widetilde{J}_1$.

COROLLARY 1. $\mathfrak{X}_{\mathfrak{u}(2)}$ consists of the matrices

(7)
$$\begin{pmatrix} (a_4^1)^2 c^2 \xi & (a_4^3 + a_4^2 a_4^1 c\xi)c & (a_4^3 a_4^1 c\xi - a_4^2)c & a_4^1 \\ -(a_4^3 - a_4^2 a_4^1 c\xi)c & (a_4^2)^2 c^2 \xi & (a_4^3 a_4^2 c\xi + a_4^1)c & a_4^2 \\ (a_4^3 a_4^1 c\xi + a_4^2)c & (a_4^3 a_4^2 c\xi - a_4^1)c & (a_4^3)^2 c^2 \xi & a_4^3 \\ -(\xi^2 + 1)c^2 a_4^1 & -(\xi^2 + 1)c^2 a_4^2 & -(\xi^2 + 1)c^2 a_4^3 & -\xi \end{pmatrix},$$

with the conditions

(8)
$$\xi \in \mathbb{R}, \quad \begin{pmatrix} a_4^1 \\ a_4^2 \\ a_4^2 \end{pmatrix} \in \mathbb{R}^3 \setminus \{0\}, \quad c = \pm \left((a_4^1)^2 + (a_4^2)^2 + (a_4^3)^2 \right)^{-\frac{1}{2}}.$$

276

Proof. As is known, any $R \in SO(3)$ can be written

(9)
$$\begin{pmatrix} u^2 - v^2 - w^2 + s^2 & -2(uv + ws) & 2(-uw + sv) \\ 2(-sw + uv) & u^2 - v^2 + w^2 - s^2 & -2(su + vw) \\ 2(sv + uw) & 2(su - vw) & u^2 + v^2 - w^2 - s^2 \end{pmatrix}$$

for $q = (u, v, w, s) \in \mathbb{S}^3$ (*R* can be written in exactly 2 ways by means of *q* and -q). Hence any $\Phi \in \operatorname{Aut} \mathfrak{u}(2)$ can be written

$$\Phi = \begin{pmatrix} & & 0 \\ R & & 0 \\ 0 & 0 & 0 & c \end{pmatrix}$$

with R as in (9) and $c \in \mathbb{R}^*$. Then we get for $\Phi J(\xi) \Phi^{-1}$ the matrix (7) with

(10)
$$a_4^1 = \frac{2}{c}(sv - uw),$$

(11)
$$a_4^2 = -\frac{2}{c}(su + vw),$$

(12)
$$a_4^3 = \frac{1}{c}(2u^2 + 2v^2 - 1).$$

From $u^2 + v^2 + w^2 + s^2 = 1$, one gets $(a_4^1)^2 + (a_4^2)^2 + (a_4^3)^2 = \frac{1}{c^2}$. Conversely, for any matrix J of the form (7) with conditions (8) there exist $\Phi \in \operatorname{Aut} \mathfrak{u}(2)$ and $\xi \in \mathbb{R}$ such that $J = \Phi J(\xi) \Phi^{-1}$. This amounts to the existence of $q = (u, v, w, s) \in \mathbb{S}^3$ such that equations (10), (11), (12) hold true, and follows from the fact that the map $\mathbb{S}^3 \to \mathbb{S}^2 q \mapsto (ca_4^1, ca_4^2, ca_4^3)$ is the Hopf fibration. \Box

COROLLARY 2. $\mathfrak{X}_{\mathfrak{u}(2)}$ is a closed 4-dimensional (smooth) submanifold of \mathbb{R}^{16} with two connected components, each of them diffeomorphic to $\mathbb{R} \times (\mathbb{R}^3 \setminus \{0\})$.

Proof. Denote $\mathfrak{X}_{\mathfrak{u}(2)}^+$ (respectively $\mathfrak{X}_{\mathfrak{u}(2)}^-$) the subset of those $J \in \mathfrak{X}_{\mathfrak{u}(2)}$ with c > 0 (respectively c < 0). As c is uniquely defined by the matrix $J = (a_j^i) \in \mathfrak{X}_{\mathfrak{u}(2)}$ by the formula

$$2c = \frac{a_4^3(a_2^1 - a_1^2) + a_4^2(-a_3^1 + a_1^3) + a_4^1(a_3^2 - a_2^3)}{(a_4^1)^2 + (a_4^2)^2 + (a_4^3)^2}$$

one has $\mathfrak{X}_{\mathfrak{u}(2)} = \mathfrak{X}_{\mathfrak{u}(2)}^+ \cup \mathfrak{X}_{\mathfrak{u}(2)}^-$ with disjoint union. $\mathfrak{X}_{\mathfrak{u}(2)}^+$ (respectively $\mathfrak{X}_{\mathfrak{u}(2)}^-$) is a closed subset of \mathbb{R}^{16} . It hence suffices to prove that $\mathfrak{X}_{\mathfrak{u}(2)}^+$ is a regular submanifold, the case of $\mathfrak{X}_{\mathfrak{u}(2)}^-$ being analogous. Let $F : \mathbb{R} \times (\mathbb{R}^3 \setminus \{0\}) \to \mathfrak{X}_{\mathfrak{u}(2)}^+$ be the bijection defined by $F(\xi, (a_4^1, a_4^2, a_4^3)) = J$ where J is the matrix (7) with $c = ((a_4^1)^2 + (a_4^2)^2 + (a_4^3)^2)^{-\frac{1}{2}}$. We equip $\mathfrak{X}_{\mathfrak{u}(2)}^+$ with the differentiable structure transferred from $\mathbb{R} \times (\mathbb{R}^3 \setminus \{0\})$. The injection i from $\mathfrak{X}^+_{\mathfrak{u}(2)}$ into the open subset $X \subset \mathbb{R}^{16}$ defined by $(a_4^1)^2 + (a_4^2)^2 + (a_4^3)^2 \neq 0$ is smooth. Now, there is a smooth retraction $r: X \mapsto \mathfrak{X}^+_{\mathfrak{u}(2)}$ defined by $r(A) = F(-a_4^4, (a_4^1, a_4^2, a_4^3))$ for $A = (a_j^i) \in X$. Hence i is an immersion and the topology of $\mathfrak{X}^+_{\mathfrak{u}(2)}$ is the induced topology of \mathbb{R}^{16} . \Box

4.
$$SU(2) \times SU(2)$$

LEMMA 4. Aut $(\mathfrak{su}(2) \oplus \mathfrak{su}(2))$ $(SO(3) \times SO(3)) \cup \tau (SO(3) \times SO(3))$ where $\tau = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$ is the switch between the two factors of $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$.

Proof. Let $J_k^{(1)}$, $1 \le k \le 3$, (respectively $J_\ell^{(2)}$, $1 \le \ell \le 3$) be the basis for the first (respectively the second) factor $\mathfrak{su}(2)^{(1)}$ (respectively $\mathfrak{su}(2)^{(2)}$) of $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$ with relations (2), and $\pi^{(1)}$ (respectively $\pi^{(2)}$) the corresponding projections. Let $\Phi = \begin{pmatrix} \Phi_1 & \Phi_2 \\ \Phi_3 & \Phi_4 \end{pmatrix} \in \operatorname{Aut}(\mathfrak{su}(2) \oplus \mathfrak{su}(2))$, each Φ_j being a 3×3 matrix. $\Phi_1 = (\pi^{(1)} \circ \Phi)_{|\mathfrak{su}(2)^{(1)}|}$ is an homomorphism of $\mathfrak{su}(2)^{(1)}$ into itself. Hence the three columns of Φ_1 are two-by-two orthogonal vectors in \mathbb{R}^3 and if one of them is zero, then the three of them are zero. In particular, if $\Phi_1 \neq 0$, then $\Phi_1 \in SO(3)$. With the same reasoning, the same property holds true for Φ_2, Φ_3, Φ_4 . Suppose first $\Phi_1 \neq 0$. For $k, \ell = 1, 2, 3$, $[\pi^{(1)}(\Phi(J_k^{(1)})), \pi^{(1)}(\Phi(J_\ell^{(2)}))] = \pi^{(1)}(\Phi([J_k^{(1)}, J_\ell^{(2)}])) = 0$. That implies that any column of Φ_1 is collinear with any column of Φ_2 , hence $\Phi_2 = 0$ since the columns of Φ_1 are linearly independent. Then det $\Phi_4 \neq 0$, whence $\Phi_4 \in SO(3)$ and finally $\Phi_3 = 0$ by the above reasoning. Hence $\Phi = \begin{pmatrix} \Phi_1 & 0 \\ 0 & \Phi_4 \end{pmatrix} \in SO(3) \times SO(3)$. Suppose now $\Phi_1 = 0$. Then det $\Phi_2 \neq 0$, whence $\Phi_2 \in SO(3)$, and det $\Phi_3 \neq 0$, whence $\Phi_3 \in SO(3)$. By the same argument as before, $\Phi_4 = 0$. Hence $\Phi = \begin{pmatrix} 0 & \Phi_2 \\ \Phi_3 & 0 \end{pmatrix} \tau \begin{pmatrix} \Phi_3 & 0 \\ 0 & \Phi_2 \end{pmatrix} \in \tau(SO(3) \times SO(3))$. □

THEOREM 2. Let $J : \mathfrak{su}(2) \oplus \mathfrak{su}(2) \to \mathfrak{su}(2) \oplus \mathfrak{su}(2)$ linear. J has zero torsion, i.e., satisfies (1), if and only if there exists $\Phi \in SO(3) \times SO(3)$ such that

(13)
$$\Phi^{-1}J\Phi\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \xi_3^3 & 0 & 0 & \xi_6^3 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & \xi_3^6 & 0 & 0 & \xi_6^6 \end{pmatrix}$$

Proof. From Lemmas 3 and 2, there exists $\Phi \in SO(3) \times SO(3)$ such that

(14)
$$\Phi^{-1}J\Phi\begin{pmatrix} 0 & 1 & 0 & \xi_1^4 & \xi_5^1 & \xi_6^1 \\ -1 & 0 & 0 & \xi_4^2 & \xi_5^2 & \xi_6^2 \\ 0 & 0 & \xi_3^3 & \xi_4^3 & \xi_5^3 & \xi_6^3 \\ \xi_1^4 & \xi_2^4 & \xi_3^4 & 0 & 1 & 0 \\ \xi_1^5 & \xi_2^5 & \xi_5^3 & -1 & 0 & 0 \\ \xi_1^6 & \xi_2^6 & \xi_3^6 & 0 & 0 & \xi_6^6 \end{pmatrix}$$

