ON THE CONVERGENCE OF
A HYPERBOLOID APPROXIMATION PROCEDURE
FOR A PERTURBED GENERALIZED
EUCLIDEAN MULTIFACILITY LOCATION PROBLEM

CRISTIAN NICULESCU and COSTEL BALCAU

For a perturbed generalized multifacility location problem, we prove that a hy-
perboloid approximation procedure is convergent under certain conditions.
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1. INTRODUCTION

Let a1, asg, . . ., am be m points in R%, the d-dimensional Euclidean space.
Let wj;, j = 1,2,...,n, i =1,2,...,m, and vj, 1 < j < k < n be given
nonnegative numbers. For convenience, we assume v, = v; whenever j > k
and v;; = 0 for all j. Also, all vectors are assumed to be column vectors in
this paper. Let Bj;, j =1,2,...,n,i=1,2,...,m,and Dj;, 1 <j <k <n
be given symmetric positive definite square d-matrices. For convenience, we
assume Dj, = Dy; whenever j > k. Preda and Niculescu [5] defined the
generalized Euclidean multifacility location (GEMFL) problem, which is to

find a point x = (27,22, ...,21)T € R"*? that will minimize
n m
f(w)zzZw]'i\/(fﬂj—az)TBji(xj—ai)Jr > Ujk\/(ifj—wk)TDjk(ij—ﬁk),
j=1i=1 1<j<k<n
where 7 means transpose. When Bji=1,7=12,...,n,i=1,2,...,m, and

Djr,=1,1<j<k<mn, where [ is the unit square d-matrix, is obtained the
Euclidean multifacility location (EMFL) problem.

In this problem, a1, as, ..., a, represent the location of m existing faci-
lities; x1,x9, ..., T, represent the locations of n new facilities.

To avoid nondifferentiability, following the idea of Eyster, White and
Wierwille [1], Preda and Niculescu [5] introduced a small positive number
€ to the original problem, getting the following smooth perturbed objective
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function

n

(1) flz) =) wjz‘\/(%‘ —ai)" Bji(x; — ai) + €
j=1 1=1

J
+ Z v]k\/ zp) ' Dj(xj — xp) + €.
1<j<k<n

A minimum point of f.(x) is called an e-optimal solution to the GEMFL
problem.

In this paper, we continue the work of Preda and Niculescu [5], further
generalizing results obtained by Rosen and Xue [10] for the perturbed EMFL
problem. On the line of papers Preda et al. [6], Preda and Batatorescu [7],
Preda and Chitescu [8] and Preda [9] we can formulate some problems of
this type.

The gradient of f. with respect to the jth new facility x; is

m

Bji(:Ej - ai)
Vfe(x) = Wi
(2) f(x) ; V(@ —ai))TBji(x; —a;) + ¢
N qujk Djk(l‘j - xk)

k] — xk)TDjk(:Uj — .%'k) +e

As in Weiszfeld [11] and Miehle [3], we may get an improved location xj of
the jth new facility with respect to the existing facilities and the other new
facilities by solving the system of linear equations

Bji(zj — Dji(zj — z)
W Z + Vik =0
Z ! _aZ)TB]Z( Lj al) € ; ’ _mk)TDJk( j—Tk)+€

for :1:;r This gives
(4) ar:;F =Tj(x1,22,...,2p),

where Tj : R"*¢ - R% j=1,2,...,n, is defined by

(5) Tj(z1, 72, .., Tp)
—1
im1 \/(:cj—ai)TBji(:zj—a, € k;ﬁ] _xk)TDjk(xj_xk) +e
m
Bj;a; D gy,
= Wi + ) Uk
[; 7 V(@j—a;))TBji(zj—a;)+e ; ’ j— k)T Dy (v — ) +e
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2. THE HYPERBOLOID APPROXIMATION PROCEDURE
AND SOME PRELIMINARY RESULTS

Algorithm HAP

Step_0. Choose any initial point 2° € R™*?. Set s = 0 and go to Step_1.

Step_1. For j:=1,2,...,n do x?"'l =Tj(xf,25,..., ).

Step 2. If 251 = 2°, stop; otherwise, replace s with s + 1 and go to
Step_1.

