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We study when a given Gaussian random variable on a given probability space
(Ω,F , P ) is equal almost surely to β1 where β is a Brownian motion defined on the
same (or possibly extended) probability space. As a consequence of this result, we
prove that the distribution of a random variable in a finite sum of Wiener chaoses
cannot be normal. This result also allows to understand better a characterization
of the Gaussian variables obtained via Malliavin calculus.
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1. INTRODUCTION

We study when a Gaussian random variable defined on some probability
space can be expressed almost surely as a Wiener integral with respect to a
Brownian motion defined on the same space. The starting point of this work is
provided by some recent results related to the distance between an arbitrary
random variable X and the Gaussian law. This distance can be defined in va-
rious ways (the Kolmogorov distance, the total variations distance or others)
and it can be expressed in terms of the Malliavin derivative DX of the random
variable X when this derivative exists. These results lead to a characterization
of Gaussian random variables through Malliavin calculus. Let us briefly recall
the context. Suppose that (Ω,F , P ) is a probability space and let (Wt)t∈[0,1]

be an Ft Brownian motion on this space, where Ft is its natural filtration.
Equivalent conditions for the standard normality of a centered random vari-
able X with variance 1 are the following: E

(
1− 〈DX, D(−L)−1〉L2(Ω)|X

)
= 0

or E
(
f ′z(X)(1− 〈DX, D(−L)−1〉L2(Ω)

)
= 0 for every z where D denotes the

Malliavin derivative, L is the Ornstein-Uhlenbeck operator and the deter-
ministic function f ′z is the solution of the Stein’s equation (see [4]). This
characterization is of course interesting and it can be useful in some cases.
It is also easy to understand it for random variables that are Wiener in-
tegrals with respect to W . Indeed, assume that X = W (h) where h is a
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deterministic function in L2([0, 1]) with ‖h‖ = 1. In this case DX = h =
D(−L)−1X and then 〈DX, D(−L)−1〉L2(Ω) = 1 and the above equivalent con-
ditions for the normality of X are easily verified. In some other cases, it is diffi-
cult, even impossible, to compute the quantity E

(〈DX, D(−L)−1〉L2(Ω)|X
)

or
E

(
f ′z(X)(1− 〈DX, D(−L)−1〉L2(Ω)

)
= 0. Let us consider for example the case

of the random variable Y =
∫ 1
0 sign(Ws)dWs. This is not a Wiener integral

with respect to W . But it is well-known that it is standard Gaussian because
the process βt =

∫ t
0 sign(Ws)dWs is a Brownian motion as follows from the

Lévy’s characterization theorem. The chaos expansion of this random variable
is known and it is recalled in Section 2. In fact Y can be expressed as an infinite
sum of multiple Wiener-Itô stochastic integrals and it is impossible to check
if the equivalent conditions for its normality are satisfied (it is even not diffe-
rentiable in the Malliavin calculus sense). The phenomenon that happens here
is that Y can be expressed as the value at time 1 of the Brownian motion β
which is actually the Dambis-Dubbins-Schwarz (DDS in short) Brownian mo-
tion associated to the martingale MY = (MY

t )t∈[0,1], MY
t = E (Y |Ft) (recall

that Ft is the natural filtration under of W and β is defined on the same space
Ω (or possibly on a extension of Ω) and is a Gs-Brownian motion with respect
to the filtration Gs = FT (s) where T (s) = inf(t ∈ [0, 1]; 〈MY 〉t ≥ s)). This
leads us to the following question: is any standard normal random variable X
representable as the value at time 1 of the Brownian motion associated, via the
Dambis-Dubbins-Schwarz theorem, to the martingale MX , where for every t

(1) MX
t = E(X|Ft)?