Hence we may suppose J of the form (14). The matrix $(\xi_j^i)_{1 \le i \le 3, 4 \le j \le 6}$ (respectively $(\xi_j^i)_{4 \le i \le 6, 1 \le j \le 3}$) is the matrix of π_2^1 (respectively π_1^2) of Lemma 3. Consider the vectors $\mathbf{u} = \pi_2^1 J_1^{(2)}, \mathbf{v} = \pi_2^1 J_2^{(2)}, \mathbf{w} = \pi_2^1 J_3^{(2)}$. From Lemma 2 (ii) one has

$$\begin{aligned} [\pi_2^1 J_1^{(2)}, \pi_2^1 J_2^{(2)}] \pi_2^1 [J J_1^{(2)}, J_2^{(2)}] + \pi_2^1 [J_1^{(2)}, J J_2^{(2)}] = \\ &= \pi_2^1 [-J_2^{(2)}, J_2^{(2)}] + \pi_2^1 [J_1^{(2)}, J_1^{(2)}] = 0, \end{aligned}$$

$$\begin{split} [\pi_2^1 J_2^{(2)}, \pi_2^1 J_3^{(2)}] \pi_2^1 \left[J J_2^{(2)}, J_3^{(2)} \right] + \pi_2^1 \left[J_2^{(2)}, J J_3^{(2)} \right] = \\ = \pi_2^1 \left[J_1^{(2)}, J_3^{(2)} \right] + \pi_2^1 \left[J_2^{(2)}, \xi_6^6 J_3^{(2)} \right] = -\pi_2^1 J_2^{(2)} + \xi_6^6 \pi_2^1 J_1^{(2)}, \\ [\pi_2^1 J_1^{(2)}, \pi_2^1 J_3^{(2)}] \pi_2^1 \left[J J_1^{(2)}, J_3^{(2)} \right] + \pi_2^1 \left[J_1^{(2)}, J J_3^{(2)} \right] = \\ = \pi_2^1 \left[-J_2^{(2)}, J_3^{(2)} \right] + \pi_2^1 \left[J_1^{(2)}, \xi_6^6 J_3^{(2)} \right] = -\pi_2^1 J_1^{(2)} - \xi_6^6 \pi_2^1 J_2^{(2)} \end{split}$$

That is,

$$\mathbf{u} \wedge \mathbf{v} = 0, \quad \mathbf{v} \wedge \mathbf{w} = -\mathbf{v} + \xi_6^6 \mathbf{u}, \quad \mathbf{u} \wedge \mathbf{w} = -\mathbf{u} - \xi_6^6 \mathbf{v}$$

which implies $\mathbf{u} = \mathbf{v} = 0$. With the same reasoning for π_1^2 , we get

(15)
$$J\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & \xi_{6}^{1} \\ -1 & 0 & 0 & 0 & 0 & \xi_{6}^{2} \\ 0 & 0 & \xi_{3}^{3} & 0 & 0 & \xi_{6}^{3} \\ 0 & 0 & \xi_{3}^{4} & 0 & 1 & 0 \\ 0 & 0 & \xi_{3}^{5} & -1 & 0 & 0 \\ 0 & 0 & \xi_{3}^{6} & 0 & 0 & \xi_{6}^{6} \end{pmatrix}.$$

Now, the torsion equations 16|3, 26|3, 36|4, 36|5 give the 2 Cramer systems $\xi_6^2 \xi_3^3 - \xi_6^1 = 0, \ \xi_6^2 + \xi_3^3 \xi_6^1 = 0; \ \xi_3^5 \xi_6^6 + \xi_3^4 = 0, \ -\xi_5^5 + \xi_6^6 \xi_3^4 = 0.$ Hence $\xi_6^1 = \xi_6^2 = \xi_3^4 = \xi_5^5 = 0.$ Then all torsion equations vanish, and the theorem is proved ([3]). \Box

COROLLARY 3. Any $J \in \mathfrak{X}_{\mathfrak{su}(2)\oplus\mathfrak{su}(2)}$ is equivalent under some member of $SO(3) \times SO(3)$ to

(16)
$$J(\xi,\eta) \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \xi & 0 & 0 & \eta \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -\frac{1+\xi^2}{\eta} & 0 & 0 & -\xi \end{pmatrix}$$

with $\xi, \eta \in \mathbb{R}, \eta \neq 0$. $J(\xi, \eta)$ and $J(\xi', \eta')$ are equivalent under some member of $SO(3) \times SO(3)$ (respectively $\tau (SO(3) \times SO(3))$) if and only if $\xi' = \xi$ and $\eta' = \eta$ (respectively $\xi' = -\xi$ and $\eta' = -\frac{1+\xi^2}{n}$).

Proof. J in (13) satisfies $J^2 = -I$ if and only if $\xi_6^3 \neq 0$ and $\xi_3^6 = -\frac{1+(\xi_3^3)^2}{\xi_2^3}$, $\xi_6^6 = -\xi_3^3, \text{ leading to } J(\xi,\eta) \text{ in (16) with } \xi = \xi_3^3, \eta = \xi_6^3.$ Suppose $J(\xi',\eta') \Phi J(\xi,\eta) \Phi^{-1}$ with $\Phi \begin{pmatrix} \Phi_1 & 0 \\ 0 & \Phi_2 \end{pmatrix} \in SO(3) \times SO(3).$ Then $\begin{array}{l} \left(\begin{smallmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & \xi' \end{smallmatrix}\right) \Phi_1 \left(\begin{smallmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & \xi' \end{smallmatrix}\right) \Phi_1 \left(\begin{smallmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -\xi' \end{smallmatrix}\right) \Phi_1 \left(\begin{smallmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -\xi' \end{smallmatrix}\right) \Phi_2 \left(\begin{smallmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -\xi \end{smallmatrix}\right) \Phi_2^{-1}, \text{ which imply first} \\ \xi' = \xi \text{ and second } \Phi_1 = \operatorname{diag}(R_1, 1), \ \Phi_2 = \operatorname{diag}(R_2, 1) \text{ with } R_1, R_2 \in SO(2). \\ \operatorname{Then} \left(\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & \eta' \end{smallmatrix}\right) \Phi_1 \left(\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & \eta \end{smallmatrix}\right) \Phi_2^{-1} \text{ implies } \eta' = \eta. \\ \operatorname{Now, suppose } J(\xi', \eta') = \Psi J(\xi, \eta) \Psi^{-1} \text{ with } \Psi = \tau \Phi \in \tau \left(SO(3) \times SO(3)\right), \\ \Phi \left(\begin{smallmatrix} \Phi_1 & 0 \\ 0 & \Phi_2 \end{smallmatrix}\right) \in SO(3) \times SO(3). \text{ Then } \Phi J(\xi, \eta) \Phi^{-1} \tau J(\xi', \eta') \tau = J(-\xi', -\frac{1+{\xi'}^2}{\eta'}). \\ \operatorname{Hence} \xi = -\xi' \text{ and } \eta = -\frac{1+{\xi'}^2}{\eta'}, \text{ i.e., } \eta' = -\frac{1+{\xi}^2}{\eta}. \end{array}$

Remark 4. Lemma 1 in [4] states that a left invariant almost complex structure on $SU(2) \times SU(2)$ is integrable if and only if it has the form $AI_{a,c}A^{-1}$ with $A \in SO(3) \times SO(3)$, $a \in \mathbb{R}, c \in \mathbb{R}^*$, and

$$I_{a,c} \begin{pmatrix} \frac{a}{c} & 0 & 0 & -\frac{a^2+c^2}{c} & 0 & 0\\ 0 & 0 & -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0\\ \frac{1}{c} & 0 & 0 & -\frac{a}{c} & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & -1\\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

One has $\Phi^{-1}I_{a,c}\Phi = J(\frac{a}{c}, -\frac{a^2+c^2}{c})$ with $\Phi = \text{diag}\left(\begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}\right) \in$ $\in SO(3) \times SO(3).$

Remark 5. $\mathfrak{su}(2) \times \mathfrak{su}(2)$ has no abelian complex structures since, for $J(\xi,\eta), \mathfrak{m} = \mathbb{C}\widetilde{J}_1^{(1)} \oplus \mathbb{C}\widetilde{J}_3^{(1)} \oplus \mathbb{C}\widetilde{J}_1^{(2)}$ is the solvable Lie algebra $[\widetilde{J}_1^{(1)}, \widetilde{J}_3^{(1)}] = i(1-i\xi)\widetilde{J}_1^{(1)}, [\widetilde{J}_3^{(1)}, \widetilde{J}_1^{(2)}] = \frac{1+\xi^2}{\eta}\widetilde{J}_1^{(2)}.$

