
G∆1,∆2
IN ACTION

UDREA PĂUN

Set 〈m〉 = {1, 2, . . . , m}, ∀m ≥ 1. We define, in the spirit of the general ∆-ergodic
theory, the notions of a ∆- and a [∆]-stable matrix on Σ, where ∆ and Σ are
partitions of 〈m〉 and 〈n〉, respectively. Then these notions are generalized. We
show that the notion of a [∆]-stable matrix on Σ has a basic role in the general
∆-ergodic theory (see [14–15] and [17] and the references therein for the general
∆-ergodic theory). Further, in Section 2, we define G∆1,∆2 , the set of [∆1]-stable
stochastic m×n matrices on ∆2 (see also [13] or [16] for an equivalent definition),
where ∆1 and ∆2 are partitions of 〈m〉 and 〈n〉, respectively. Then it is used
to give some structure theorems for the finite products of stochastic matrices.
An important special product is P1P2 . . . Pn := Π, where P1, P2, . . . , Pn, Π are
stochastic m × m matrices and Π is a stable matrix (the given examples contain
also ones from [4], [7, p. 94] (or [6]), [20] (see also [1] and [3, pp. 139–141]),
and [21]). Also, we give a characterization of G∆1,∆2 by means of the ergodicity
coefficients γ∆1

and γ∆2
(see [11] for γ∆).
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1. ∆-STABLE MATRICES ON Σ

Set 〈m〉 = {1, 2, . . . ,m} , ∀m ≥ 1. In this section we define the notions
of a ∆- and a [∆]-stable matrix on Σ, where ∆ and Σ are partitions of 〈m〉
and 〈n〉, respectively, and, more generally, of a ∆- and a [∆]-stable matrix
on U × V × Σ, where U and V are nonempty sets included in 〈m〉 and 〈n〉,
respectively, and Σ is as above. Then some examples and results are given.

In this article, a vector x is a row vector and x′ denotes its transpose.
Set e = e(n) = (1, 1, . . . , 1) ∈ Rn, ∀n ≥ 1.

Set
Par(E) = {∆ | ∆ is a partition of E} ,

where E is a nonempty set. We shall agree that the partitions do not contain
the empty set.
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Definition 1.1. Let ∆1,∆2 ∈ Par(E). We say that ∆1 is finer than ∆2 if
∀V ∈ ∆1, ∃W ∈ ∆2 such that V ⊆ W.

Write ∆1 � ∆2 when ∆1 is finer than ∆2.
Set

Rm,n = {F | F is a real m× n matrix} ,

Nm,n = {F | F is a nonnegative m× n matrix} ,

Sm,n = {F | F is a stochastic m× n matrix} ,
Rn = Rn,n, Nn = Nn,n and Sn = Sn,n.

Let F = (Fij) ∈ Rm,n. (The entries of a matrix Z will be denoted Zij .)
Let ∅ 6= U ⊆ 〈m〉, ∅ 6= V ⊆ 〈n〉, and Σ = (K1,K2, . . . ,Kp) ∈ Par (〈n〉) .
Suppose that Σ is an ordered set. Define

FU = (Fij)i∈U, j∈〈n〉 , F V = (Fij)i∈〈m〉, j∈V , F V
U = (Fij)i∈U, j∈V ,

|‖F‖|∞ = max
i∈〈m〉

n∑
j=1

|Fij |

(the ∞-norm of F ), and

F+ =
(
F+

ij

)
, F+

ij =
∑

k∈Kj

Fik, ∀i ∈ 〈m〉 , ∀j ∈ 〈p〉 .

We call F+ =
(
F+

ij

)
the column-reduced matrix of F (on Σ; F+ =

F+(Σ), i.e., it depends on Σ (if confusion can arise we write F+Σ instead
of F+)) (see [17] and, also, [15]). In this article, when we work with the
operator (·)+ = (·)+ (Σ) we suppose that Σ is an ordered set, even if we omit
to precise this.

Definition 1.2. Let P ∈ Nm,n. We say that P is a generalized stochastic
matrix if ∃a ≥ 0, ∃Q ∈ Sm,n such that P = aQ.

The two definitions below are generalizations of Definition 1.3 in [12]
and Definition 1.4 in [11], respectively. Note that they are given in the spirit
of the general ∆-ergodic theory (see [14–15] and [17] and, also, the refe-
rences therein).

Definition 1.3. Let P ∈ Nm,n. Let ∆ ∈ Par (〈m〉) and Σ ∈ Par (〈n〉).
We say that P is a [∆]-stable matrix on Σ if PL

K is a generalized stochastic
matrix, ∀K ∈ ∆, ∀L ∈ Σ. In particular, a [∆]-stable matrix on ({i})i∈〈n〉 is
called [∆]-stable for short. (({i})i∈〈n〉 := ({1} , {2} , . . . , {n}).)

Definition 1.4. Let P ∈ Nm,n. Let ∆ ∈ Par (〈m〉) and Σ ∈ Par (〈n〉). We
say that P is a ∆-stable matrix on Σ if ∆ is the least fine partition for which
P is a [∆]-stable matrix on Σ. In particular, a ∆-stable matrix on ({i})i∈〈n〉
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is called ∆-stable while a (〈m〉)-stable matrix on Σ is called stable on Σ for
short. A stable matrix on ({i})i∈〈n〉 is called stable for short.

Note that the [∆]-stable matrices on Σ are encountered, but nowhere
with this name so far, e.g., in the theory of grouped Markov chains (in the
special case ∆ = Σ (see, e.g., [2, p. 167, Proposition 5.9])) and in the general
∆-ergodic theory (see among other things the definition of G∆1,∆2 in [13], or
[16], or, here, Section 2 (see also [12] for the definition of G∆)). Concerning
the latter field we yet note. Let (Xn)n≥0 be a finite Markov chain with state
space S = 〈r〉, initial distribution p0, and transition matrices (Pn)n≥1. Let Σ =
(K1,K2, . . . ,Kp) ∈ Par (S). Let ∅ 6= B ⊆ N. Set Pm,n = Pm+1Pm+2 . . . Pn,
∀m ≥ 0, ∀n > m. Then the chain is weakly [∆]-ergodic on Σ×B (see [17] for
this notion) if and only if ∀m ∈ B there exist [∆]-stable r × p matrices Πm,n,
m < n, such that

lim
n→∞

[
(Pm,n)+ −Πm,n

]
= 0

(see [17, Theorem 1.16]; Σ is an ordered set). By this result, the chain is weakly
[∆]-ergodic on Σ×B if and only if ∀m ∈ B there exist [∆]-stable r×r matrices
Π′

m,n, m < n, on Σ such that

lim
n→∞

(
Pm,n −Π′

m,n

)+ = 0.