By combining the techniques of Malliavin calculus and classical tools of the
probability theory, we found the following answer: if the bracket of the Ft

martingale MX is bounded a.s. then this property is true, that is X can be
represented as its DDS Brownian motion at time 1. If the bracket of MX is not
bounded, then this property is not true. An example when it fails is obtained
by considering the standard normal random variable W (h1) sign(W (h2)) where
h1, h2 are two orthonormal elements of L2([0, 1]). Nevertheless, we will prove
that we can construct a bigger probability space Ω0 that includes Ω and a
Brownian motion on Ω0 such that X is equal almost surely with this Brownian
motion at time 1. The construction is done by means of the Karhunen-Loève
theorem. Some consequences of this result are discussed here; we believe that
these consequences could be various. We prove that the standard normal ran-
dom variables such that the bracket of the corresponding DDS martingale is
bounded cannot live in a finite sum of Wiener chaoses: they can be or in the
first chaos, or in an infinite sum of chaoses. We also make a connection with
some results obtained recently via Stein’s method and Malliavin calculus.
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We structured our paper as follows. Section 2 starts with a short descrip-
tion of the elements of the Malliavin calculus and it also contains our main
result on the structure of Gaussian random variables. In Section 3 we discuss
some consequences of our characterization. In particular we prove that the
random variables whose associated DDS martingale has bounded bracket can-
not belong to a finite sum of Wiener chaoses and we relate our work to recent
results on standard normal random variables obtained via Malliavin calculus.

2. ON THE STRUCTURE
OF GAUSSIAN RANDOM VARIABLES

Let us consider a probability space (Ω,F , P ) and assume that (Wt)t∈[0,1]

is a Brownian motion on this space with respect to its natural filtration
(Ft)t∈[0,1]. Let In denote the multiple Wiener-Itô integral with respect to W .
The elements of the stochastic calculus for multiple integrals and of Malliavin
calculus can be found in [3] or [6]. We will just introduce very briefly some
notation. Other formulas from Malliavin calculus will be recalled in the paper
at the times when they are used. We recall that any square integrable random
variable which is measurable with respect to the σ-algebra generated by W
can be expanded into an orthogonal sum of multiple stochastic integrals

(2) F =
∑
n≥0

In(fn),

where fn ∈ L2([0, 1]n) are (uniquely determined) symmetric functions and
I0(f0) = E[F ].

The isometry of multiple integrals can be written as: for m,n positive
integers and f ∈ L2([0, 1]n), g ∈ L2([0, 1]m)

(3)
E (In(f)Im(g)) = n!〈f, g〉L2([0,1])⊗n if m = n,

E (In(f)Im(g)) = 0 if m �= n.

It also holds that

In(f) = In

(
f̃
)
,

where f̃ denotes the symmetrization of f defined by

f̃(x1, . . . , xx) =
1
n!

∑
σ∈Sn

f(xσ(1), . . . , xσ(n)).

We will need the general formula for calculating products of Wiener chaos
integrals of any orders m,n for any symmetric integrands f ∈ L2([0, 1]⊗m)
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and g ∈ L2([0, 1]⊗n); it is

(4) Im(f)In(g) =
p∧q∑
r=0

r!Cr
mCr

nIm+m−2r(f ⊗r g),

where the contraction f ⊗r g is defined by

(f ⊗� g)(s1, . . . , sn−�, t1, . . . , tm−�)(5)

=
∫

[0,T ]m+n−2�

f(s1, . . . , sn−�, u1, . . . , u�)g(t1, . . . , tm−�, u1, . . . , u�)du1 . . .du�.

Note that the contraction (f ⊗� g) is an element of L2([0, 1]m+n−2�) but it is
not necessary symmetric. We will by (f⊗̃�g) its symmetrization.

We denote by D
1,2 the domain of the Malliavin derivative with respect to

W which takes values in L2([0, 1]×Ω). We just recall that D acts on functionals
of the form f(X), with X ∈ D

1,2 and f differentiable in the following way:
Dαf(X) = f ′(X)DαX for every α ∈ (0, 1] and on multiple integrals In(f)
with f ∈ L2([0, 1]n) as DαIn(f) = nIn−1f(· , α).