COROLLARY 4. $\mathfrak{X}_{\mathfrak{su}(2)\oplus\mathfrak{su}(2)}$ consists of the matrices (17)

$$\begin{pmatrix} \lambda_{1}^{2}\xi & -\lambda_{1}\mu_{1}\xi + \nu_{1} & \lambda_{1}\nu_{1}\xi + \mu_{1} & \eta\lambda_{1}\lambda_{2} & -\eta\lambda_{1}\mu_{2} & \eta\lambda_{1}\nu_{2} \\ -\lambda_{1}\mu_{1}\xi - \nu_{1} & \mu_{1}^{2}\xi & \lambda_{1} - \mu_{1}\nu_{1}\xi & -\eta\mu_{1}\lambda_{2} & \eta\mu_{1}\mu_{2} & -\eta\mu_{1}\nu_{2} \\ \lambda_{1}\nu_{1}\xi - \mu_{1} & -\lambda_{1} - \mu_{1}\nu_{1}\xi & \nu_{1}^{2}\xi & \eta\nu_{1}\lambda_{2} & -\eta\nu_{1}\mu_{2} & \eta\nu_{1}\nu_{2} \\ -\frac{\xi^{2}+1}{\eta}\lambda_{1}\lambda_{2} & \frac{\xi^{2}+1}{\eta}\mu_{1}\lambda_{2} & -\frac{\xi^{2}+1}{\eta}\nu_{1}\lambda_{2} & -\lambda_{2}^{2}\xi & \lambda_{2}\mu_{2}\xi + \nu_{2} & -\lambda_{2}\nu_{2}\xi + \mu_{2} \\ \frac{\xi^{2}+1}{\eta}\lambda_{1}\mu_{2} & -\frac{\xi^{2}+1}{\eta}\mu_{1}\mu_{2} & \frac{\xi^{2}+1}{\eta}\nu_{1}\mu_{2} & \lambda_{2}\mu_{2}\xi - \nu_{2} & -\mu_{2}^{2}\xi & \lambda_{2} + \mu_{2}\nu_{2}\xi \\ -\frac{\xi^{2}+1}{\eta}\lambda_{1}\nu_{2} & \frac{\xi^{2}+1}{\eta}\mu_{1}\nu_{2} & -\frac{\xi^{2}+1}{\eta}\nu_{1}\nu_{2} & -\lambda_{2}\nu_{2}\xi - \mu_{2} & -\lambda_{2} + \mu_{2}\nu_{2}\xi & -\nu_{2}^{2}\xi \end{pmatrix}$$

with

(18)
$$(\xi,\eta) \in \mathbb{R} \times \mathbb{R}^*, \quad \begin{pmatrix} \lambda_i \\ \mu_i \\ \nu_i \end{pmatrix} \in \mathbb{S}^2, \quad i=1,2.$$

Proof. $\mathfrak{X}_{\mathfrak{su}(2)\oplus\mathfrak{su}(2)}$ consists of the matrices $\Phi J(\xi,\eta)\Phi^{-1}$, $(\xi,\eta) \in \mathbb{R} \times \mathbb{R}^*$, $\Phi \in SO(3) \times SO(3)$. Let $\Phi = \begin{pmatrix} \Phi_1 & 0 \\ 0 & \Phi_2 \end{pmatrix} \in SO(3) \times SO(3)$. Φ_1, Φ_2 can be written in the form (9) for respectively $q_1 = (u_1, v_1, w_1, s_1), q_2 = (u_2, v_2, w_2, s_2) \in \mathbb{S}^3$. Then $\Phi J(\xi, \eta)\Phi^{-1}$ is the matrix (17) with, for i = 1, 2,

(19)
$$\lambda_i = 2(s_i v_i - u_i w_i),$$

(20)
$$\mu_i = 2(s_i u_i + v_i w_i),$$

(21)
$$\nu_i = 2u_i^2 + 2v_i^2 - 1.$$

One has $\lambda_i^2 + \mu_i^2 + \nu_i^2 = 1$. Conversely, for any matrix J of the form (17) with condition (18) there exist $\Phi \in SO(3) \times SO(3)$ and $(\xi, \eta) \in \mathbb{R} \times \mathbb{R}^*$ such that $J = \Phi J(\xi, \eta) \Phi^{-1}$. This amounts to the existence for i = 1, 2 of $q_i = (u_i, v_i, w_i, s_i) \in \mathbb{S}^3$ such that equations (19), (20), (21) hold true, which again follows from the Hopf fibration. \Box

COROLLARY 5. $\mathfrak{X}_{\mathfrak{su}(2)\oplus\mathfrak{su}(2)}$ is a closed 6-dimensional (smooth) submanifold of \mathbb{R}^{36} diffeomorphic to $\mathbb{R} \times \mathbb{R}^* \times (\mathbb{S}^2)^2$.

Proof. Let X the open subset of \mathbb{R}^{36} of those matrices $(a_j^i)_{1 \le i,j \le 6}$ such that $H^2 N_1 N_2 \ne 0$, where $H^2 = \sum_{i=1}^3 \sum_{j=4}^6 (a_j^i)^2$, $N_1 = (a_3^2 - a_2^3)^2 + (a_3^1 - a_1^3)^2 + (a_2^1 - a_1^2)^2$, $N_2 = (a_6^5 - a_6^5)^2 + (a_6^4 - a_4^6)^2 + (a_5^4 - a_4^5)^2$ and consider $F : \mathbb{R} \times \mathbb{R}^* \times (\mathbb{S}^2)^2 \to X$ defined by $F(\xi, \eta, (\lambda_1, \mu_1, \nu_1), (\lambda_2, \mu_2, \nu_2)) = J$, where J is the matrix (17).

Observe first that F is injective. In fact, ξ , $(\lambda_1, \mu_1, \nu_1)$, $(\lambda_2, \mu_2, \nu_2)$ can be retrieved from $(a_j^i)F(\xi, \eta, (\lambda_1, \mu_1, \nu_1), (\lambda_2, \mu_2, \nu_2))$ by the formulas $\xi = a_1^1 + a_2^2 + a_1^2 + a_2^2 + a$

13

 $\begin{array}{l} a_3^3, \, (\lambda_1, \mu_1, \nu_1) \left(\frac{a_3^2 - a_2^3}{\sqrt{N_1}}, \frac{a_1^3 - a_1^3}{\sqrt{N_1}}, \frac{a_2^1 - a_1^2}{\sqrt{N_1}} \right), \, (\lambda_2, \mu_2, \nu_2) \left(\frac{a_6^5 - a_6^6}{\sqrt{N_2}}, \frac{a_6^4 - a_4^6}{\sqrt{N_2}}, \frac{a_5^4 - a_4^5}{\sqrt{N_2}} \right); \, \text{hence} \\ F(\xi, \eta, (\lambda_1, \mu_1, \nu_1), (\lambda_2, \mu_2, \nu_2)) F(\xi', \eta', (\lambda_1', \mu_1', \nu_1'), (\lambda_2', \mu_2', \nu_2')) \text{ implies } \xi = \xi', \\ (\lambda_1', \mu_1', \nu_1') = (\lambda_1, \mu_1, \nu_1), (\lambda_2', \mu_2', \nu_2') (\lambda_2, \mu_2, \nu_2), \, \text{and then } \eta = \eta' \text{ since} \end{array}$

$$\begin{pmatrix} \lambda_1 \lambda_2 & -\lambda_1 \mu_2 & \lambda_1 \nu_2 \\ -\mu_1 \lambda_2 & \mu_1 \mu_2 & -\mu_1 \nu_2 \\ \nu_1 \lambda_2 & -\nu_1 \mu_2 & \nu_1 \nu_2 \end{pmatrix} \neq 0.$$

From the injectivity of F, $\mathfrak{X}_{\mathfrak{su}(2)\oplus\mathfrak{su}(2)}\mathfrak{X}^+_{\mathfrak{su}(2)\oplus\mathfrak{su}(2)} \cup \mathfrak{X}^-_{\mathfrak{su}(2)\oplus\mathfrak{su}(2)}$ with disjoint union, where $\mathfrak{X}^{\epsilon}_{\mathfrak{su}(2)\oplus\mathfrak{su}(2)}$ denotes the set of those Js having η the sign of ϵ $(\epsilon = \pm)$. Now, the map $G_{\epsilon} : X \to \mathbb{R} \times \mathbb{R}^*_{\epsilon} \times (\mathbb{S}^2)^2$ defined by

$$G_{\epsilon}((a_{j}^{i}))\left(a_{1}^{1}+a_{2}^{2}+a_{3}^{3}, \epsilon \sqrt{\sum_{i=1}^{3}\sum_{j=4}^{6}\left(a_{j}^{i}\right)^{2}}, \left(\frac{a_{3}^{2}-a_{2}^{3}}{\sqrt{N_{1}}}, \frac{a_{3}^{1}-a_{1}^{3}}{\sqrt{N_{1}}}, \frac{a_{2}^{1}-a_{1}^{2}}{\sqrt{N_{1}}}\right), \left(\frac{a_{6}^{5}-a_{5}^{6}}{\sqrt{N_{2}}}, \frac{a_{6}^{4}-a_{4}^{6}}{\sqrt{N_{2}}}, \frac{a_{5}^{4}-a_{4}^{5}}{\sqrt{N_{2}}}\right)\right)$$

is a smooth retraction for the restriction F_{ϵ} of F to $\mathbb{R} \times \mathbb{R}_{\epsilon}^* \times (\mathbb{S}^2)^2$. Hence F_{ϵ} is an immersion and the topology of $\mathfrak{X}_{\mathfrak{su}(2)\oplus\mathfrak{su}(2)}^{\epsilon}$ is the induced topology from X. The corollary follows. \Box

Remark 6. We may consider $\mathfrak{u}(2)$ as a subalgebra of $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$ by identifying J_1, J_2, J_3, J_4 to $J_1^{(1)}, J_2^{(1)}, J_3^{(1)}, J_3^{(2)}$ respectively. Then the complex structure J in (17) leaves $\mathfrak{u}(2)$ invariant if and only if $\lambda_2 = \mu_2 = 0, \nu_2 = \pm 1$. For the restriction of J to $\mathfrak{u}(2)$ to be (7), one must take $\lambda_1 = \frac{a_4^1}{\eta\nu_2}, \mu_1 = -\frac{a_4^2}{\eta\nu_2}, \nu_1 = \frac{a_4^3}{\eta\nu_2}$ with $c = \frac{\nu_2}{\eta}$. Then

$$J \begin{pmatrix} (a_4^1)^2 c^2 \xi & (a_4^3 + a_4^2 a_4^1 c \xi)c & (a_4^3 a_4^1 c \xi - a_4^2)c & 0 & 0 & a_4^1 \\ -(a_4^3 - a_4^2 a_4^1 c \xi)c & (a_4^2)^2 c^2 \xi & (a_4^3 a_4^2 c \xi + a_4^1)c & 0 & 0 & a_4^2 \\ (a_4^3 a_4^1 c \xi + a_4^2)c & (a_4^3 a_4^2 c \xi - a_4^1)c & (a_4^3)^2 c^2 \xi & 0 & 0 & a_4^3 \\ 0 & 0 & 0 & 0 & \nu_2 & 0 \\ 0 & 0 & 0 & -\nu_2 & 0 & 0 \\ -(\xi^2 + 1)c^2 a_4^1 & -(\xi^2 + 1)c^2 a_4^2 & -(\xi^2 + 1)c^2 a_4^3 & 0 & 0 & -\xi \end{pmatrix}.$$

Hence any complex structure on $\mathfrak{u}(2)$ can be extended in 2 (in general non equivalent) ways to a complex structure on $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$. For example, $J(\xi)$ can be extended (here $a_4^1 = a_4^2 = 0$, $a_4^3 = 1$, c = 1) with $\nu_2 = 1$ to $J(\xi, 1)$ or

with
$$\nu_2 = -1$$
 to $\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \xi & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & -(1+\xi^2) & 0 & 0 & -\xi \end{pmatrix}$ which is equivalent to $J(\xi, -1)$. Now,
 $J(\xi, -1) \cong J(\xi, 1) \Leftrightarrow \xi = 0.$

5. $SU(2)^N$

The results of Lemma 4, Theorem 2, and Corollary 3 easily generalize in the following way.