Let 2° be given by

m -1 m m
(Z wjz-Bji) (Z wj,-Bjia,) if Z Wj; > 0
i=1 i=1 =1

N i=1,2,...,n.
> Bjiai
=1

<.

1= .
— otherwise

A new facility z; and an existing facility a; are said to have an ex-
change whenever wj; > 0. Two new facilities x; and xj are said to have
an exchange whenever v, > 0. A new facility z;, is said to be chained
if there exist ji,jo2,...,51 € {1,2,...,n} and i9 € {1,2,...,m} such that
Vjoji - - Vj,_15, Wy 7 0. A variable z; which is not chained is called a free
variable. Let F' and C' be the index sets for free variables and chained varia-
bles, respectively. We can rewrite f.(z) as

(6) fe(z) = Z iji\/(%‘ —a;)" Bji (v —a;) +¢

jeC i=1

+ Ujk\/(xj—xk)TDjk (j —ak) +e
J,keC
1<j<k<n

+ E ’Ujk\/(l’j —Jik)T Djk (.Tj —l’k) + €.
J,keF
1<j<k<n

With no loss of generality [6], we assume in the rest of this paper that
there is no free variable in the GEMFL problem or, in terms of Francis and
Cabot [2] that the problem is fully chained.

With this assumption, f.(z) is a strictly convex function for ¢ > 0 and
has arbitrarily high derivatives.

PROPOSITION 1. | lﬁm fe(x) = 4o00. Therefore, the GEMFL problem

Z||—00
has a unique -optimal solution for each € > 0.

Proof. If ||z|| — oo, then ||zj| — oo for some jo € {1,2,...,n}.
Since GEMFL is fully chained, there exist ji,jo,...,75 € {1,2,...,n}, iy €
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{1,2,...,m} such that vj;, ...vj,_,jwji, # 0. As a consequence, we have

@) ||901”IT [ Z Uikt \/(xjk B xjk+1)T Dy i (xjk - xjk+1) te

*Lo<k<l

T
T Wiio \/(% —aiy)" Bjjiy (xj, — aiy) + € | = +o0.

Therefore, lim fg( ) = +oo. This, together with the continuity of

llel—
fe(z), guarantees the ex1stence of a minimizer of f.(x). Since f-(z) is strictly
convex, the minimizer is unique. [

PROPOSITION 2. If Bj; = «;iBj, for any 1 € {1,2,..

.n}, and Dj, = BBy, for any j,k € {1,2,...,n}, j # k, where
aji > 0, for any i € {1,2,....m}, j € {1,2,...,n}, By > 0, for any
.k € {1,2,...,n}, j # k, and Bj is symmetric and positive definite, for
any j € {1,2,...,n}, then for any j € {1,2,...,n}, Tj(x1,22,...,2,) 15 in
the convex hull of the points a1, a9, ...,ay and x1,x2,...,Ty.

Proof. Tt follows from (5) that

m}, j € {1,

Tj(wl,l'g, e ,{L‘n)

vk Pk B
xj —xx)" Bj(x; — k) + €

iy — )T Bj(w; —ai) +¢ ' k;zﬁ VB

- ajiBja; BikBjzk
Wji + 2 _ vk
l; Voai(zj — ai)TBj(wj —ai) +¢ % VBjn(z; — o) Bj(w; —ww) +e
” 1
_ [Z Wi Qi n Z VikBik
= Vayilzy —ai)"Bj(x; —ai) +e i/ Binxj — xk)TBj(z; —xx) +¢
Bfl - ajiBja; BijrBjxy

Z wﬂ \/aﬂ

+Zvjk \/ﬁ]k

—ai)" Bj(z;—a;)+e 1=

xj—xp) T Bj(x;—xp)+e

m -1
_ Z Wji%ji +Z vk Bk
iz V(e —a)"Byw; —ai) +e 2/ Oinlws —an)TBy(w; —ax) + e
S Qi BirTy
= Wi; ”
l; " Vagilws — a)TBj(x; — a;) ,; " Bin(xj — 2)TBj(w; — wp) + &

and this is a convex combination of the points aq, a9, ..

Tp. O

., amy and x1, 9, ..