The Malliavin derivative D admits a dual operator which is the diver-
gence integral δ(u) ∈ L2(Ω) if u ∈ Dom(δ) and we have the duality relationship

(6) E(Fδ(u)) = E〈DF, u〉, F ∈ D
1,2, u ∈ Dom(δ).

For adapted integrands, the divergence integral coincides with the classical
Itô integral.

Let us fix the probability space (Ω,F , P ) and let us assume that the
Wiener process (Wt)t∈[0,1] lives on this space. Let X be a centered square
integrable random variable on this space. Assume that X is measurable with
respect to the sigma-algebra F1. After Proposition 1.1 the random variable X
will be assumed to have standard normal law.

The following result is an immediate consequence of the Dambis-Dubbins-
Schwarz theorem (DDS theorem for short, see [2], Section 3.4, or [8], Chap-
ter V).

Proposition 1.1. Let X be a random variable in L1(Ω). Then there
exists a Brownian motion (βs)s≥0 (possibly defined on an extension of the
probability space) with respect to a filtration (Gs)s≥0 such that

X = β〈MX〉1 ,

where MX = (MX
t )t∈[0,1] is the martingale given by (1). Moreover the random

time T = 〈MX〉1 is a stopping time for the filtration Gs and it satisfies T > 0
a.s. and ET = EX2.
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Proof. Let T (s) = inf
(
t ≥ 0, 〈MX〉t ≥ s

)
. By applying Dambis-Dubbins-

Schwarz theorem
βs := MT (s)

is a standard Brownian motion with respect to the filtration Gs := FT (s) and
for every t ∈ [0, 1] we have MX

t = β〈MX〉t a.s. P . Taking t = 1 we get

X = β〈MX〉1 a.s..

The fact that T is a (Gs)s≥0 stopping time is well known. It is true
because (〈MX〉1 ≤ s) = (T (s) ≥ 1) ∈ FT (s) = Gs. Also clearly T > 0 a.s. and
ET = EX2. �

In the sequel we will call the Brownian β obtained via the DDS theorem
as the DDS Brownian associated to X.

Recall the Ocone-Clark formula: if X is a random variable in D
1,2 then

(7) X = EX +
∫ 1

0
E (DαX|Fα) dWα.

Remark 1.1. If the random variable X has zero mean and it belongs to
the space D

1,2 then by the Ocone-Clark formula (7) we have

MX
t =

∫ t

0
E (DαX|Fα) dWα

and consequently,
X = β∫ 1

0 (E(DαX|Fα))2dα
,

where β is the DDS Brownian motion associated to X.
Assume from now on that X ∼ N(0, 1). As we have seen, X can be

written as the value at a random time of a Brownian motion β (which is fact
the Dambis-Dubbins-Schwarz Brownian associated to the martingale MX).
Note that β has the time interval R+ even if W is indexed over [0, 1]. So,
if we know that βT has a standard normal law, what can we say about the
random time T? Is it equal to 1 almost surely? This is for example the
case of the variable X =

∫ 1
0 sign(Ws)dWs because here, for every t ∈ [0, 1],

MX
t =

∫ t
0 sign(Ws)dWs and 〈MX〉t =

∫ t
0 (sign(Bs)2ds = t. Another situation

when this is true is related to Bessel processes. Let (B(1), . . . , B(d)) be a
d-dimensional Brownian motion and consider the random variable

(8) X =
∫ 1

0

B
(1)
s√

(B(1)
s )2 + . . . + (B(d)

s )2
dB(1)

s +· · ·+
∫ 1

0

B
(d)
s√

(B(1)
s )2 + . . . + (B(d)

s )2
dB(d)

s .

It also satisfies 〈MX〉t = t for every t ∈ [0, 1] and in particular 〈MX〉1 = 1
a.s.. We will see below that the fact that any N(0, 1) random variable is equal
a.s. to β1 (its associated DDS Brownian evaluate d at time 1) is true only for
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random variables for which the bracket of their associated DDS martingale is
almost surely bounded.

We will assume the following condition on the stopping time T .

(9) There exist a constant M > 0 such that T ≤ M a.s..