LEMMA 5. For any $N \in \mathbb{N}^*$,

Aut
$$(\mathfrak{su}(2))^{N}SO(3)^{N} \cup \left(\bigcup_{\sigma \in \Sigma} \tau_{\sigma} \left(SO(3)^{N}\right)\right)$$
 (disjoint reunion),

where Σ is the set of circular permutations of $\{1, \ldots, N\}$ having no fixed point, and $\tau_{\sigma} = (T_j^i)_{1 \leq i,j \leq N}$ with the T_j^i s the 3×3 blocks $T_j^i = \delta_{i,\sigma(j)} I$ (I the 3×3 identity and $\delta_{k,\ell}$ the Kronecker symbol).

THEOREM 3. Let $J: \mathfrak{su}(2)^N \to \mathfrak{su}(2)^N$ linear. J has zero torsion if and only if there exist $\Phi \in SO(3)^N$ and $M = (\xi_{3j}^{3i})_{1 \leq i,j \leq N} \in \mathrm{gl}(N,\mathbb{R})$ such that $\Phi^{-1}J\Phi = J(M)$ with $J(M) = (J_j^i(M))_{1 \leq i,j \leq N}$ and the $J_j^i(M)$ s the following 3×3 blocks

(22)
$$J_{i}^{i}(M) \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & \xi_{3i}^{3i} \end{pmatrix}, \quad 1 \le i \le N, \\ J_{j}^{i}(M) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \xi_{3j}^{3i} \end{pmatrix}, \quad 1 \le i, j \le N, \ i \ne j.$$

(Here we used that the analogs of 16|3, 26|3 36|4, 36|5 at the end of the proof of Theorem 2 are respectively, with i < j,

$$\begin{array}{rl} 3i-2,3j|3i:&\xi_{3j}^{3i-2}-\xi_{3i}^{3i}\xi_{3j}^{3i-1}=0\\ 3i-1,3j|3i:&\xi_{3j}^{3i-1}+\xi_{3i}^{3i}\xi_{3j}^{3i-2}=0\\ 3i,3j|3j-2:&\xi_{3i}^{3j-2}+\xi_{3j}^{3j}\xi_{3i}^{3j-1}=0\\ 3i,3j|3j-1:&-\xi_{3i}^{3j-1}+\xi_{3j}^{3j}\xi_{3i}^{3j-2}=0 \end{array}$$

and give $\xi_{3j}^{3i-2} = \xi_{3j}^{3i-1} \xi_{3i}^{3j-2} = \xi_{3i}^{3j-1} = 0$. Then all torsion equations vanish.)

Example 1. For N = 4,

	1	0	1	0	0	0	0	0	0	0	0	0	0 \	۱
J(M) =		-1	0	0	0	0	0	0	0	0	0	0	0	
		0	0	ξ_3^3	0	0	ξ_6^3	0	0	ξ_9^3	0	0	ξ_{12}^{3}	
		0	0	0	0	1	0	0	0	0	0	0	0	
		0	0	0	-1	0	0	0	0	0	0	0	0	
		0	0	ξ_3^6	0	0	ξ_6^6	0	0	ξ_9^6	0	0	ξ_{12}^6	
		0	0	0	0	0	0	0	1	0	0	0	0	,
		0	0	0	0	0	0	-1	0	0	0	0	0	
		0	0	ξ_3^9	0	0	ξ_6^9	0	0	ξ_9^9	0	0	ξ_{12}^{9}	
		0	0	0	0	0	0	0	0	0	0	1	0	
		0	0	0	0	0	0	0	0	0	-1	0	0	
		0	0	ξ_3^{12}	0	0	ξ_6^{12}	0	0	ξ_9^{12}	0	0	ξ_{12}^{12} /)
						,	.9 .1) . 1						

M	$\left(\begin{array}{c} \xi_{3}^{3} \\ \star 6 \end{array} \right)$	ξ_{6}^{3}	ξ_{9}^{3}	$\left\{ \xi_{12}^{3} \right\}_{z_{6}}$			
	ξ_3^6	ξ_6^6	ξ_9^6	ξ_{12}^6			
	ξ_3^9	ξ_6^9	ξ_9^9	ξ_{12}^{9}	•		
	ξ_{3}^{12}	ξ_{6}^{12}	ξ_{9}^{12}	ξ_{12}^{12}			

COROLLARY 6. For even N, any $J \in \mathfrak{X}_{\mathfrak{su}(2)^N}$ is equivalent under some member of $SO(3)^N$ to some $J(M) = (J_j^i(M))_{1 \leq i,j \leq N}$ with $M = (\xi_{3j}^{3i})_{1 \leq i,j \leq N}$ such that $M^2 = -I$ and $J_j^i(M)$ defined in (22). J(M) and J(M') are equivalent under some member of $SO(3)^N$ (respectively $\tau_{\sigma} (SO(3)^N)$, $\sigma \in \Sigma$) if and only if M' = M (respectively $M' = M^{\sigma^{-1}}$, $M^{\sigma^{-1}} = (\xi_{3\sigma^{-1}(i)}^{3\sigma^{-1}(i)})_{1 \leq i,j \leq N})$. Here we make use of $(\tau_{\sigma})^{-1} = \tau_{\sigma^{-1}}$ and $\tau_{\sigma}J(M')(\tau_{\sigma})^{-1} = (J_{\sigma^{-1}(j)}^{\sigma^{-1}(i)}(M'))_{1 \leq i,j \leq N}$.

Example 2. For N = 2, Σ consists only of the transposition (1, 2);

$$M = \begin{pmatrix} \xi_3^3 & \xi_6^3 \\ -\frac{1+(\xi_3^3)^2}{\xi_6^3} & -\xi_3^3 \end{pmatrix}, \quad M' = \begin{pmatrix} \xi'_3^3 & \xi'_6^3 \\ -\frac{1+(\xi'_3^3)^2}{\xi'_6^3} & -\xi'_3^3 \end{pmatrix}.$$

For $\sigma = (1, 2)$, the condition $M' = M^{\sigma^{-1}}$ reads ${\xi'}_3^3 = -\xi_3^3$, ${\xi'}_6^3 - \frac{1 + (\xi_3^3)^2}{\xi_6^3}$ and is that of Corollary 3.

285

6. $U(2) \times U(2)$

LEMMA 6. Aut $(\mathfrak{u}(2) \oplus \mathfrak{u}(2))H \cup \tau H$, where $\tau = \left(\begin{array}{c|c} 0 & I \\ \hline I & 0 \end{array}\right)$ is the switch between the two factors of $\mathfrak{u}(2) \oplus \mathfrak{u}(2)$,

$$H\left\{ \begin{pmatrix} \Phi_1 & 0 & | & 0 & 0 \\ 0 & b_4^4 & 0 & b_8^4 \\ \hline 0 & 0 & | & \Phi_4 & 0 \\ 0 & b_4^8 & | & 0 & b_8^8 \end{pmatrix}, \ \Phi_1, \Phi_4 \in SO(3), \ b_4^4 b_8^8 - b_8^4 b_4^8 \neq 0 \right\},$$
$$\tau H\left\{ \begin{pmatrix} 0 & 0 & | & \Phi_2 & 0 \\ \hline 0 & b_4^4 & 0 & b_8^4 \\ \hline \Phi_3 & 0 & | & 0 & 0 \\ 0 & b_4^8 & | & 0 & b_8^8 \end{pmatrix}, \ \Phi_2, \Phi_3 \in SO(3), \ b_4^4 b_8^8 - b_8^4 b_4^8 \neq 0 \right\}.$$

Proof. Analogous to that of Lemma 4. \Box

THEOREM 4. (i) Let $J : \mathfrak{u}(2) \oplus \mathfrak{u}(2) \to \mathfrak{u}(2) \oplus \mathfrak{u}(2)$ linear. J has zero torsion if and only if there exists $\Phi \in (SO(3) \times \mathbb{R}^*_+)^2 \subset H$ and $M \in gl(4, \mathbb{R})$ such that $\Phi^{-1}J\Phi = K(M)$, where

(ii) For $M, M' \in gl(4, \mathbb{R})$, there exists some $\Phi \in H$ such that $K(M') = \Phi K(M)\Phi^{-1}$ if and only if there exists $\begin{pmatrix} b_4^4 & b_8^4 \\ b_4^8 & b_8^8 \end{pmatrix} \in GL(2, \mathbb{R})$ such that $M' = GMG^{-1}$, with

(24)
$$G\begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & b_4^4 & 0 & b_8^4\\ 0 & 0 & 1 & 0\\ 0 & b_4^8 & 0 & b_8^8 \end{pmatrix} \in GL(4, \mathbb{R}).$$

(iii) For $M, M' \in gl(4, \mathbb{R})$, there exists $\Psi \in \tau H$ such that $K(M') = \Psi K(M) \Psi^{-1}$ if and only if there exists $\Phi \in H$ such that $K(M') = \Phi K(M) \Phi^{-1}$.