(For any m ∈ B and n > m, we can take Π′
m,n arbitrarily, but [∆]-stable on

Σ and
(
Π′

m,n

)+ = Πm,n (Πm,n is given above).) The latter result says that
[∆]-stable matrices on Σ have a basic role in the general ∆-ergodic theory.

Below we give some examples of [∆]-stable matrices on Σ.

Example 1.5. Let

P =
( 1

3
2
3

1
3

2
3

)
.

Obviously, P is a stable (stochastic) matrix.

Example 1.6 (see [5, p. 71]; the example here refer to the Gibbs sampler
on discrete hypercube {0, 1}m in the special case m = 2). Let

P1 =


1
3

2
3 0 0

1
3

2
3 0 0

0 0 3
8

5
8

0 0 3
8

5
8

 and P2 =


1
4 0 3

4 0
0 2

7 0 5
7

1
4 0 3

4 0
0 2

7 0 5
7

 .

Obviously, P1 is a ({1, 2} , {3, 4})-stable matrix while P2 is a ({1, 3} , {2, 4})-
stable matrix.
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Example 1.7. Let

P =


1 0 0 0 0
0 1

4
3
4 0 0

0 1
3

2
3 0 0

1
5 0 0 1

5
3
5

0 1
7

2
7 0 4

7

 .

E.g., P is a [∆1]-stable matrix on ∆1, where ∆1 = ({1} , {2, 3} , {4} , {5}), and
a [∆2]-stable matrix on ∆2, where ∆2 = ({1, 2, 3} , {4} , {5}) . Note that P is
a reducible stochastic matrix.

Example 1.8. Let

P =


0 1

2
1
2 0 0

0 0 0 1
2

1
2

0 0 0 1
4

3
4

1 0 0 0 0
1 0 0 0 0

 .

E.g., P is a [∆1]-stable matrix on ∆1, where ∆1 = ({1} , {2, 3} , {4, 5}), and a
[∆2]-stable matrix on ∆2, where ∆2 = ({1} , {2} , {3} , {4, 5}) . Note that P is
a cyclic stochastic matrix.

Remark 1.9. (a) A matrix P ∈ Nm,n is [∆]-stable on Σ if and only if P+Σ

is a [∆]-stable matrix.
(b) A matrix P ∈ Nm,n is ∆-stable on Σ if and only if P+Σ is a ∆-stable

matrix.

Remark 1.10. Let ∆ ∈ Par (〈m〉) and Σ = (K1,K2, . . . ,Kp) ∈ Par (〈n〉).
Let P ∈ Nm,n be a [∆]-stable matrix on Σ. Then P is a stable matrix on Σ if
∃v ∈ Rp such that ∀K ∈ ∆, ∃i ∈ K for which (P+Σ){i} = v. In particular, P
is a stable matrix if ∃v ∈ Rn such that ∀K ∈ ∆, ∃i ∈ K for which P{i} = v.

The two definitions below are generalizations of Definitions 1.3–4, res-
pectively.

Definition 1.11. Let P ∈ Nm,n. Let ∅ 6= U ⊆ 〈m〉 and ∅ 6= V ⊆ 〈n〉.
Let ∆ ∈ Par(U) and Σ ∈ Par(V ). We say that P is a [∆]-stable matrix on
U×V ×Σ if P V

U is a [∆]-stable matrix on Σ. In particular, a [∆]-stable matrix
on U × V × ({i})i∈V is called [∆]-stable on U × V for short.

Definition 1.12. Let P ∈ Nm,n. Let ∅ 6= U ⊆ 〈m〉 and ∅ 6= V ⊆ 〈n〉. Let
∆ ∈ Par(U) and Σ ∈ Par(V ). We say that P is a ∆-stable matrix on U×V ×Σ
if ∆ is the least fine partition for which P V

U is a [∆]-stable matrix on Σ. In
particular, a ∆-stable matrix on U ×V × ({i})i∈V is called ∆-stable on U ×V
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while a (U)-stable matrix on U×V ×Σ is called stable on U×V ×Σ for short.
A stable matrix on U × V × ({i})i∈V is called stable on U × V for short.

Remark 1.13. (a) P ∈ Nm,n is a stable matrix on U × V if and only if
P V

U is a stable matrix.
(b) P ∈ Nm,n is a stable matrix on U×V if and only if P is a [(U, {i})i∈Uc ]-

stable matrix on (V c, {j})j∈V , where U c is the complement of U, (U, {i})i∈Uc :=
(U, {i1}, {i2}, . . . , {il}) if U c = {i1, i2, . . . , il}, a.s.o. (If U c = ∅, then (U, {i})i∈Uc

:= (U) while if V c = ∅, then (V c, {j})j∈V := ({j})j∈V .)

Definition 1.14 ([7, p. 93] (see also [6])). Let ∅ 6= D = {P1, P2, . . . , Pt} ⊂
Sm (t ≥ 1). We say that D is a k-definite set if

(i) Pi1Pi2 . . . Pil is a stable (stochastic) matrix, ∀l ≥ k, ∀i1, i2, . . . , il ∈ 〈t〉;
(ii) k is the smallest number with the property (i).
The notion of a k-definite set is related to the theory of finite automata

(see [7] and [18]). Concerning k-definite sets we give a special and simple result
(this is in connection with deterministic finite automata because we use 0-1
stochastic matrices below (a matrix P ∈ Sm,n is called 0-1 if Pij ∈ {0, 1},
∀i ∈ 〈m〉, ∀j ∈ 〈n〉)).

Theorem 1.15. Let D ⊂ Sm be a k-definite set of 0-1 stochastic matri-
ces. Suppose that |D|, m ≥ 2. Let P ∈ D. Then ∃s1, s2 ∈ 〈m〉, s1 6= s2, such
that P is a stable matrix on {s1, s2} × 〈m〉 .

Proof. Suppose that @s1, s2 ∈ 〈m〉, s1 6= s2, such that P is a stable matrix
on {s1, s2}×〈m〉 . Then P is a permutation matrix and we have reached a
contradiction because a permutation matrix does not belong to D if |D|≥2. �

Remark 1.16. The idea from the proof of Theorem 1.15, namely, a per-
mutation matrix does not belong to D if |D| ≥ 2, can be used to prove that
and other matrices belonging to Sm do not belong to D, ∀D ⊂ Sm. E.g., if

P =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

 ,

then P /∈ D, ∀D ⊂ S4, because P
〈3〉
〈3〉 = I3 (consequently, (Pn)〈3〉〈3〉 = I3, ∀n ≥ 1).