)
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THEOREM 1. Let x = (x1,T2,...,%,) be any point in R, Let y =
(Y1,...,Yn) be the point generated by
(8) yj =Tj(z1,22,...,20), j=12,...,n
Then the following descent property for the HAP holds as long as € > 0.
A
(9) 2f€( - 2f€ > Wy
]Zl ; Ty — ai)TBji(xj — ai) +e
2
$oy MyrwaDjk(yryk) T2 — /(aj—an) Dypla;—w) + |
+ 'Ujk: y
=1 k>j V(wj—xp)T Dy (xj—xp) + €

where
A= {\/(yj —ai)" Bji(y; — ai) + ¢ - \/(mj — a;)" Bji(xj — a;) + 8] 2

+ (y5 — 23)" Bjily; — x5).

Proof. Since y; = Tj(x1,x2,...,xy,), it follows from (3) that

" Bji(y; — ai)
(10) ; i \/(x] —a)TBji(x; —a;) + ¢

3 e Djr(y;j — xx) _
oyt — :zk)TDjk(xj —xE)+e€
Multiplying both sides of (10) by (y;—z;)7 and rearranging terms, we get
(1) i w;, (y; — ai)" Bji(y; — az)
= V(&5 —a) " Bjilzj —ai) +e
T
(y; — k)" Dji(y; —
+ZUJ J ) J ( J ) _(yj_$j)ijf€($)

oy V(@ — 2p)TDj(xj — k) + €

_ —a))" Bji(z; — ai) % — 2x)" Djr(x; — 1)
Z wit T Py T -
V(- az) Bji(xj —ai) +e 17 —xi)"Djp(xj —x1) + €

By definition,

m B..
12 Yi =T; — Wij J
( ) J J Z J \/ j —aer)Tle( _az)+ 3

-1

Dy
+ E v J Vfe(x).
K] =) Dl —wn) + = A
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Therefore,
(13) —(yj — ;)" Vife(x) = (y; — %‘)T[ Wi =
; V(xj—ai)TBji(xj—ai)+ e
D
+ ) ik . (yj — z5)
% ’ — ) Dy —ag) +e| 7
Combining (11) and (13), we get
(14) i v (yj — ai)" Bji(y; — ai) + (y; — ;)" Bjily; — ;)
’ V(xj —ai)"Bji(wj —ai) +¢
Y (y; —an)" Dy (y; —wn) +(y; =) " Dy (y; — ;) — 5 (2 —2x)" Djw(x; — )
k;éj ’ \/(xj—xk)TDjk(xj—xk)—Fs
Zwﬂ —a;)" Bji(x; — ai) Z jk x; — )" Dy (z; — k)

'—az)TBn(% —a;) + w;—ap) Dy —ap) + 6

k#J

Summing (14) over j (note that (14) is true for all j), since Dj, = Dy,
Vj # k, we get

(15) En:zm:wﬂ (95 — )" Byaly; — @) + (95 — ;)" Bjaly; — ;)
i=1i=1 V(@5 —ai)TBji(x; —a;) +e
B
+ Vik =
]Z“g] ! a: _xk)TD‘k(l"—xk)—i—a

- Qi TB % z D; P—
-3 it i) sy, ey )
j=11i=1 \/ —al) Bji(zj—ai)+ J=1k>j 33 —l‘k)TD k(z;—xK)+e

where B = (y;— )" Djr(yj — i)+ (yr— )" Dji(yr— )+ (i — )" Djn(y; —
2;)+ (yk — o) Djr(yn, — xx) — (25 — )" Dy — ).
Since Dy, is symmetrical and positive definite, we have (y;—xx)” Dj(y;—
)+( _ .)TDA( _ ) ( a2 \TD. . _ TD. _ _
zi)+ (Y —5)" Djr(yk—25) + (Y5 — ;)" Djr(y; —25) + (v —2k)" Djk (Y — k)
(zj—2) " Dj(s — ) = (yj —ye) " Djr(yj —ur) = (yj —2x +ye —25) " Djily; —
x4+ yr — xj) > 0. Therefore, we get

(16) (yj — zx) " Dj(y; — xi) + Wk — 25)" Dy (i — ;)