Proof. (i) From Lemma 3 and Theorem 1(i), there exists $\Phi \in (SO(3) \times$ $(\times \mathbb{R}^*_+)^2 \subset H$ such that

$$(25) \qquad \Phi^{-1}J\Phi \begin{pmatrix} 0 & 1 & 0 & 0 & | \xi_{5}^{1} & \xi_{6}^{1} & \xi_{7}^{1} & \xi_{8}^{1} \\ -1 & 0 & 0 & 0 & | \xi_{5}^{2} & \xi_{6}^{2} & \xi_{7}^{2} & \xi_{8}^{2} \\ 0 & 0 & \xi_{3}^{3} & \xi_{4}^{3} & \xi_{5}^{3} & \xi_{6}^{3} & \xi_{7}^{3} & \xi_{8}^{3} \\ 0 & 0 & \xi_{3}^{4} & \xi_{4}^{4} & \xi_{5}^{3} & \xi_{6}^{3} & \xi_{7}^{4} & \xi_{8}^{4} \\ \hline \xi_{5}^{5} & \xi_{5}^{5} & \xi_{5}^{5} & \xi_{5}^{5} & 0 & 1 & 0 & 0 \\ \xi_{1}^{6} & \xi_{2}^{6} & \xi_{6}^{3} & \xi_{4}^{4} & -1 & 0 & 0 & 0 \\ \xi_{1}^{7} & \xi_{2}^{7} & \xi_{3}^{7} & \xi_{4}^{7} & 0 & 0 & \xi_{7}^{7} & \xi_{8}^{7} \\ \xi_{1}^{8} & \xi_{8}^{8} & \xi_{8}^{8} & \xi_{8}^{4} & 0 & 0 & \xi_{7}^{8} & \xi_{8}^{8} \end{pmatrix}$$

Hence we may suppose J of the form (25). The matrix $(\xi_j^i)_{1 \le i \le 4, 5 \le j \le 8}$ (respectively $(\xi_j^i)_{5 \le i \le 8, 1 \le j \le 4}$) is the matrix of π_2^1 (respectively π_1^2) of Lemma 3. Consider $\mathbf{u} = \pi_2^1 J_1^{(2)}$, $\mathbf{v} = \pi_2^1 J_2^{(2)}$, $\mathbf{w} = \pi_2^1 J_3^{(2)}$, $\mathbf{z} = \pi_2^1 J_4^{(2)}$. From Lemma 2 (ii) one has

$$[\mathbf{u}, \mathbf{v}] = 0, \quad [\mathbf{v}, \mathbf{w}] = -\mathbf{v} + \xi_7^7 \mathbf{u}, \quad [\mathbf{u}, \mathbf{w}] = -\mathbf{u} - \xi_7^7 \mathbf{v},$$
$$[\mathbf{u}, \mathbf{z}] = -\xi_8^7 \mathbf{v}, \quad [\mathbf{v}, \mathbf{z}] = \xi_8^7 \mathbf{u}, \quad [\mathbf{w}, \mathbf{z}] = 0,$$

which implies $\mathbf{u} = \mathbf{v} = 0$. With the same reasoning for π_1^2 , we get

$$J \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & \xi_7^1 & \xi_8^1 \\ -1 & 0 & 0 & 0 & 0 & 0 & \xi_7^2 & \xi_8^2 \\ 0 & 0 & \xi_3^3 & \xi_4^3 & 0 & 0 & \xi_7^3 & \xi_8^3 \\ 0 & 0 & \xi_3^4 & \xi_4^4 & 0 & 0 & \xi_7^4 & \xi_8^4 \\ \hline 0 & 0 & \xi_5^3 & \xi_4^5 & 0 & 1 & 0 & 0 \\ 0 & 0 & \xi_6^3 & \xi_4^6 & -1 & 0 & 0 & 0 \\ 0 & 0 & \xi_3^7 & \xi_7^7 & 0 & 0 & \xi_7^7 & \xi_8^7 \\ 0 & 0 & \xi_8^3 & \xi_8^4 & 0 & 0 & \xi_8^7 & \xi_8^8 \end{pmatrix}.$$

Now the torsion equations 17|3, 27|3, 18|3, 28|3, 35|7, 36|7, 45|7, 46|7, give the four Cramer systems $\xi_7^2 \xi_3^3 - \xi_7^1 = 0$, $\xi_7^2 + \xi_3^3 \xi_7^1 = 0$; $\xi_8^2 \xi_3^3 - \xi_8^1 = 0$, $\xi_8^2 + \xi_3^3 \xi_8^1 = 0$; $\xi_3^6 \xi_7^7 - \xi_5^5 = 0$, $\xi_6^6 + \xi_7^7 \xi_5^5 = 0$, $\xi_6^6 \xi_7^7 - \xi_5^5 = 0$, $\xi_6^6 + \xi_7^7 \xi_5^5 = 0$. Hence $\xi_7^1 = \xi_7^2 = \xi_8^1 = \xi_8^2 = 0\xi_5^5 = \xi_6^6 = \xi_4^5 = \xi_4^6 = 0$. Then all torsion

equations vanish ([3]).

(ii) Suppose there exists

$$\Phi = \begin{pmatrix} \Phi_1 & 0 & 0 & 0\\ 0 & b_4^4 & 0 & b_8^4\\ \hline 0 & 0 & \Phi_4 & 0\\ 0 & b_4^8 & 0 & b_8^8 \end{pmatrix} \in H, \quad \Phi_1, \Phi_4 \in SO(3), \ b_4^4 b_8^8 - b_8^4 b_4^8 \neq 0,$$

287

$$\Phi = \begin{pmatrix} R_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & b_4^4 & 0 & 0 & b_8^4 \\ 0 & 0 & 0 & R_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & b_4^8 & 0 & 0 & b_8^8 \end{pmatrix},$$

we reindex the basis as the new basis $(J_1^{(1)}, J_2^{(1)}, J_1^{(2)}, J_2^{(2)}, J_3^{(1)}, J_4^{(1)}, J_3^{(2)}, J_4^{(2)})$, so that Φ , K(M), K(M') have respective matrices in the new basis

$$\Phi = \begin{pmatrix} R_1 & 0 & | & 0 & 0 & 0 & 0 \\ 0 & R_4 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & b_4^4 & 0 & b_8^4 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & b_4^8 & 0 & b_8^8 \end{pmatrix},$$

$$K(M) = \begin{pmatrix} 0 & 1 & 0 & 0 & | & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ \hline 0 & 0 & -1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & M \end{pmatrix}, \quad K(M') = \begin{pmatrix} 0 & 1 & 0 & 0 & | & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & M' \end{pmatrix}.$$

The conclusion follows.

(iii) One has $\tau K(M')\tau = K(\tau_1 M'\tau_1)$ with τ_1 the same as τ yet with 2×2 blocks: $\tau_1 \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$. Now, let $\Psi = \tau \Phi \in \tau H$, $\Phi \in H$. Then $K(M') = \Psi K(M)\Psi^{-1}$ if and only if $\Phi K(M)\Phi^{-1} = \tau K(M')\tau K(\tau_1 M'\tau_1)$, i.e., there exists $\begin{pmatrix} b_4^4 & b_8^4 \\ b_4^8 & b_8^8 \end{pmatrix} \in GL(2,\mathbb{R})$ such that $\tau_1 M'\tau_1 = GMG^{-1}$ with G as in (24), i.e.,

 $M' = (\tau_1 G) M(\tau_1 G)^{-1} = G_1 M G_1^{-1} \text{ with } G_1 = \tau_1 G \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & b_8^8 & 0 & b_4^8 \\ 0 & 0 & 1 & 0 \\ 0 & b_8^4 & 0 & b_4^4 \end{pmatrix} \text{ which is simply}$ the matrix corresponding to $\begin{pmatrix} b_8^8 & b_4^8 \\ b_4^8 & b_4^4 \end{pmatrix} \in GL(2, \mathbb{R})$ in the formula (24). \Box

COROLLARY 7. Any $J \in \mathfrak{X}_{\mathfrak{u}(2)\oplus\mathfrak{u}(2)}$ is equivalent under some member of $(SO(3) \times \mathbb{R}^*_+)^2$ to K(M) in (23) with $M \in GL(4,\mathbb{R}), M^2 = -I$. K(M),K(M') are equivalent if and only if there exists some $\begin{pmatrix} b_4^4 & b_8^4 \\ b_4^8 & b_8^8 \end{pmatrix} \in GL(2,\mathbb{R})$ such that $M' = GMG^{-1}$ with G as in (24).

Proof. Follows readily from Theorem 4. \Box

7.
$$U(2)^N$$

The results of Lemma 6, Theorem 4 and Corollary 7 generalize in the following way.

LEMMA 7. $\forall N \in \mathbb{N}^*$, Aut $(\mathfrak{u}(2))^{\mathbb{N}} H_N \cup \left(\bigcup_{\sigma \in \Sigma} \tau_\sigma H_N\right)$ (disjoint reunion) where • $H_N = \left\{ (U_j^i)_{1 \le i,j \le N}; U_i^i \begin{pmatrix} \Phi_i & 0\\ 0 & b_i^i \end{pmatrix}, U_j^i \begin{pmatrix} 0 & 0\\ 0 & b_i^j \end{pmatrix} (i \ne j), \Phi_i \in SO(3), i \ne j \end{pmatrix}$

 $\det\left(b_{i}^{j}\right)\neq0\Big\};$

• Σ is the set of circular permutations of $\{1, \ldots, N\}$ having no fixed point, and $\tau_{\sigma} = (T_j^i)_{1 \leq i,j \leq N}$ with the T_j^i s the 4×4 blocks $T_j^i = \delta_{i,\sigma(j)} I$ (I the 4×4 identity and $\delta_{k,\ell}$ the Kronecker symbol).