2. G∆1,∆2 IN ACTION

In this section we define the set of stochastic matrices G∆1,∆2 (it was de-
fined equivalently in [13] (see also [12] and [16])). Then it is used to give some
structure theorems for the finite products of stochastic matrices (see among
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other things Remark 2.13(a)–(c); in particular, we obtain some structure the-
orems for k-definite sets (see among other things Remark 2.13(d)–(e))). Also,
we give a characterization of G∆1,∆2 by means of the ergodicity coefficients
γ∆1

and γ∆2
.

Let ∆1 ∈ Par (〈m〉) and ∆2 ∈ Par (〈n〉). Define

G∆1,∆2 = {P | P ∈ Sm,n and P is a [∆1] -stable matrix on ∆2}
(see [13] or [16] for an equivalent definition) and, if m = n,

G∆ = G∆,∆

(see [12] for an equivalent definition).

Remark 2.1 (some basic results). (a)

Sm,n = G(〈m〉),(〈n〉) = G∆,(〈n〉) = G({i})i∈〈m〉,∆
′ = G({i})i∈〈m〉,({j})j∈〈n〉

=

=
⋃

∆1∈Par(〈m〉),
∆2∈Par(〈n〉)

G∆1,∆2 , ∀∆ ∈ Par (〈m〉) , ∀∆′ ∈ Par (〈n〉) .

(b) If ∆1 � ∆2, then G∆1,∆ ⊇ G∆2,∆.
(c) If ∆1 � ∆2, then G∆,∆1 ⊆ G∆,∆2 .
(d) (a generalization of (b) and (c)). If ∆1 � ∆3 and ∆2 � ∆4, then

G∆1,∆2 ⊆ G∆3,∆4 .
(e) G∆1,∆2 ∩ G∆3,∆4 6= ∅, ∀∆1,∆3 ∈ Par (〈m〉) , ∀∆2,∆4 ∈ Par (〈n〉) .

(See (f).)
(f) If P ∈ Sm,n is a stable matrix, then P ∈ G(〈m〉),({j})j∈〈n〉

and, more
generally, P ∈ G∆1,∆2 , ∀∆1 ∈ Par (〈m〉), ∀∆2 ∈ Par (〈n〉) (obviously, P ∈
G(〈m〉),({j})j∈〈n〉

implies P ∈ G∆1,∆2 , ∀∆1 ∈ Par (〈m〉), ∀∆2 ∈ Par (〈n〉)).
(g) If P ∈ Sm,n is a [∆]-stable matrix, then P ∈ G∆,({j})j∈〈n〉

and, more
generally, P ∈ G∆1,∆2 , ∀∆1 ∈ Par (〈m〉) with ∆1 � ∆, ∀∆2 ∈ Par (〈n〉) (ob-
viously, P ∈ G∆,({j})j∈〈n〉

implies P ∈ G∆1,∆2 , ∀∆1 ∈ Par (〈m〉) with ∆1 � ∆,
∀∆2 ∈ Par (〈n〉)).

(h) (See (f) again.) P ∈ Sm,n is a stable matrix if and only if P ∈
G(〈m〉),({j})j∈〈n〉

.

(i) (See (g) again.) P ∈ Sm,n is a [∆]-stable matrix if and only if P ∈
G∆,({j})j∈〈n〉

.

(j) (See Remark 1.13(b) again.) P ∈ Sm,n is a stable matrix on U × V
(∅ 6= U ⊆ 〈m〉 and ∅ 6= V ⊆ 〈n〉) if and only if P ∈ G∆1,∆2 , where ∆1 =
(U, {i})i∈Uc and ∆2 = (V c, {j})j∈V .

(k) Im ∈ G∆, ∀∆ ∈ Par(〈m〉). Therefore, (G∆, · ) is a monoid, ∀∆ ∈
Par (〈m〉). Moreover, this monoid is noncommutative if m ≥ 2 because PQ =
Q and QP = P if, e.g., P,Q ∈ Sm with P {1} = Q{m} = e′ (in this case,
obviously, P,Q ∈ G∆, ∀∆ ∈ Par (〈m〉), see also (f)).
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(l) G∆1,∆2 is a convex set, ∀∆1 ∈ Par (〈m〉), ∀∆2 ∈ Par (〈n〉).

Remark 2.2. Each of the matrix sets encountered in [8, Theorem 3.5],
[9, p. 117], and [10, Section 4] is included in a certain G∆. (Note also that
some results from [8–10] are generalized in [12].)

Let P ∈ G∆1,∆2 . Let K ∈ ∆1 and L ∈ ∆2. Then ∃aK,L ≥ 0, ∃QK,L ∈
S|K|,|L| such that PL

K = aK,LQK,L. Set

P−+ = (aK,L)K∈∆1,L∈∆2
.

If confusion can arise, we write P−+(∆1,∆2) instead of P−+. We call P−+ the
row-and-column-reduced (reduced for short) matrix of P on (∆1,∆2). In this
article, when we work with the operator (·)−+ = (·)−+ (∆1,∆2) we suppose
that ∆1 and ∆2 are ordered sets, even if we omit to precise this.

The next result is the main one of this section; (i) is a generalization of
Proposition 1.13 in [12].

Theorem 2.3. Let P ∈ G∆1,∆2 ⊆ Sm,n and Q ∈ G∆2,∆3 ⊆ Sn,p. Then
(i) PQ ∈ G∆1,∆3 ⊆ Sm,p;
(ii) (PQ)−+ = P−+Q−+.

Proof. (i) Let P ∈ G∆1,∆2 and Q ∈ G∆2,∆3 . Then ∀K ∈ ∆1, ∀U ∈ ∆2,
∀L ∈ ∆3, ∃aK,U ≥ 0, ∃AK,U ∈ S|K|,|U |, ∃bU,L ≥ 0, ∃BU,L ∈ S|U |,|L| such that
PU

K = aK,UAK,U and QL
U = bU,LBU,L.

Let K ∈ ∆1 and L ∈ ∆3. Let i ∈ K. We have∑
l∈L

(PQ)il =
∑
l∈L

∑
k∈〈n〉

PikQkl =
∑

k∈〈n〉

Pik

∑
l∈L

Qkl =
∑

W∈∆2

∑
k∈W

Pik

∑
l∈L

Qkl =

=
∑

W∈∆2

∑
k∈W

PikbW,L =
∑

W∈∆2

bW,L

∑
k∈W

Pik =
∑

W∈∆2

aK,W bW,L.