The problem we address in this section is then the following: let (βt)t≥0

be a Gt-Brownian motion and let T be a almost surely positive stopping time
for its filtration such that E(T ) = 1 and T satisfies (9). We will show that
T = 1 a.s..

Let us start with the following result.

Proposition 1.2. Assume that T satisfies (9). Then for any λ ∈ R

we have

(10) E
(
eiλβT βT

)
= iλE

(
eiλβT T

)
.

Proof. By using the duality relation (6) between D and δ and noting that
βT = δ(1[0,T ](·)) (note that we are now using Malliavin calculus with respect
to the Wiener process β) we obtain for every t

E
(
eiλβtβT

)
= E

(
iλeiλβt〈Dβt, 1[0,T ]〉

)
= E

(
iλeiλβt(T ∧ t)

)
and letting t → M we obtain

E
(
eiλβM βT

)
= E

(
iλeiλβM T

)
.

But, since T and βT and GT measurable, we have

E
(
eiλβM βT

)
= E

(
eiλβT eiλ(βM−βT )βT

)
= E

(
E
(
eiλβT eiλ(βM−βT )βT |GT

))
= E

(
eiλβT βT

)
E
(
eiλ(βM−βT )

)
where we used the strong Markov property of the Brownian motion. Similarly,

E
(
iλeiλβM T

)
= E

(
iλeiλβT T

)
E
(
eiλ(βM−βT )

)
.

Consequently, (10) is proved. �
As a consequence we can prove the following

Proposition 1.3. If T satisfies (9) then for every λ ∈ R

(11) E
(
eiλβT T

)
= E

(
eiλβT

)
= e−

λ2

2 .

Proof. We know that βT and β1 have the same standard normal law.
Therefore,

E
(
eiλβT βT

)
= E

(
eiλβ1β1

)
= iλE

(
eiλβ1

)
= iλE

(
eiλβT

)
= iλe−

λ2

2

where for the second equality we applied the duality formula (6). Combining
this with (10) we obtain (11). �



7 On the structure of Gaussian random variables 75

Remark 1.2. As a conclusion of (10) and (11) we obtain that βT is simul-
taneously a standard normal random variable and P and under the measure
T ·P . We can wonder whether is possible for a random variable Z to be stan-
dard normal under a probability P and in the same time under F · P where
F is a positive random variable. This is possible when F = 1 + G where
E(G|Z) = 0.

Corollary 1.4. Under (9), we have E(T |βT ) = 1 almost surely.

Proof. From (10) and (11), E
(
eiλβT (T−1)

)
= 0 and this gives EQ

(
eitBT

)
=

0 where Q is the measure Q(A) = E((T − 1)1A) for every A ∈ σ(BT ). The
uniqueness of the Fourier transform shows that Q is zero so its Radon-Nykodim
derivative with respect to P , which is E(T − 1|BT ), is also almost surely
zero. �

Proposition 1.5. Under (9), we have that ET 2 = 1.

Proof. Let us apply Itô’s formula to the Gt martingale βT∧t. Letting
t →∞ (recall that T is a.s. bounded) we get

Eβ4
T = 6E

∫ T

0
β2

sds.

Since βT has N(0, 1) law, we have that Eβ4
T = 3. Consequently,

E
∫ T

0
β2

sds =
1
2
.

Now, by Corollary 1, E(Tβ2
T ) = Eβ2

T = 1. Applying again Itô formula to βT∧t

with f(t, x) = tx2 we get

ETβ2
T = E

∫ T

0
β2

sds + E
∫ T

0
sds.

Therefore, E
∫ T
0 sds = 1

2 and then ET 2 = 1. �
Theorem 1.6. Let (βt)t≥0 a Gt Wiener process and let T be a Gt bounded

stopping time with ET = 1. Suppose βT has a N(0, 1) law. Then T = 1 a.s..