THEOREM 5. Let $J : \mathfrak{u}(2)^N \to \mathfrak{u}(2)^N$. J has zero torsion if and only if there exists $\Phi \in (SO(3) \times \mathbb{R}^*_+)^N \subset H_N$ and $M = (M^i_j)_{1 \le i,j \le N} \in \mathrm{gl}(2N, \mathbb{R}),$ $M^i_j \begin{pmatrix} \xi^{4i-1}_{4j-1} & \xi^{4i-1}_{4j} \\ \xi^{4i}_{4j-1} & \xi^{4i}_{4j} \end{pmatrix}$, such that $\Phi^{-1}J\Phi = K(M)$ with (26) $K(M) = (K^i_j(M))_{1 \le i,j \le N}$

and the $K_i^i(M)$ s the 4 × 4 blocks

$$\begin{split} K_i^i(M) &= \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ \hline 0 & 0 & M_i^i \end{pmatrix}, \quad 1 \le i \le N, \\ K_j^i(M) &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & M_j^i \end{pmatrix}, \quad 1 \le i, j \le N, \; i \ne j. \end{split}$$

289

(Here we used that the analogs of 17|3, 27|3 18|3, 28|3 35|7, 36|7 45|7, 46|7 at the end of (i) in the proof of Theorem 4 are respectively, with i < j,

$$\begin{array}{rl} 4i-3,4j-1|4i-1:&\xi_{4j-1}^{4i-3}-\xi_{4i-1}^{4i-1}\xi_{4j-1}^{4i-2}=0\\ 4i-2,4j-1|4i-1:&\xi_{4j-1}^{4i-2}+\xi_{4i-1}^{4i-1}\xi_{4j-1}^{4i-3}=0\\ 4i-3,4j|4i-1:&\xi_{4j}^{4i-3}-\xi_{4i-1}^{4i-1}\xi_{4j}^{4i-2}=0\\ 4i-2,4j|4i-1:&\xi_{4j}^{4i-2}+\xi_{4i-1}^{4i-1}\xi_{4j}^{4i-2}=0\\ 4i-1,4j-3|4j-1:&\xi_{4i-1}^{4j-2}-\xi_{4j-1}^{4j-1}\xi_{4i-1}^{4j-2}=0\\ 4i-1,4j-2|4j-1:&\xi_{4i}^{4j-2}+\xi_{4j-1}^{4j-1}\xi_{4i-1}^{4j-3}=0\\ 4i,4j-3|4j-1:&\xi_{4i}^{4j-2}+\xi_{4j-1}^{4j-1}\xi_{4i-1}^{4j-2}=0\\ 4i,4j-2|4j-1:&\xi_{4i}^{4j-2}+\xi_{4j-1}^{4j-1}\xi_{4i}^{4j-3}=0\\ 4i,4j-2|4j-1:&\xi_{4i}^{4j-2}+\xi_{4j-1}^{4j-1}\xi_{4i}^{4j-3}=0\\ \end{array}$$

and give $\xi_{4j-1}^{4i-3} = \xi_{4j-1}^{4i-2}\xi_{4j}^{4i-3} = \xi_{4j}^{4i-2}\xi_{4i-1}^{4j-3} = \xi_{4i-1}^{4j-2}\xi_{4i}^{4j-3} = \xi_{4i}^{4j-2}0$. Then all torsion equations vanish.)

COROLLARY 8. Any $J \in \mathfrak{X}_{\mathfrak{u}(2)^N}$ is equivalent under some member of $(SO(3) \times \mathbb{R}^*_+)^N$ to K(M) in (26) with $M \in GL(2N, \mathbb{R}), M^2 = -I$. K(M), K(M') are equivalent if and only if there exists some $(b_{4j}^{4i})_{1 \leq i,j \leq N} \in GL(N, \mathbb{R})$ such that $M' = GMG^{-1}$ with $G = (G_j^i(M))_{1 \leq i,j \leq N}, G_i^i \begin{pmatrix} 1 & 0 \\ 0 & b_{4i}^{4i} \end{pmatrix}, G_j^i \begin{pmatrix} 0 & 0 \\ 0 & b_{4j}^{4i} \end{pmatrix}, i \neq j$.

Remark 7. The closed set $\mathcal{R} = \{M \in GL(2N, \mathbb{R}); M^2 = -I\}$ consists of the conjugates of $\mathcal{T} = \begin{pmatrix} 0 & -I_N \\ I_N & 0 \end{pmatrix}$ (I_N the $N \times N$ identity) under the action of $GL(2N, \mathbb{R})$. Hence it is a $2N^2$ -dimensional submanifold of \mathbb{R}^{4N^2} with a diffeomorphism

$$\chi: GL(2N, \mathbb{R}) / \mathcal{S} \to \mathcal{R},$$

$$\begin{split} \mathcal{S} &= \left\{ Q = \begin{pmatrix} R & -S \\ S & R \end{pmatrix}; \, R, S \in GL(N,\mathbb{R}), \, \det Q \neq 0 \right\} \text{ the stabilizer of } \mathcal{T}, \, \text{and } \chi \\ \text{defined by } \chi\left[P\right] &= P\mathcal{T}P^{-1} \text{ for } \left[P\right] \text{ the class mod } \mathcal{S} \text{ of } P \in GL(2N,\mathbb{R}). \text{ For } \\ N &= 2, \, \chi\left[\begin{pmatrix} -\eta & 0 \\ \xi & 1 \end{pmatrix} \right] = \begin{pmatrix} \xi & \eta \\ -\frac{1+\xi^2}{\eta} & -\xi \end{pmatrix}, \, (\xi,\eta) \in \mathbb{R} \times \mathbb{R}^*. \text{ For general } N \text{ and for } \\ G \in GL(2N,\mathbb{R}), \, M = \chi[P], \, M'\chi[P'] \in \mathcal{R}, \, GMG^{-1}\chi[GP] \text{ and the condition } \\ M' &= GMG^{-1} \text{ reads } [P'][GP]. \end{split}$$

8. LOCAL CHART AND A REPRESENTATION FOR $(U(2), J(\xi))$

8.1. Local chart

For any fixed $\xi \in \mathbb{R}$, denote simply J the complex structure $J(\xi)$ on $\mathfrak{u}(2)$ and by G the group U(2) endowed with the left invariant structure of complex manifold defined by J. For any open subset $V \subset U(2)$, the space $H_{\mathbb{C}}(V)$ of complex valued holomorphic functions on V (considered here as a subset of G) consists of all complex smooth functions f on V which are annihilated by all $\widetilde{X}_j^- = X_j + \mathrm{i}JX_j$, $1 \leq j \leq 4$, with $(X_j)_{1 \leq j \leq 4}$ (respectively (JX_j)) the left invariant vector fields associated to the basis $(J_j)_{1 \leq j \leq 4}$ of $\mathfrak{u}(2)$ (respectively to (JJ_j)). One has $\widetilde{X}_1^- = X_1 - \mathrm{i}X_2$, $\widetilde{X}_2^- = \mathrm{i}\widetilde{X}_1^-$, $\widetilde{X}_4^- = \mathrm{i}X_3 + (1 - \mathrm{i}\xi)X_4$, $\widetilde{X}_3^- = -\mathrm{i}(1 + \mathrm{i}\xi)\widetilde{X}_4^-$, hence

(27)
$$H_{\mathbb{C}}(V) = \{ f \in C^{\infty}(V); \ \widetilde{X}_1^- f \widetilde{X}_4^- f = 0 \}.$$

As is known, the map $\mathbb{S}^1 \times SU(2) \to U(2)$ defined by

$$(\zeta, A) \mapsto \begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} A$$

is a diffeomorphism of manifolds (not of groups). Introducing Euler angles as coordinates in the open subset $\Omega = SU(2) \setminus (e^{\mathbb{R}J_1} \cup e^{\pi J_3} e^{\mathbb{R}J_1})$ of SU(2), one gets the coordinates $(s, \theta, \varphi, \psi)$ in the open subset

(28)
$$V = \left(\mathbb{S}^1 \setminus \{-1\}\right) \times \Omega$$

such that u defined by

(29)
$$u(s,\theta,\varphi,\psi) \begin{pmatrix} e^{is} & 0\\ 0 & 1 \end{pmatrix} e^{\varphi J_3} e^{\theta J_1} e^{\psi J_3} \begin{pmatrix} e^{is} e^{i\frac{\varphi+\psi}{2}} \cos\frac{\theta}{2} i e^{is} e^{i\frac{\varphi-\psi}{2}} \sin\frac{\theta}{2}\\ i e^{-i\frac{\varphi-\psi}{2}} \sin\frac{\theta}{2} & e^{-i\frac{\varphi+\psi}{2}} \cos\frac{\theta}{2} \end{pmatrix}$$

is a diffeomorphism of $] - \pi, \pi[\times]0, \pi[\times]0, 2\pi[\times] - 2\pi, 2\pi[$ on V. Then one gets on V (see e.g. [12], p. 141)

$$\begin{aligned} X_1 &= \cos\psi \,\frac{\partial}{\partial\theta} + \frac{\sin\psi}{\sin\theta} \,\frac{\partial}{\partial\varphi} - \cot\theta \sin\psi \,\frac{\partial}{\partial\psi}, \\ X_2 &= -\sin\psi \,\frac{\partial}{\partial\theta} + \frac{\cos\psi}{\sin\theta} \,\frac{\partial}{\partial\varphi} - \cot\theta \cos\psi \,\frac{\partial}{\partial\psi}, \\ X_3 &= \frac{\partial}{\partial\psi}, \\ X_4 &= \frac{\partial}{\partial s} - \frac{\partial}{\partial\varphi}. \end{aligned}$$

Hence $f \in C^{\infty}(V)$ is in $H_{\mathbb{C}}(V)$ if and only if it satisfies the two equations

$$i\sin\theta \frac{\partial f}{\partial \theta} + \frac{\partial f}{\partial \varphi} - \cos\theta \frac{\partial f}{\partial \psi} = 0,$$
$$i\frac{\partial f}{\partial \psi} + (1 - i\xi) \left(\frac{\partial f}{\partial s} - \frac{\partial f}{\partial \varphi}\right) = 0.$$

The two functions

(30)
$$w^1 = e^{i(s+\varphi)} \cot \frac{\theta}{2},$$

(31)
$$w^2 = e^{(1+i\xi)\frac{s}{2(1+\xi^2)}} e^{i\frac{\psi}{2}} \sqrt{\sin\theta}$$

are holomorphic on V. Let $F: V \to \mathbb{C}^2$ defined by $F = (w^1, w^2)$. It is easily seen that F is injective, with jacobian $-\frac{1}{4(1+\xi^2)} e^{\frac{s}{1+\xi^2}} (\cot \frac{\theta}{2})^2 \neq 0$, hence F is a biholomorphic bijection of V onto an open subset F(V) of \mathbb{C}^2 , i.e., (V, F) is a chart of G. F(V) is the set of those $(w^1, w^2) \in \mathbb{C}^2$ satisfying the following conditions, where $r_1 = |w^1|$, $r_2 = |w^2|$ and $\omega(r_1, r_2) = \log r_2 - \frac{1}{2} \log \frac{2r_1}{1+r_1^2}$: $r_1r_2 \neq 0, \ \sqrt{\frac{2r_1}{1+r_1^2}} e^{-\frac{\pi}{2(1+\xi^2)}} < r_2 < \sqrt{\frac{2r_1}{1+r_1^2}} e^{\frac{\pi}{2(1+\xi^2)}}$, arg $w_1 \neq 2(1+\xi^2)\omega(r_1, r_2)$ mod 2π , arg $w_2 \neq \xi \omega(r_1, r_2) + \pi \mod 2\pi$. For example, if $\xi = 0$,

$$V \bigcup_{r_1 > 0} \bigcup_{e^{-\frac{\pi}{2}} y(r_1) < r_2 < e^{\frac{\pi}{2}} y(r_1)} \left(\left(\mathcal{C}_{r_1}^{(1)} \setminus \{ \arg \equiv 2\omega(r_1, r_2) \} \right) \times \left(\mathcal{C}_{r_2}^{(2)} \setminus \{ \arg \equiv \pi \} \right) \right),$$

where $C_{r_j}^j$, j = 1, 2 is the circle with radius r_j in the w^j -plane and $y(x) = \sqrt{\frac{2x}{1+x^2}}$, x > 0.