It follows that
∑
l∈L

(PQ)il only depends on constants aK,W and bW,L, W ∈ ∆2,

∀i ∈ K. Therefore, PQ ∈ G∆1,∆3 .
(ii) See the proof of (i). �

Remark 2.4. By Theorem 2.3(i) we have G∆1,∆2G∆2,∆3 ⊆ G∆1,∆3 . Do
we have G∆1,∆2G∆2,∆3 = G∆1,∆3? So far we know that the answer is in
the affirmative in the special case m = n = p := r, ∆1 = (〈r〉), and ∆3 =
({i})i∈〈r〉 (∆2 ∈ Par (〈r〉) is arbitrary). Indeed, if R ∈ G(〈r〉),({i})i∈〈r〉

, then
R ∈ G∆,∆′ , ∀∆,∆′ ∈ Par (〈r〉) (see Remark 2.1(f)). Now, taking P = Q := R,
we have P ∈ G(〈r〉),∆2

and Q ∈ G∆2,({i})i∈〈r〉
. Since R = PQ, we have R ∈

G(〈r〉),∆2
G∆2,({i})i∈〈r〉

.
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Remark 2.5. Do we have PQ ∈ G∆1,∆3 ⊆ Sm,p if and only if ∃∆2 ∈
Par (〈n〉) such that P ∈ G∆1,∆2 (G∆1,∆2 ⊆ Sm,n) and Q ∈ G∆2,∆3 (G∆2,∆3 ⊆
Sn,p)? The answer is in the negative. E.g., if

P =


1
2

1
2 0

1
2

1
2 0

0 0 1

 and Q =

 1 0 0
0 0 1
0 1

2
1
2

 ,

then

PQ =


1
2 0 1

2
1
2 0 1

2

0 1
2

1
2

 .

We have PQ ∈ G(〈3〉),({1,2},{3}). Suppose that ∃∆ ∈ Par (〈3〉) such that P ∈
G(〈3〉),∆ and Q ∈ G∆,({1,2},{3}). By P ∈ G(〈3〉),∆, ∆ = (〈3〉) . It follows that
Q ∈ G(〈3〉),({1,2},{3}), and we have reached a contradiction.

Theorem 2.6. (i) (A well-known result.) Let P ∈ Sm,n and Q ∈ Sn,p.
If P or Q is a stable matrix, then PQ is a stable matrix.

(ii) Let P ∈ Sm,n and Q ∈ Sn,p. If P is a [∆]-stable matrix, then PQ
is a [∆]-stable matrix.

(iii) Let P ∈ G∆1,∆2 ⊆ Sm,n and Q ∈ Sn,p. If Q is a [∆2]-stable matrix,
then PQ is a [∆1]-stable matrix. In particular, if P ∈ G∆ ⊆ Sm and Q ∈ Sm

is a [∆]-stable matrix, then PQ is a [∆]-stable matrix.

Proof. (i) (We give a proof by means of G∆1,∆2 .) Case 1. P is a sta-
ble matrix. Then P ∈ G(〈m〉),({i})i∈〈n〉

(see Remark 2.1(h)). Obviously, Q ∈
G({i})i∈〈n〉,({j})j∈〈p〉

. Now, by Theorem 2.3(i), PQ ∈ G(〈m〉),({j})j∈〈p〉
, i.e., is a

stable matrix.

Case 2. Q is a stable matrix. Then Q ∈ G(〈n〉),({i})i∈〈p〉
. Obviously, P ∈

G(〈m〉),(〈n〉). Now, by Theorem 2.3(i), PQ ∈ G(〈m〉),({i})i∈〈p〉
, i.e., is a stable

matrix.
(ii) Since P is a [∆]-stable matrix, we have P ∈ G∆,({i})i∈〈n〉

(see Remark
2.1(i)). Obviously, Q ∈ G({i})i∈〈n〉,({j})j∈〈p〉

. Now, by Theorem 2.3(i), PQ ∈
G∆,({j})j∈〈p〉

, i.e., is a [∆]-stable matrix.
(iii) Since Q is a [∆2]-stable matrix, we have Q ∈ G∆2,({i})i∈〈p〉

. Now,
since P ∈ G∆1,∆2 and Q ∈ G∆2,({i})i∈〈p〉

, using Theorem 2.3(i), we have PQ ∈
G∆1,({i})i∈〈p〉

, i.e., is a [∆1]-stable matrix. �

In connection with Theorem 2.6(iii) we have the next question.



9 G∆1,∆2 in action 395

Problem 2.7. Let P ∈ G∆ ⊆ Sm. Let Π ∈ Sm be a [∆]-stable matrix. Is
there a [∆]-stable matrix Q ∈ Sm such that PQ = Π?

The answer to above question is in the affirmative if ∆ = (〈m〉). In this
case, it is well-known that Q = Π. Instead, if ∆ 6= (〈m〉), then the answer to
Problem 2.7 is in the negative. E.g., if

1
4

1
4

2
4

0 2
4

2
4

1
4 0 3

4


 x y z

x y z

a b c

 =


1
2

1
2 0

1
2

1
2 0

1
4

1
4

2
4


(∆ = ({1, 2} , {3})), then from{

2
4x + 2

4a = 1
2

1
4x + 3

4a = 1
4

and

{
2
4y + 2

4b = 1
2

1
4y + 3

4b = 1
4 ,

we have x = y = 1. We have reached a contradiction because x + y + z = 1.
The answer to Problem 2.7 is in the negative even if Q is simply a matrix
belonging to Sm. E.g., if

1
4

1
4

2
4

0 2
4

2
4

1
4 0 3

4


 x y z

u v w

a b c

 =


1
2

1
2 0

1
2

1
2 0

1
4

1
4

2
4

 ,

then from 1
4z + 1

4w + 2
4c = 0, it follows that z = w = c = 0. We have reached

a contradiction because 1
4z + 3

4c = 2
4 .

Theorem 2.8. Let P1 ∈ G∆1,∆2 ⊆ Sm1,m2 , P2 ∈ G∆2,∆3 ⊆ Sm2,m3 , . . . ,
Pn ∈ G∆n,∆n+1 ⊆ Smn,mn+1 . Then

(i) P1P2 . . . Pn ∈ G∆1,∆n+1 ⊆ Sm1,mn+1 ;
(ii) (P1P2 . . . Pn)−+ = P−+

1 P−+
2 . . . P−+

n .

Proof. By induction (see Theorem 2.3). �

Definition 2.9. Under the assumptions of Theorem 2.8, we call(
G∆1,∆2 , G∆2,∆3 , . . . , G∆n,∆n+1

)
a linked structure of (the product) P1P2 . . . Pn.

An important special case of Theorem 2.8 is the next result.