+(y; — )" Djiy; — x5) + (v — 2)" Djr(yr — k)
> (2 — a) " Djr(xj — zr) + (y5 — vi) " Dy — un)-
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Combining (15) and (16), we get

e (y; — ai)" Bji(y; — ai) + (y; — ;)" Bjily; — ;)
17 Wi
o ;; \/(93]‘ —ai)" Bji(w; —ai) +¢

Dijr(y; — Yk
+ZZ”J ) (y; — vw)

i=1k>j _mk)TDJk(‘TJ _xk)+5

n

Zi acj—aZ)TBjZ (zj—a;) ZZ Jk (z; =)  Dj(zj—xp)

zj—a;)TBj(zj—a;)+e V(=) Dy (xj—ap)+ e

Jj=1k>j
n
Addin W; £ + v £ to
& ]21 ZZ gt V(z;—ai)TBji(zj—a;)+e ]glkgj Ik V(@j—a)T D (zj—ak)+e

both sizes of (17), we get

o (yj B ai)TB]z(y az) te+ (y] )TBji(yj - xj)
18 Wy
(e ;; \/(xj - al)TBﬂ(:v] —a;)+e

+sz] Z/J_?/k Djk(yj_yk)+5 < f.(x).

Py 37] — )" Djp(xj —xp) + €

Following the ideas of Ostresh [4] and Weiszfeld [11], we have
(19) (yj — ai)" Bji(y; — ai) + ¢

B e PR romen YR

+ [\/(l‘j — ai)" Bji(x; — a;) + 5} 2 + 2\/(%‘ —ai)" Bji(z; — a;) + €
: [\/(yj —ai)" Bji(y; — ai) + & - \/(l“j — a;)" Bji(zj — a;) + 8} :

(20) (v — i) Dji(y; —yr) +¢

= [\/(yj = y) T Dji(y; — yk) +€ - \/(xj —ak)T Dj(zj — wp) + 6} 2

+ [\/(xj — x) " Dj(x; — x) + 5} 2 + 2\/(%' — k)" Dji(zj —a%) + €

‘ {\/(yj — )T Dji(y; — yr) + € — \/(l’j — o))" Dy (25 — wx) + E} .
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Substituting (19) and (20) into (18), we get

C
(21) Z Z wﬂ iU - az)TBJz(

7j=11i=1

—ai) +e¢

2
n [\/(yj_yk)TDjk(yj_yk)+ e—/(xj—xx)T Dji(x;—xp) + 6}
+JZ=;Z;% V(@j—a)T Dyl —ar)+ €
+2fe(y)— fe(x) < fe(2),

where

C= [\/(?/j_ai)TBﬂ(y )+5_\/( zj — a;)T Bji(w; _a1)+5]2

+(ys — 25)" Bjily; — ).
This is equivalent to (9). O

3. THE CONVERGENCE THEOREM
AND SOME COROLLARIES

We assume throughout this section that y = (y1,...,yn) = (T(x1),. ..

LEMMA 1. If there exist jo € {1,2,...,n} and ig € {1,2,...,m} such that
(22) Wigig > 0, Vjofg(l‘) 75 0,
then

B Wioig . \T
fe(y) < fe(o) 2\/(%0 =) B (1 — ) +€(?JJ0 Tjo)

“Bijoio(Yjo — jo) < fe(®).

Proof. From Theorem 1 we have

w'i T
fely) < fo(z) — o (W0 = %5o)" Bioio Yo — Tjo)-
€ £ 2\/(ij_ aiO)TBjOiO (1'j0_ai0>+5 Jo Jo Joto\JJjo Jo

Combining (12) with (22) we get

Wois
23 e Yo — 20 Bioio (Wjo — o) > 0.
( ) 2\/ x]o azo ]020($j0 —(17;0) +E( 70 JO) ]UZO< J0 ]0)

This completes the proof. [
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LEMMA 2. If there exist jo,ko € {1,2,...,n} such that v, > 0,
Viofe(x) #0 and Vi, fo(x) =0, then

U; ko T
f=y) < fe() = = (W0 —=3o) " Biioko (Yo — i)
5 € 2\/($j0—$k0)TBjoko(xjo_xk())"i‘€ Jo Jo Joko\JJo Jo

< fe(x).