8.2. A representation on a space of holomorphic functions

As U(2) is compact, there are no nonconstant holomorphic functions on the whole of U(2). Instead, we consider the space $H_{\mathbb{C}}(V)$ of holomorphic functions on the open subset V (28), and we compute (as kind of substitute for the regular representation) the representation λ of the Lie algebra $\mathfrak{u}(2)$ we get by Lie derivatives on $H_{\mathbb{C}}(V)$. First, note that for any $x = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in V$ as in (29), the complex coordinates w^1 , w^2 of x (30), (31) satisfy

$$w^{1} = -\mathrm{i}\mathrm{e}^{-\mathrm{i}s}\frac{a}{\bar{b}},$$
$$\left(w^{2}\right)^{2} = 2\mathrm{i}a\bar{b}\,\mathrm{e}^{s\frac{1+\mathrm{i}\xi}{1+\xi^{2}}}$$

Then, one gets for the complex coordinates $w_{e^{-tJ_1}x}^1$, $w_{e^{-tJ_1}x}^2$ of $e^{-tJ_1}x$ ($x \in V$, $t \in \mathbb{R}$ sufficiently small)

$$w_{e^{-tJ_{1}x}}^{1} = \frac{1 + w^{1} \cot \frac{t}{2}}{\cot \frac{t}{2} - w^{1}},$$
$$(w_{e^{-tJ_{1}x}}^{2})^{2} = (w^{2})^{2} \left(\cos t + \frac{\sin t}{2} \frac{1 - (w^{1})^{2}}{w^{1}}\right).$$

Whence for any $f \in H_{\mathbb{C}}(V)$, denoting $J_1 f$ instead of $\lambda(J_1) f$,

$$(J_1 f)(w^1, w^2) = \left[\frac{\mathrm{d}}{\mathrm{d}t} f(w^1_{\mathrm{e}^{-tJ_1}x}, w^2_{\mathrm{e}^{-tJ_1}x})\right]_{t=0} \frac{1 + (w^1)^2}{2} \frac{\partial f}{\partial w^1} + \frac{w^2 \left(1 - (w^1)^2\right)}{4w^1} \frac{\partial f}{\partial w^2}.$$

In the same way,

$$w_{e^{-tJ_{2}x}}^{1} = -i \frac{i \sin \frac{t}{2} + w^{1} \cos \frac{t}{2}}{-i \cos \frac{t}{2} + w^{1} \sin \frac{t}{2}},$$

$$(w_{e^{-tJ_{2}x}}^{2})^{2} = (w^{2})^{2} \left(\cos t + i \frac{\sin t}{2} \frac{1 + (w^{1})^{2}}{w^{1}} \right),$$

$$(J_{2}f) (w^{1}, w^{2}) = \frac{i(1 - (w^{1})^{2})}{2} \frac{\partial f}{\partial w^{1}} + \frac{iw^{2} \left(1 + (w^{1})^{2}\right)}{4w^{1}} \frac{\partial f}{\partial w^{2}},$$

$$w_{e^{-tJ_{3}x}}^{1} = e^{-it}w^{1}, \quad (w_{e^{-tJ_{3}x}}^{2})^{2} = (w^{2})^{2},$$

$$(J_{3}f) (w^{1}, w^{2}) = -iw^{1} \frac{\partial f}{\partial w^{1}}.$$

Finally,

$$w_{e^{-tJ_{4}x}}^{1} = w^{1}, \quad (w_{e^{-tJ_{4}x}}^{2})^{2} = (w^{2})^{2} e^{-t\frac{1+i\xi}{1+\xi^{2}}},$$
$$(J_{4}f)(w^{1},w^{2}) = -\frac{1+i\xi}{1+\xi^{2}}w^{2}\frac{\partial f}{\partial w^{2}}.$$

In the complexification $\mathfrak{sl}(2) \oplus \mathbb{C}J_4$ of $\mathfrak{u}(2)$, introduce as usual

$$H_{\pm} = \mathrm{i}J_1 \mp J_2, \quad H_3 = \mathrm{i}J_3,$$

so that

$$[H_3, H_{\pm}] = \pm H_{\pm}, \quad [H_+, H_-] = 2H_3.$$

Then, extending the representation λ to $\mathfrak{sl}(2) \oplus \mathbb{C}J_4$, one has, with $H_4 = -(1 - i\xi)J_4$,

$$(H_+f)(w^1, w^2) = i\left((w^1)^2 \frac{\partial f}{\partial w^1} - \frac{1}{2}w^1w^2 \frac{\partial f}{\partial w^2}\right),$$
$$(H_-f)(w^1, w^2) = i\left(\frac{\partial f}{\partial w^1} + \frac{w^2}{2w^1} \frac{\partial f}{\partial w^2}\right),$$
$$(H_3f)(w^1, w^2) = w^1 \frac{\partial f}{\partial w^1}, \quad (H_4f)(w^1, w^2) = w^2 \frac{\partial f}{\partial w^2}.$$

8.3. A subrepresentation

We restrict λ to $H(\mathbb{C}^* \times \mathbb{C}^*)$, $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, and denote $\varphi_{p,q}$ the function $\varphi_{p,q}(w^1, w^2) = (w^1)^p (w^2)^q$ for $p, q \in \mathbb{Z}$. The system $(\varphi_{p,q})_{p,q \in \mathbb{Z}}$ is total in $H(\mathbb{C}^* \times \mathbb{C}^*)$, and one has

(32)
$$H_+ \varphi_{p,q} = i \left(p - \frac{q}{2} \right) \varphi_{p+1,q},$$

(33)
$$H_{-}\varphi_{p,q} = i\left(p + \frac{q}{2}\right)\varphi_{p-1,q},$$

$$H_3 \varphi_{p,q} = p \varphi_{p,q},$$

(35)
$$H_4 \varphi_{p,q} = q \varphi_{p,q}.$$

For any $q \in \mathbb{Z}$, the subspace \mathcal{H}_q of functions of the form $(w^2)^q g(w^1)$, $g \in H(\mathbb{C}^*)$, is a closed invariant subspace of $H(\mathbb{C}^* \times \mathbb{C}^*)$, and $H(\mathbb{C}^* \times \mathbb{C}^*)$ is the closure of $\bigoplus_{q \in \mathbb{Z}} \mathcal{H}_q$.

8.4. A lemma

LEMMA 8. Let $\mathcal{E} = H(\mathbb{C}^*)$ the Fréchet space of holomorphic functions of the complex variable z on \mathbb{C}^* . Let \mathcal{F} be any closed vector subspace of \mathcal{E} that is invariant by the operator $z\frac{d}{dz}$. Let $f \in \mathcal{F}$ and $f(z) = \sum_{p=-\infty}^{+\infty} c_p z^p$ its Laurent expansion in \mathbb{C}^* . If for some $p \in \mathbb{Z}$, $c_p \neq 0$, then the function $z \mapsto z^p$ belongs to \mathcal{F} .

Proof. We show first that the function $z \mapsto f(e^{i\theta}z)$ belongs to $\mathcal{F}, \forall \theta \in \mathbb{R}$, $\forall f \in \mathcal{F}$. Let $f \in \mathcal{F}$ and $f(z) = \sum_{p=-\infty}^{+\infty} c_p z^p$ its Laurent expansion in \mathbb{C}^* . Since it is uniformly and absolutely convergent on compact subsets of \mathbb{C}^* , and since the operator $H = z \frac{d}{dz}$ is continuous on \mathcal{E} ,

$$\frac{(\mathrm{i}\theta)^k}{k!} (H^k f)(z) \sum_{p=-\infty}^{\infty} c_p \frac{(\mathrm{i}\theta p)^k}{k!} z^p, \quad \forall k \in \mathbb{N}, \, \forall \theta \in \mathbb{R}, \, \forall z \in \mathbb{C}^*.$$

On the other hand, for any fixed $\theta \in \mathbb{R}$, the double series

$$\sum_{k=0}^{+\infty} \sum_{p=-\infty}^{+\infty} c_p \frac{(\mathrm{i}\theta p)^k}{k!} z^p$$

is absolutely and uniformly summable in the annulus A(r,R) for any $0 < r < R < +\infty$ since

$$\sum_{k=0}^{+\infty} \sum_{p=-\infty}^{+\infty} |c_p| \frac{(|\theta| |p|)^k}{k!} |z|^p \le \sum_{p<0} |c_p| (e^{-|\theta|} r)^p + \sum_{p\ge 0} |c_p| (e^{|\theta|} R)^p < +\infty.$$

From the associativity theorem for summable families, we have

$$f(e^{i\theta}z)\sum_{k=0}^{+\infty} \frac{(i\theta)^k}{k!} (H^k f)(z)$$

with the series uniformly and absolutely convergent on compact subsets of \mathbb{C}^* . The conclusion follows, since $H^k f \in \mathcal{F}$, $\forall k$. Now we use the same trick as in [5], p. 14. For any $z \in \mathbb{C}^*$, denote f_z the periodic function on $\mathbb{R} : \theta \mapsto f(e^{i\theta}z)$. Its Fourier expansion is $f(e^{i\theta}z) = \sum_{p=-\infty}^{+\infty} \tilde{c}_p(z)e^{ip\theta}$ where

$$\widetilde{c}_p(z) = \frac{1}{2\pi} \int_0^{2\pi} f(\mathrm{e}^{\mathrm{i}\theta} z) \mathrm{e}^{-\mathrm{i}p\theta} \mathrm{d}\theta.$$

The function $z \mapsto \tilde{c}_p(z)$ belongs to \mathcal{F} as the right-hand side is a limit in \mathcal{E} of linear combinations of functions $z \mapsto f(e^{i\theta}z)$. But with the Laurent expansion of f one gets $f(e^{i\theta}z) = \sum_{p=-\infty}^{+\infty} c_p z^p e^{ip\theta}$. For any z, that series is a trigonometric series that converges uniformly on \mathbb{R} , hence it coincides with the Fourier series of f_z and $\tilde{c}_p(z) = c_p z^p$, $\forall p \in \mathbb{Z}$. Hence if for some $p \in \mathbb{Z}$, $c_p \neq 0$, then the function $z \mapsto z^p$ belongs to \mathcal{F} . \Box

8.5. A closer look at the subrepresentation

Introduce the Casimir $C = H_+H_- + (H_3)^2 - H_3$. On \mathcal{H}_q , C = u(u+1) with $u = \frac{q}{2}$. Now, we distinguish three cases. We use both the notation \uparrow_u^q , $D^q(2k)$, etc., of [8], Theorem 2.3, for representations of $\mathfrak{u}(2)$ and the usual notation of, e.g., [9], 7.3, \uparrow_u , $D^{(k)}$, etc. for representations of $\mathfrak{sl}(2)$. One has $\uparrow_u^q = \uparrow_u \otimes q$, $D^q(2k) = D^{(k)} \otimes q$ etc.