Theorem 2.10. Let P1 ∈ G(〈m1〉),∆2
⊆ Sm1,m2 , P2 ∈ G∆2,∆3 ⊆ Sm2,m3 ,

. . . , Pn−1 ∈ G∆n−1,∆n ⊆ Smn−1,mn , Pn ∈ G∆n,({i})i∈〈mn+1〉
⊆ Smn,mn+1 . Then

(i) P1P2 . . . Pn is a stable matrix ;
(ii) π = P−+

1 P−+
2 . . . P−+

n , where e′π := P1P2 . . . Pn.

Proof. See Remark 2.1(h) and Theorem 2.8. �
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Theorem 2.10 (i) can be used to see whether a finite set of matrices D
is k-definite (see Section 1) or a Markov chain has a finite convergence time
(compare the method here with those ones in [4] and [21] which are based on
eigenvalues and eigenvectors). The problem of finite convergence time can be
posed for each finite Markov chain, in particular, for the Markovian algorithms
as, e.g., the simulated annealing (see, e.g., [19, p. 313]).

Example 2.11 (the uniform generation of random permutations of order
n (see [3, pp. 139–141] for another solution; also see [1])). Let Sn be the set
of permutations of order n. Define the matrices Pu, u ∈ 〈n− 1〉 , by

(Pu)στ =

{
1

n−u+1 if τ = σ ◦ (u, v) for some v ∈ {u, u + 1, . . . , n} ,

0 otherwise,

∀u ∈ 〈n− 1〉 (see, e.g., [20]; (u, u) is the identity permutation and (u, v) is a
transposition for u 6= v). Set Π = P1P2 . . . Pn−1. Then Π is a stable matrix
and, moreover, Π = 1

n!e
′e. First, we show that Π is a stable matrix. Let Au

n

be the set of arrangements using u of n objects, ∀u ∈ 〈n〉 . Set

K(i1,i2,...,iu) = {σ | σ ∈ Sn and σ (s) = is, ∀s ∈ 〈u〉} , ∀u ∈ 〈n− 1〉 ,

∆1 = (Sn) ,

and
∆u+1 =

(
K(i1,i2,...,iu)

)
(i1,i2,...,iu)∈Au

n
, ∀u ∈ 〈n− 1〉 .

Obviously, we have ∆n = ({σ})σ∈Sn
. Further, we show that Pu ∈ G∆u,∆u+1 ,

∀u ∈ 〈n− 1〉. Let u ∈ 〈n− 1〉. Let K ∈ ∆u and L ∈ ∆u+1. Let σ ∈ K. It
follows that ∑

τ∈L

(P1)στ =
1
n

and

∑
τ∈L

(Pu)στ =


0 if K = K(i1,i2,...,iu−1), L = K(j1,j2,...,ju)

and ∃v ∈ 〈u− 1〉 such that iv 6= jv,
1

n−u+1 otherwise,

if u ≥ 2. Since
∑
τ∈L

(Pu)στ does not depend on σ, Pu ∈ G∆u,∆u+1 , ∀u ∈

〈n − 1〉. Now, by Theorem 2.10(i), Π is a stable matrix. Second, we show
that Π = 1

n!e
′e. Since (u, v)−1 = (u, v), Pu is a symmetric stochastic matrix,

∀u ∈ 〈n− 1〉. Further, it follows that Pu is a bistochastic matrix, ∀u ∈ 〈n− 1〉.
But ‘Pu is a bistochastic matrix, ∀u ∈ 〈n− 1〉’, implies ‘Π is a bistochastic
matrix’. Now, from Π is a stable and bistochastic matrix, we have Π = 1

n!e
′e.
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Finally, if p0 is a probability distribution on Sn and pn−1 := p0P1P2 . . . Pn−1,
then

pn−1 = p0Π = p0

(
1
n!

e′e

)
=

1
n!

(
p0e

′) e =
1
n!

e =
(

1
n!

,
1
n!

, . . . ,
1
n!

)
,

i.e., pn−1 is the uniform probability distribution on Sn.

Example 2.12. Let D = {P1, P2} , where

P1 =


2
8

4
8

2
8

1
8

4
8

3
8

2
8

4
8

2
8

 and P2 =


1
4

2
4

1
4

1
6

3
6

2
6

1
4

2
4

1
4


(see [6] or [7, p. 94]). Since P1, P2 ∈ G(〈3〉),({1,3},{2}) ∩G({1,3},{2}),({i})i∈〈3〉

, D is
a 2-definite set.

Remark 2.13. (a) The linked structure(
G(〈m1〉),∆2

, G∆2,∆3 , . . . , G∆n−1,∆n , G∆n,({i})i∈〈mn+1〉

)
of P1P2 . . . Pn from Theorem 2.10(i) is a sufficient condition for P1P2 . . . Pn to
be a stable matrix.

(b) The sufficient condition given in (a) for P1P2 . . . Pn to be a stable
matrix is not necessary. Indeed, let, e.g.,

P1 =


1
4

3
4 0

1
4

3
4 0

0 0 1

 and P2 =


1
8

4
8

3
8

2
8

3
8

3
8

7
32

13
32

12
32

 .

Since

P1P2 =


7
32

13
32

12
32

7
32

13
32

12
32

7
32

13
32

12
32

 ,

P1P2 is a stable matrix. Suppose that ∃∆ ∈ Par (〈3〉) such that P1 ∈ G(〈3〉),∆
and P2 ∈ G∆,({i})i∈〈3〉

. By P1 ∈ G(〈3〉),∆, ∆ = (〈3〉) . It follows that P2 ∈
G(〈3〉),({i})i∈〈3〉

. We have reached a contradiction. Note that in the above exam-
ple we can consider two parallel linked structures (P1 is a reducible stochastic
matrix). Indeed, if we write P1 as

P1 =
(

Q1

Q2

)
,

where

Q1 =
( 1

4
3
4 0

1
4

3
4 0

)
and Q2 =

(
0 0 1

)
,
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then
(
G(〈2〉),({i})i∈〈3〉

, G({i})i∈〈3〉,({i})i∈〈3〉

)
is a linked structure of Q1P2 while(

G({3}),({i})i∈〈3〉
, G({i})i∈〈3〉,({i})i∈〈3〉

)
is a linked structure of Q2P2. Obviously,

we have

P1P2 =
(

Q1P2

Q2P2

)
.

Now, see Theorem 2.6(ii) (for the products Q1P2 and Q2P2) and Remark 1.10
(for the matrix P1P2).