Proof. It is a consequence of the above proposition, since E(T − 1)2 =
ET 2 − 2E(T ) + 1 = 0. �

Next, we will try to understand if this property is always true without
the assumption that the bracket of the martingale MX is finite almost surely.
To this end, we will consider the following example. Let (Wt)t∈[0,1] a stan-
dard Ft Wiener process. Consider h1, h2 two functions in L2([0, 1]) such that
〈h1, h2〉L2([0,1]) = 0 and ‖h1‖L2([0,1]) = ‖h2‖L2([0,1]) = 1. For example we can
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choose
h1(x) =

√
21[0, 1

2
](x) and h2(x) =

√
21[ 1

2
,1](x)

(so, in addition, h1 and h2 have disjoint support). Define the random variable

(12) X = W (h1) sign(W (h2).

It is well-known that X is standard normal. Note in particular that X2 =
W (h1)2. We will see that it cannot be written as the value at time 1 of its
associated DDS martingale. To this end we will use the chaos expansion of X
into multiple Wiener-Itô integrals.

Recall that if h ∈ L2([0, 1]) with ‖h‖L2([0,1]) = 1 then (see [1])

sign(W (h)) =
∑
k≥0

b2k+1I2k+1(h⊗(2k+1)) with b2k+1 =
2(−1)k

√
2π(2k + 1)k!2k

, k ≥ 0.

We have

Proposition 1.7. The standard normal random variable X given by
(12) is not equal a.s. to β1 where β is its associated DDS martingale.

Proof. By the product formula (4) we can express X as (note that h1

and h2 are orthogonal and there are not contractions of order l ≥ 1)

X =
∑
k≥0

b2k+1I2k+2

(
h1⊗̃h⊗2k+1

2

)

and
E
(
X|Ft

)
=

∑
k≥0

b2k+1I2k+2

(
(h1⊗̃h⊗2k+1

2 )1⊗2k+2
[0,t] (·)).

We have
(13)

(h1⊗̃h⊗2k+1
2 )(t1, . . . , t2k+2) =

1
2k + 2

2k+1∑
i=1

h1(ti)h⊗2k+1
2 (t1, . . . , t̂i, . . . , t2k+2),

where t̂i means that the variable ti is missing. Now, MX
t = E

(
X|Ft

)
=∫ t

0 usdWs where, by (13)

us =
∑
k≥0

b2k+1(2k + 2)I2k+1

(
(h1⊗̃h2k+1

2 )(· , s)1⊗2k+1
[0,s] (·))

=
∑
k≥0

b2k+1

[
h1(s)I2k+1

(
h⊗2k+1

2 1⊗2k+1
[0,s] (·))

+(2k + 1)h2(s)I1(h11[0,s](·))I2k

(
h⊗2k

2 1⊗2k
[0,s](·)

)]
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for every s ∈ [0, 1]. Note first that, due to the choice of the functions h1 and h2,

h1(s)h2(u)1[0,s](u) = 0 for every s, u ∈ [0, 1].

Thus the first summand of us vanishes and

us =
∑
k≥0

b2k+1(2k + 1)h2(s)I1(h11[0,s](·))I2k

(
h⊗2k

2 1⊗2k
[0,s](·)

)
.

Note also that h1(x)1[0,s](x) = h1(x) for every s in the interval [12 , 1]. Conse-
quently,

us = W (h1)
∑
k≥0

b2k+1(2k + 1)h2(s)I2k

(
h⊗2k

2 1⊗2k
[0,s](·)

)
.

Let us compute the chaos decomposition of the random variable
∫ 1
0 u2

sds.
Taking into account the fact that h1 and h2 have disjoint supports we can write∫ 1

0
u2

sds =
∑
k,l≥0

b2k+1b2l+1(2k + 1)(2l + 1)W (h1)2

·
∫ 1

0
dsh2(s)2I2k

(
h⊗2k

2 1⊗2k
[0,s](·)

)
I2l

(
h⊗2l

2 1⊗2l
[0,s](·)

)
.