Case 1: $q = -2k, k \in \mathbb{N} \setminus \{0\}$. Then from (32), (33), the closed subspace \mathcal{H}_q^{\uparrow} (respectively $\mathcal{H}_q^{\downarrow}$) generated by $\{\varphi_{k+n,q}, n \in \mathbb{N}\}$ (respectively $\{\varphi_{-k-n,q}, n \in \mathbb{N}\}$) which consists of the functions $(w^2)^{-2k}(w^1)^k g(w^1)$ (respectively $(w^2)^{-2k} (w^1)^{-k} g(\frac{1}{w^1})), g \in H(\mathbb{C})$, is invariant and topologically irreducible from Lemma 8. $\mathcal{H}_q^{\uparrow} = \uparrow_{-k}^q = \uparrow_{-k} \otimes q, \ \mathcal{H}_q^{\downarrow} = \downarrow_{-k}^q = \downarrow_{-k} \otimes q. \ \mathcal{H}_q$ is indecomposable and $\mathcal{H}_q/(\mathcal{H}_q^{\uparrow} \oplus \mathcal{H}_q^{\downarrow})$ is topologically irreducible and equal to $D^q(2(k-1)) = D^{(k-1)} \otimes q$, i.e., \mathcal{H}_q is a nontrivial extension of $D^q(2(k-1))$ by $\uparrow_{-k}^q \oplus \downarrow_{-k}^q$.

Case 2: $q = 2k, k \in \mathbb{N}$. The closed subspace \mathcal{H}_q^D generated by $\{\varphi_{-k+n,q}, n \in \mathbb{N}, 0 \leq n \leq 2k\}$, which consists of the functions $(w^2)^{2k}(w^1)^{-k}P(w^1), P \in \mathbb{C}[w^1]$, deg $P \leq 2k$, is invariant and topologically irreducible from Lemma 8, and $\mathcal{H}_q^D = D^q(2k) = D^{(k)} \otimes q$. There are exactly 2 closed invariant (nontrivial) subspaces containing \mathcal{H}_q^D . Each one is indecomposable, with topologically irreducible quotient by \mathcal{H}_q^D equal respectively to \uparrow_{-k-1}^q or \downarrow_{-k-1}^q .

Case 3: $q \notin 2\mathbb{Z}$. In that case $\mathcal{H}_q = D^q(u, 0)$ is topologically irreducible.

We see that λ is quite different from the regular representation, since the differentials of the representation in the unitary dual of U(2) are $D^{(\ell)} \otimes m$, $2\ell \in \mathbb{N}, m \in \mathbb{Z}$, with $2\ell + m$ even ([1], p. 87).

9. CHART FOR $(SU(2) \times SU(2), J(\xi, \eta))$

In this last section, we compute an holomorphic chart for $J(\xi, \eta)$, $(\xi, \eta) \in \mathbb{R} \times \mathbb{R}^*$, in the open subset $W = \Omega \times \Omega$ of $SU(2) \times SU(2)$ with Euler angles coordinates $(\theta_1, \phi_1, \psi_1, \theta_2, \phi_2, \psi_2)$. The space $H_{\mathbb{C}}(W)$ of complex valued holomorphic functions on W consists of all complex smooth functions f on Wwhich are annihilated by all

$$\widetilde{X}_{j}^{(k)} = X_{j}^{(k)} + iJX_{j}^{(k)}, \quad 1 \le j \le 3, \ 1 \le k \le 2,$$

 $(X_j^{(k)})$ the left invariant vector fields associated to the basis $(J_1^{(1)}, J_2^{(1)}, J_3^{(1)}, J_1^{(2)}, J_2^{(2)}, J_3^{(2)})$ of $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$. One has $\widetilde{X}_1^{(k)}{}^- = X_1^{(k)} - iX_2^{(k)}, \widetilde{X}_2^{(k)}{}^- = i\widetilde{X}_1^{(k)}{}^-, k = 1, 2, \ \widetilde{X}_3^{(2)}{}^- = i\eta X_3^{(1)} + (1 - i\xi)X_3^{(2)}, \ \widetilde{X}_3^{(1)}{}^- - i\frac{1 + i\xi}{\eta}\widetilde{X}_3^{(2)}{}^-$. For k = 1, 2,

$$X_1^{(k)} = \cos \psi_k \frac{\partial}{\partial \theta_k} + \frac{\sin \psi_k}{\sin \theta_k} \frac{\partial}{\partial \varphi_k} - \cot \theta_k \sin \psi_k \frac{\partial}{\partial \psi_k},$$

$$X_2^{(k)} = -\sin \psi_k \frac{\partial}{\partial \theta_k} + \frac{\cos \psi_k}{\sin \theta_k} \frac{\partial}{\partial \varphi_k} - \cot \theta_k \cos \psi_k \frac{\partial}{\partial \psi_k},$$

$$X_3^{(k)} = \frac{\partial}{\partial \psi_k}.$$

Hence $f \in C^{\infty}(W)$ is in $H_{\mathbb{C}}(W)$ if and only if it satisfies the equations

$$i\sin\theta_1 \frac{\partial f}{\partial\theta_1} + \frac{\partial f}{\partial\varphi_1} - \cos\theta_1 \frac{\partial f}{\partial\psi_1} = 0,$$

$$i\sin\theta_2 \frac{\partial f}{\partial \theta_2} + \frac{\partial f}{\partial \varphi_2} - \cos\theta_2 \frac{\partial f}{\partial \psi_2} = 0, \qquad i\eta \frac{\partial f}{\partial \psi_1} + (1 - i\xi) \frac{\partial f}{\partial \psi_2} = 0.$$

The functions

 $z^{1} = e^{i\varphi_{1}} \cot \frac{\theta_{1}}{2}, \quad z^{2} = e^{i\varphi_{2}} \cot \frac{\theta_{2}}{2}, \quad z^{3} = e^{i\frac{\psi_{1}}{2}} e^{\frac{\eta(1+i\xi)}{1+\xi^{2}}\frac{\psi_{2}}{2}} \sqrt{\sin\theta_{1}} \sqrt{\sin\theta_{2}}$ are holomorphic on W. Let $Z: W \to \mathbb{C}^{3}$ defined by $Z = (z^{1}, z^{2}, z^{3}). Z$ is injective, with jacobian $-\frac{\eta}{4(1+\xi^{2})} e^{\frac{\eta}{1+\xi^{2}}\psi_{2}} (\cot \frac{\theta_{1}}{2})^{2} (\cot \frac{\theta_{2}}{2})^{2} \neq 0$, hence Z is a biholomorphic bijection of W onto an open subset of \mathbb{C}^{3} , i.e., (W, Z) is a local chart for $SU(2) \times SU(2)$ equipped with the complex structure $J(\xi, \eta)$.

REFERENCES

- T. Bröcker and T. Dieck, Representations of Compact Lie Groups. Graduate Texts in Math. 98. Springer, New York, 1985.
- [2] J.-Y. Charbonnel and H.O. Khalgui, Classification des structures CR invariantes pour les groupes de Lie compacts. J. Lie Theory 14 (2004), 165–198.
- [3] http://www.u-bourgogne.fr/monge/l.magnin/CSu2/CSu2index.html or http://math.u-bourgogne.fr/IMB/magnin/public_html/CSu2/CSu2index.html
- [4] N.A. Daurtseva, Invariant complex structures on S³ × S³. Electronic journal "Investigated in Russia", 2004, 888-893.
 English version http://zhurnal.ape.relarn.ru/articles/2004/081e.pdf
 Russian version http://zhurnal.ape.relarn.ru/articles/2004/081.pdf
- [5] S. Helgason, Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators and Spherical Functions). Academic Press, Orlando, 1984.
- [6] L. Magnin, Complex structures on indecomposable 6-dimensional nilpotent real Lie algebras. Internat. J. Alg. Comput. 17 (2007), 77–113.
- [7] L. Magnin, Left invariant complex structures on real 6-dimensional simply connected indecomposable nilpotent Lie groups. Internat. J. Alg. Comput. 17 (2007), 115–139.
- [8] W. Miller Jr., *Lie Theory and Special Functions*. Academic Press, New York, 1968.
- [9] W. Miller Jr., Symmetry Groups and their Applications. Academic Press, New York, 1972.
- [10] A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. 65 (1957), 391–404.
- T. Sasaki, Classification of left invariant complex structures on GL(2, ℝ) and U(2). Kumamoto J. Sci. (Math) 14 (1981), 115–123.
- [12] N. Ja. Vilenkin, Fonctions spéciales et théorie de la représentation des groupes. Dunod, Paris, 1969.

Received 8 March 2010

University of Bourgogne Mathematical Institute of Bourgogne UMR CNRS 5584 BP 47870, 21078 Dijon Cedex, France magnin@u-bourgogne.fr