(c) There always exist at least m1 parallel linked structures of P1P2 . . . Pn

if P1 ∈ Sm1,m2 , P2 ∈ Sm2,m3 , . . . , Pn ∈ Smn,mn+1 . Indeed,
(
G({k}),({i2})i2∈〈m2〉

,

G({i2})i2∈〈m2〉
,({i3})i3∈〈m3〉

, . . . , G({in})in∈〈mn〉,({in+1})in+1∈〈mn+1〉

)
is a linked struc-

ture of (P1){k} P2 . . . Pn, ∀k ∈ 〈m1〉 (these are trivial parallel linked structures).
(d) Let D = {P1, P2, . . . , Pt} ⊆ Sm (t ≥ 1). By Theorem 2.10(i), if

∃n ≥ 2,∃∆1,∆2, . . . ,∆n−1 ∈ Par (〈m〉) such that Pi ∈ G(〈m〉),∆1
∩ G∆1,∆2 ∩

. . . ∩G∆n−2,∆n−1 ∩G∆n−1,({i})i∈〈m〉
, ∀i ∈ 〈t〉, then ∃k, 1 ≤ k ≤ n, such that D

is a k-definite set. (See, e.g., Example 2.12.)
(e) By (d) we have a sufficient condition for D to be a k-definite set. Is

also this condition necessary? (see also Problem 2.14).
In the special case P1 = P2 = . . . = Pn := P it is possible as the linked

structure of Pn to be as in the next question if P is a irreducible stochastic
matrix (see Remark 2.13(b) again).

Problem 2.14. If P ∈ Sm is a irreducible matrix and Pn is a stable ma-
trix, then are there ∆1,∆2, . . . ,∆n−1 ∈ Par (〈m〉) such that P ∈ G(〈m〉),∆1

∩
G∆1,∆2∩. . .∩G∆n−2,∆n−1∩G∆n−1,({i})i∈〈m〉

? (A possible generalization of Prob-
lem 2.14 is: If P1, P2, . . . , Pn ∈ Sm are irreducible matrices and P1P2 . . . Pn

is a stable matrix, then are there ∆1,∆2, . . . ,∆n−1 ∈ Par (〈m〉) such that
P1 ∈ G(〈m〉),∆1

, P2 ∈ G∆1,∆2 , . . . , Pn−1 ∈ G∆n−2,∆n−1 , Pn ∈ G∆n−1,({i})i∈〈m〉
?)

Another way (it can also be viewed as one subway of that from Theorem
2.10(i)), to see if a product of stochastic matrices is a stable matrix, is given
in the next result.

Theorem 2.15. Let P1, P2, . . . , Pn ∈ Sm. Let Σ = (K1,K2, . . . ,Kn) ∈
Par (〈m〉). If P1 is a stable matrix on 〈m〉 × Kn, P2 is a stable matrix
on (K1 ∪K2 ∪ . . . ∪Kn−1) × (Kn−1 ∪Kn) , . . . , Pn−1 is a stable matrix on
(K1 ∪K2) × (K2 ∪K3 ∪ . . . ∪Kn), and Pn is a stable matrix on K1 × 〈m〉,
then P1P2 . . . Pn is a stable matrix.

Proof. Since P1 is a stable matrix on 〈m〉 × Kn, P2 is a stable matrix
on (K1 ∪K2 ∪ . . . ∪Kn−1) × (Kn−1 ∪Kn) , . . . , Pn−1 is a stable matrix on
(K1 ∪K2)× (K2 ∪K3 ∪ . . . ∪Kn), and Pn is a stable matrix on K1×〈m〉, we



13 G∆1,∆2 in action 399

have

P1 ∈ G(〈m〉),(K1∪K2∪...∪Kn−1,{i})i∈Kn
,

P2 ∈ G(K1∪K2∪...∪Kn−1,{i})i∈Kn
,(K1∪K2∪...∪Kn−2,{i})i∈Kn−1∪Kn

, . . . ,

Pn−1 ∈ G(K1∪K2,{i})i∈K3∪...∪Kn
,(K1,{i})i∈K2∪K3∪...∪Kn

,

and

Pn ∈ G(K1,{i})i∈K2∪K3∪...∪Kn
,({i})i∈〈m〉

,

respectively. Now, by Theorem 2.10(i), P1P2 . . . Pn is a stable matrix. �

Remark 2.16. (a) The condition ‘P1 is a stable matrix on 〈m〉×Kn’ from
Theorem 2.15 implies that P1 has at least a column with identical entries.

(b) Let P ∈ Sm. Suppose that m ≥ 2. Let Σ = (K1,K2, . . . ,Kn) ∈
Par (〈m〉). If |K1| = 1 and P is a stable matrix on (K1 ∪K2) × (K2 ∪ K3 ∪
. . . ∪Kn), then P is a stable matrix on (K1 ∪K2)× 〈m〉.

(c) The number n from Theorem 2.15 can be taken at most m− 1 when
m ≥ 2. The proof is as follows. The worst case of Theorem 2.15 is Σ =
({i})i∈〈m〉. But, using (b), we can replace Σ by Σ′ = ({1, 2} , {i})i∈{3,4,...,m}.

(d) Theorem 2.15 is more restrictive than Theorem 2.10(i). This follows
from the proof of Theorem 2.15 and, e.g., (a) and Example 2.11 (taking, e.g.,
n = 3).

Further, we give two example which use Theorem 2.15.

Example 2.17. Let

P =



1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

0 2
3

1
3 0 0 0

1 0 0 0 0 0
0 0 1 0 0 0
1
4 0 0 2

4
1
4 0


(see [4]). P is a stable matrix on 〈6〉×{6} , {1, 2, 3, 4, 5}×{4, 5, 6} , {1, 2, 3}×
{3, 4, 5, 6} , and {1, 2} × 〈6〉 . By Theorem 2.15 (K1 = {1, 2}, K2 = {3}, K3 =
{4, 5}, K4 = {6}), we obtain that P 4 is a stable matrix. Also, by direct
computation, we obtain that P 3 is a stable matrix (note that P is a reducible
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matrix). Indeed,

P 2 =



2
9

4
9

3
9 0 0 0

2
9

4
9

3
9 0 0 0

2
9

4
9

3
9 0 0 0

1
3

1
3

1
3 0 0 0

0 2
3

1
3 0 0 0

7
12

1
12

4
12 0 0 0


and P 3 =



2
9

4
9

3
9 0 0 0

2
9

4
9

3
9 0 0 0

2
9

4
9

3
9 0 0 0

2
9

4
9

3
9 0 0 0

2
9

4
9

3
9 0 0 0

2
9

4
9

3
9 0 0 0


.

From the above example, we draw the next conclusion.