Since

W (h1)2 = I2

(
h⊗2

1

)
+

∫ 1

0
h1(u)2du = I2

(
h⊗2

1

)
+ 1

and

E
(
sign(W (h2)

)2 =
∫ 1

0
dsh2

2(s)E
(∑

k≥0

b2k+1(2k + 1)I2k

(
h⊗2k

2 1⊗2k
[0,s](·)

))2

= 1

we get∫ 1

0
u2

sds =
(
1 + I2

(
h⊗2

1

))×
(

1 +
∑
k,l≥0

b2k+1b2l+1(2k + 1)(2l + 1)
∫ 1

0
dsh2(s)2

·
[
I2k

(
h⊗2k

2 1⊗2k
[0,s](·)

)
I2l

(
h⊗2l

2 1⊗2l
[0,s](·)

)−EI2k

(
h⊗2k

2 1⊗2k
[0,s](·)

)
I2l

(
h⊗2l

2 1⊗2l
[0,s](·)

)])

=:
(
1 + I2

(
h⊗2

1

))
(1 + A).

Therefore, we obtain that
∫ 1
0 u2

sds = 1 almost surely if and only if
(
1 +

I2

(
h⊗2

1

))
(1 + A) = 1 almost surely which implies that I2(h⊗2

1 )(1 + A) + A = 0
a.s. and this is impossible because I2(h⊗2

1 ) and A are independent. �
We obtain an interesting consequence of the above result.

Corollary 1.8. Let X be given by (12). Then the bracket of the mar-
tingale MX with MX

t = E
(
X|Ft

)
is not bounded.
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Proof. It is a consequence of Proposition 1.7 and of Theorem 1.6. �
Remark 1.3. Proposition 1.6 provides an interesting example of a Brown-

ian motion β and of a stopping time T for its filtration such that βT is standard
normal and T is not almost surely equal to 1.

Let us make a short summary of the results in the first part of our paper:
if X is a standard normal random variable and the bracket of MX is bounded
a.s. then X can be expressed almost surely as a Wiener integral with respect
to a Brownian motion on the same (or possibly extended) probability space.
The Brownian is obtained via DDS theorem. If the bracket of MX is not
bounded, then X is not necessarily equal with β1, β being its associated DDS
Brownian motion. This is the case of the variable (12).

Nevertheless, we will see that after a suitable extension of the probability
space, any standard normal random variable can be written as the value at
time 1 of a Brownian motion constructed on this extended probability space.

Proposition 1.9. Let X1 be a standard normal random variable on
(Ω1,F1, P1) and for every i ≥ 2 let (Ωi,Fi, Pi, Xi) be independent copies of
(Ω1,F1, P1, X1). Let (Ω0,F0, P0) be the product probability space. On Ω0 de-
fine for every t

W 0
t =

∑
k≥1

fk(t)Xk,

where fk(t) =
√

2 sin(k− 1
2
)πt

(k− 1
2
)π

. Then W 0 is a Brownian motion on Ω0 and X =∫ 1
0 f1(s)dW 0

s a.s..

Proof. The proof is a consequence of the Karhunen-Loève theorem for
the Brownian motion. �

3. CONSEQUENCES

We think that the consequences of this result are multiple. We will prove
here first that a random variable X which lives in a finite sum of Wiener
chaoses cannot be Gaussian. Again we fix a Wiener process (Wt)t∈[0,1] on Ω.
Let us start with the following lemma.

Lemma 3.1. Fix N ≥ 1. Let g ∈ L2([0, 1]⊗N+1) symmetric in its first
N variables such that

∫ 1
0 dsg(· , s)⊗̃g(· , s) = 0 almost everywhere on [0, 1]⊗2N .

Then for every k = 1, . . . , N − 1 we have∫ 1

0
dsg(· , s)⊗̃kg(· , s) = 0 a.e. on [0, 1]2N−2k.
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Proof. Without loss of generality we can assume that g vanishes on the
diagonals (ti = tj) of [0, 1]⊗(N+1). This is possible from the construction of
multiple stochastic integrals. From the hypothesis, the function

(t1, . . . , t2N ) → 1
(2N)!