Proof. It follows from Vi, f-(z) = 0 and (12) that yg, = xx,. If we fix
Ty, at its current value, treat zy, as an extra existing facility instead of a new
facility, and treat v, as the weight on the generalized distance from the jth
new facility to this extra existing facility for j # ko, then we can consider
the current GEMFL problem as a new GEMFL problem with m + 1 existing
facilities and n — 1 new facilities. Taking one step of the HAP algorithm on
this new problem will result in exactly the same values for the jth new facility
for all j # ko. Applying Lemma 1 to this new GEMFL problem, we get the
desired inequality. [

THEOREM 2. If Vf.(x) #0, then f-(y) < f-(z).

Proof. Since Vf.(x) # 0, there exists jo € {1,2,...,n} such that
Vo, fe(x) # 0. Since variable xj, is chained, there exist ji,jo,...,J € {1,2,
...,n}and ig € {1,2,...,m} such that vj,;, ...vj,_,j;,Wji, > 0.

Let r = max{i | Vj,fo(xz) # 0,0 < i <1}, If r = [, it follows from
Lemma 1 that f.(y) < fe(z). If r <[, it follows from Lemma 2 that f.(y) <
fw). O

THEOREM 3. From any initial point 2° € R™ ¢, the HAP either stops
at the e-optimal solution of GEMFL, or generates an infinite sequence {z°}.
If {z°} is bounded, then {x°} converges to the e-optimal solution of GEMFL.

Proof. If the HAP stops at some iteration, then z°T! = z° for some
integer s. It follows from the definition of the algorithm that V;f.(z*) = 0,
j = 1,2,...,n. Therefore, Vf.(x) = 0 and x® is the e-optimal solution of
GEMFL.

Now suppose that HAP generates an infinite sequence {z*}, which is
bounded. Suppose that {z®} does not converge to the e-optimal solution of
GEMFL, there would exist a subsequence {z"+} that converges to a point Z,
which is not the e-optimal solution of GEMFL. Without loss of generality, we
may assume that the subsequent {2771} converges to some point Z.

From the continuity, we have

(24) lim fo(z™) = f(Z), lim fo(z™™) = f.(2).
Since {f-(x*®)} is monotonically decreasing, (24) implies
(25) fa(f) = rliinoofe(a}“) = Tliinoofs(xrs+l) = fa(fc\)
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It follows from the continuity of 7'(x) that
(26) = lim 2" = lim T(2") = T(7).

Ts—00 Ts—00

It follows from Theorem 2 that

(27) fe(@) < f-(T).
This is in contradiction with (25) and the proof is complete. [

COROLLARY 1. If Bj; = o By, for any i€{1,2,...,m},je{1,2,...,n},
and Dji, = BjrBj, for any j,k € {1,2,...,n}, j # k, where oj; > 0, for any
ie{l,2,....m},je{l,2,...,n}, Bjr >0, for any j,k € {1,2,...,n}, j #F,
and Bj is symmetric and positive definite, for any j € {1,2,...,n}, then from
any initial point 9 € R"*%, the HAP either stops at the e-optimal solution of
GEMFL, or generates an infinite sequence {x°} converging to the e-optimal
solution of GEMFL.

Proof. From Proposition 2 it follows that if HAP generates an infinite
sequence {z°}, then {z°} is bounded. We apply now Theorem 3. [

COROLLARY 2. If Bj; = a;Bj, foranyi€{1,2,...,m},je{1,2,...,n},
and Dj, = BjiBj, for any j,k € {1,2,...,n}, j # k, where aj; > 0, for any
ie{1,2,....m},je{1,2,...,n}, Bjr >0, for any j,k € {1,2,...,n}, j #k,
and Bj is symmetric and positive definite, for any j € {1,2,...,n}, then
the unique e-optimal solution of GEMFL problem is in the convex hull of the
existing facilities.

Proof. Start the HAP with any point in the convex hull of the existing
facilities as the initial point. From Proposition 2, the sequence {z°} is in the
convex hull of the existing facilities. From Corollary 1, the unique e-optimal
solution for the GEMFL problem either is one of this points or the limit of
this sequence. Therefore, it is in the convex hull of the existing facilities. [

A future direction of research is to look for other conditions on the ma-
trices Bj; and Dy, in order to assure the boundedness of the sequence {z°}.
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