Remark 2.18. If P is a reducible stochastic matrix we can have both
linked structures and parallel linked structures of P k for some k ≥ 1. In the
above example a linked structure is given by Theorem 2.15 while four parallel
linked structures are obtained if we write P as

P =


Q1

Q2

Q3

Q4

 ,

where

Q1 =


1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

0 2
3

1
3 0 0 0

 , Q2 =
(

1 0 0 0 0 0
)
,

Q3 =
(

0 0 1 0 0 0
)

and Q4 =
(

1
4 0 0 2

4
1
4 0

)
(see also Remark 1.13(b)–(c)).

Example 2.19. Let

P =



µ
µ+λ

λ
µ+λq1

λ
µ+λq2 · · · λ

µ+λqa−2
λ

µ+λqa−1
λ

µ+λ

∞∑
i=a

qi

µ
µ+λ 0 λ

µ+λq1 · · · λ
µ+λqa−3

λ
µ+λqa−2

λ
µ+λ

∞∑
i=a−1

qi

µ
µ+λ 0 0 · · · λ

µ+λqa−4
λ

µ+λqa−3
λ

µ+λ

∞∑
i=a−2

qi

...
...

... · · ·
...

...
...

µ
µ+λ 0 0 · · · 0 λ

µ+λq1
λ

µ+λ

∞∑
i=2

qi

µ
µ+λ 0 0 · · · 0 0 λ

µ+λ
µ

µ+λ 0 0 · · · 0 0 λ
µ+λ
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(see [21]; this is the embedded Markov chain of a queueing model (P ∈ Sa+1,

λ, µ > 0,
∞∑
i=1

qi = 1)). Set K1 = {a, a + 1}, Ki = {a− i + 1}, ∀i ∈ {2, 3, . . . , a}.

Then, by Theorem 2.15, P a is a stable matrix. Thus, we obtained the same
result as in [21, p. 259]: ‘the embedded Markov chain attains its stationary
distribution after at most a transitions’.

Further, we deal with a matter concerning the ergodicity coefficient γ∆.
Let P ∈ Rm,n. Let ∆ ∈ Par (〈m〉) . Define (see [11])

γ∆(P ) =
1
2

max
K∈∆
i,j∈K

n∑
k=1

|Pik − Pjk|

and
α(P ) = γ(〈m〉)(P ).

The next result yields an important connection between G∆1,∆2 and the
ergodicity coefficients γ∆1

and γ∆2
.

Theorem 2.20 ([16]; see also [13]). Let P ∈ G∆1,∆2 ⊆ Sm,n and Q ∈
Sn,p. Then

γ∆1
(PQ) ≤ γ∆1

(P )γ∆2
(Q) .

Proof. See [16, Theorem 1.18] (see also [13, Theorem 1.9]). �

Remark 2.21. (a) By Theorem 2.20,

α(PQ) ≤ α (P ) γ∆2
(Q)

if ∆1 = (〈m〉). This is an inequality better than the well-known one, namely,

α(PQ) ≤ α (P ) α (Q) ,

but more restrictive.
(b) If P1 ∈ G∆1,∆2 ⊆ Sm1,m2 , P2 ∈ G∆2,∆3 ⊆ Sm2,m3 , . . ., Pn−1 ∈

G∆n−1,∆n ⊆ Smn−1,mn , Pn ∈ Smn,mn+1 , then, by Theorem 2.20, we have

γ∆1
(P1P2 . . . Pn) ≤ γ∆1

(P1) γ∆2
(P2) . . . γ∆n

(Pn) .

In particular,

α (P1P2 . . . Pn) ≤ α (P1) γ∆2
(P2) . . . γ∆n

(Pn)

if ∆1 = (〈m1〉). This is an inequality better than the well-known one, namely,

α (P1P2 . . . Pn) ≤ α (P1) α (P2) . . . α (Pn) ,

but more restrictive.
(c) For our interest in the general ∆-ergodic theory, the inequality from

Theorem 2.20 is too restrictive. Moreover, it cannot be generalized for any
P ∈ Sm,n (see [12, Remark 1.14]). Consequently, we need, if any, an ergodicity
coefficient better than γ∆ which generalizes α.
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The special inequality from Remark 2.21(b) can be applied, e.g., to some
random walks on the symmetric group of permutations of order n. This idea
is supported by Example 2.11 above and Example 2.22 below.

Example 2.22 (this refers to the top to random shuffle, namely, given a
deck of n cards, remove the top card and put it back in the deck at random;
here n = 3). Let σ1 = (1, 2, 3), σ2 = (1, 3, 2), σ3 = (2, 1, 3), σ4 = (2, 3, 1),
σ5 = (3, 1, 2), and σ6 = (3, 2, 1) be the permutations of order 3. Consider a
Markov chain with state space S = S3, the set of permutations of order 3, and
transition matrix

P =



1
3 0 1

3
1
3 0 0

0 1
3 0 0 1

3
1
3

1
3

1
3

1
3 0 0 0

0 0 0 1
3

1
3

1
3

1
3

1
3 0 0 1

3 0
0 0 1

3
1
3 0 1

3


.

We have P ∈ G(S3),∆, where ∆ = ({σ1, σ6} , {σ2, σ4} , {σ3, σ5}). By Remark
2.1(b), P ∈ G∆. By Remark 2.21(b),

α (Pn) ≤ α (P ) (γ∆(P ))n−1 =
(

1
3

)n−1

.

This inequality leads to others. Let pn be the probability distribution of chain
at time n, ∀n ≥ 0. Let π be the limit probability distribution of chain. Since
P is a bistochastic matrix, π is the uniform probability distribution, i.e., π =(

1
6 , 1

6 , . . . , 1
6

)
. Using the equation πP = π and the well-known inequality

‖µQ− νQ‖1 ≤ ‖µ− ν‖1 α (Q) ,

where µ and ν are the probability distributions on 〈m〉, Q ∈ Sm,n, and ‖ · ‖1

is the vector 1-norm (see, e.g., [13] or [16]), we have

‖pn − π‖1 = ‖p0P
n − πPn‖1 ≤ ‖p0 − π‖1 α (Pn) ≤ 2α (Pn) ≤ 2

(
1
3

)n−1

.

Set Π = lim
n→∞

Pn. Note that Π = e′π. Using the equation ΠP = Π and the
well-known inequality

‖|UQ− V Q|‖∞ ≤ ‖|U − V |‖∞ α (Q) ,

where U, V ∈ Sm,n and Q ∈ Sn,p (see, e.g., [13] or [16]), we have

‖|Pn−Π|‖∞ = ‖|Pn−ΠPn|‖∞ ≤ ‖|I6−Π|‖∞ α(Pn) ≤ 2α(Pn) ≤ 2
(

1
3

)n−1

.
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In connection with Remark 2.21(c) we shall give a result related to
the limits of γ∆. We need the next result (which is closely related to Theo-
rem 2.6(iii)).

Theorem 2.23. Let P ∈ Sm,n and Q ∈ Sn,p. Let ∆1 ∈ Par (〈m〉) . Let
∆2 = (L1, L2, . . . , Lt) ∈ Par (〈n〉) with 1 ≤ t ≤ p. If

(i) Q
{j}
Lj

= e′ = e′ (|Lj |), ∀j ∈ 〈t〉 ((i) implies that Q is a ∆2-stable 0-1
matrix );

(ii) PQ is a [∆1]-stable matrix,
then P ∈ G∆1,∆2 .

Proof. Let K ∈ ∆1 and w ∈ 〈t〉 . By (ii),

(PQ)uw = (PQ)vw, ∀u, v ∈ K.

Further, by (i),

(PQ)uw =
∑

k∈〈n〉

PukQkw =
∑

k∈Lw

PukQkw =
∑

k∈Lw

Puk, ∀u ∈ K,

so that ∑
k∈Lw

Puk =
∑

k∈Lw

Pvk, ∀u, v ∈ K.

Consequently, P ∈ G∆1,∆2 . �

Define

Γ∆1,∆2 = Γ∆1,∆2 (m,n, p) =

=
{
P | P ∈ Sm,n and γ∆1

(PQ) ≤ γ∆1
(P )γ∆2

(Q), ∀Q ∈ Sn,p

}
,

where ∆1 ∈ Par (〈m〉) and ∆2 ∈ Par (〈n〉) with 1 ≤ |∆2| ≤ p, and, if m = n,

Γ∆ = Γ∆,∆.

Theorem 2.24. We have

Γ∆1,∆2 = G∆1,∆2 .

Proof. By Theorem 2.20,

G∆1,∆2 ⊆ Γ∆1,∆2 .

Let Q ∈ Sn,p. Suppose that Q is the same as in Theorem 2.23. Set

Γ∆1,∆2,Q = Γ∆1,∆2,Q (m,n, p) =

=
{
P | P ∈ Sm,n and γ∆1

(PQ) ≤ γ∆1
(P )γ∆2

(Q)
}

.

Obviously, Γ∆1,∆2 ⊆ Γ∆1,∆2,Q. Further, we show that Γ∆1,∆2,Q ⊆ G∆1,∆2 . Let
P ∈ Γ∆1,∆2,Q. Then

γ∆1
(PQ) ≤ γ∆1

(P )γ∆2
(Q) = 0
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because Q is a ∆2-stable matrix. Therefore, γ∆1
(PQ) = 0, i.e., PQ is a [∆1]-

stable matrix (see also Remark 2.26(a) below). Now, by Theorem 2.23, P ∈
G∆1,∆2 . Consequently, Γ∆1,∆2,Q ⊆ G∆1,∆2 . Finally, from

G∆1,∆2 ⊆ Γ∆1,∆2 ⊆ Γ∆1,∆2,Q ⊆ G∆1,∆2 ,

we have

Γ∆1,∆2 = G∆1,∆2 (Γ∆1,∆2 = G∆1,∆2 = Γ∆1,∆2,Q). �

Remark 2.25. Theorem 2.24 says that P ∈ G∆1,∆2 if and only if

γ∆1
(PQ) ≤ γ∆1

(P )γ∆2
(Q), ∀Q ∈ Sn,p with 1 ≤ |∆2| ≤ p.

(In particular, we have P ∈ G∆ if and only if

γ∆(PQ) ≤ γ∆(P )γ∆(Q), ∀Q ∈ Sm (m = n = p).)

The implication “⇒” is closely related to Theorem 2.20. By implication “⇐”,
if we need the inequality γ∆1

(PQ) ≤ γ∆1
(P )γ∆2

(Q) and we only know that
Q ∈ Sn,p with 1 ≤ |∆2| ≤ p, we are limited to the case P ∈ G∆1,∆2 .

Remark 2.26. (a) P ∈ G∆1,∆2 if and only if γ∆1

(
P+∆2

)
= 0.

(b) If P1 ∈ G(〈m1〉),∆2
⊆ Sm1,m2 , P2 ∈ G∆2,∆3 ⊆ Sm2,m3 , . . . , Pn−1 ∈

G∆n−1,∆n ⊆ Smn−1,mn , Pn ∈ G∆n,({i})i∈〈mn+1〉
⊆Smn,mn+1 , and Π = P1P2 . . . Pn

(the above conditions implies that Π is a stable matrix), then, by Theorem 2.20,
we have (γ(〈m1〉) = α)

α (P1P2) ≤ α (P1) γ∆2
(P2) ,

α (P1P2P3) ≤ α (P1) γ∆2
(P2) γ∆3

(P3) , . . . ,

α (P1P2 . . . Pn−1) ≤ α (P1) γ∆2
(P2) . . . γ∆n−1

(Pn−1) ,

0 = α (Π) = α (P1P2 . . . Pn) ≤ α (P1) γ∆2
(P2) . . . γ∆n

(Pn) = 0
(by Remark 2.26(a), γ∆n

(Pn) = 0). The above inequalities in turn measure
the closeness of rows of matrices P1P2, P1P2P3, . . . , P1P2 . . . Pn−1, P1P2 . . . Pn

(α(P ) is a measure of the closeness of rows of matrix P , where P ∈ Sm,n).
Note also that

0 = α (P1P2 . . . Pn) ≤ α (P1P2 . . . Pn−1) ≤ . . . ≤ α (P1P2) ≤ α (P1) .

Obviously, the above things can be generalized for [∆]-stable products of sto-
chastic matrices.

We conclude this article with a challenging remark.

Remark 2.27. An important and hard problem in the theory of finite
Markov chains refers to their speed of convergence, especially when the state
space is very large. Therefore, it is an important and interesting task to find
more general sets than G∆1,∆2 to give necessary and/or sufficient structure
theorems in the next cases (P1, P2, . . . , Pn ∈ Sm and 0 ≤ ε ≤ 1):
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1. ‖|P1P2 . . . Pn −Π|‖∞ ≤ ε, where Π ∈ Sm is a stable matrix or, more
generally, a [∆]-stable matrix;

2. γ∆ (P1P2 . . . Pn) ≤ ε.
Both cases were considered in this article when ε = 0. Concerning ε > 0
see also Theorem 2.20, Remark 2.21, Example 2.22, Theorem 2.24, and Re-
marks 2.25–26.
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