∑
σ∈S2N

∫ 1

0
dsg(tσ(1), . . . , tσ(N), x, s)

· g(tσ(N+1), . . . , tσ(2N), x, s)

vanishes almost everywhere on [0, 1]⊗2N . Put t2N−1 = t2N = x ∈ [0, 1]. Then
for every x, the function

(t1, . . . t2N−2) →
∑

σ∈S2N−2

∫ 1

0
dsg(tσ(1), . . . , tσ(N−1), s)g(tσ(N), . . . , tσ(2N−2), s)

is zero a.e. on [0, 1]⊗(2N−2) and integrating with respect to x we get
∫ 1
0 dsg(· , s)

⊗̃1g(· , s) = 0 a.e. on [0, 1]⊗(2N−2). By repeating the procedure we obtain the
conclusion. �

Let us also recall the following result from [7].

Proposition 3.2. Suppose that F = IN (fN ) with f ∈ L2([0, 1]N ) sym-
metric and N ≥ 2 fixed. Then the distribution of F cannot be normal.

We are going to prove the same property for variables that can be ex-
panded into a finite sum of multiple integrals.

Theorem 3.3. Fix N ≥ 1 and let X be a centered random variable such
that X =

∑N+1
n=1 In(fn) where f ∈ L2([0, 1]n) are symmetric functions. Then

the law of X cannot be normal.

Proof. We will assume that EX2 = 1. Suppose that X is standard normal.
We can write X =

∫ 1
0 usdWs where us =

∑N
n=1 In(gn(· , s)). As a consequence

of Proposition 1.9, ∫ 1

0
u2

sds = 1 a.s.

But from the product formula (4)
∫ 1

0
u2

sds =
∫ 1

0
ds

( N∑
n=1

In(gn(· , s))
)2

=
∫ 1

0
ds

N∑
m,n=1

m∧n∑
k=1

k!Ck
nCk

mIm+n−2k(gn(· , s)⊗ gm(· , s))ds.

The idea is to use the fact that the highest order chaos, which appears only
once in the above expression, vanishes. Let us look at the chaos of order 2N
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in the above decomposition. As we said, it appears only when we multiply IN

by IN and consists in the random variable I2N

( ∫ 1
0 gN (· , s)⊗ gN (· , s)ds

)
. The

isometry of multiple integrals (3) implies that∫ 1

0
gN (· , s)⊗̃gN (· , s)ds = 0 a.e. on [0, 1]2N

and by Lemma 3.1, for every k = 1, . . . , N − 1,

(14)
∫ 1

0
gN (· , s)⊗̃kgN (· , s)ds = 0 a.e. on [0, 1]2N−2k.

Consider now the the random variable Y := IN+1(fN+1). It can be written
as Y =

∫ 1
0 IN (gN (· , s))dWs and by the DDS theorem, Y = βY∫ 1

0 ds(IN (gN (· ,s)))2 .

The multiplication formula together with (14) shows that
∫ 1
0 ds(IN (gN (· , s)))2

is deterministic and as a consequence Y is Gaussian. This is in contradiction
with Proposition 3.2. �

Finally, let us make a connection with several recent results obtained via
Stein’s method and Malliavin calculus. Recall that the Ornstein-Uhlenbeck
operator is defined as LF = −∑

n≥0 nIn(fn) if F is given by (2). There exists
a connection between δ,D and L in the sense that a random variable F belongs
to the domain of L if and only if F ∈ D

1,2 and DF ∈ Dom(δ) and then
δDF = −LF .

Let us denote by D the Malliavin derivative with respect to W and let,
for any X ∈ D

1,2

GX = 〈DX,D(−L)−1X〉.
The following theorem is a collection of results in several recent papers.

Theorem 3.4. Let X be a random variable in the space D
1,2. Then the

following assertions are equivalent.
1. X is a standard normal random variable.
2. For every t ∈ R, one has E

(
eitX(1−GX)

)
= 0.

3. E
(
(1−GX)/X

)
= 0.

4. For every z ∈ R, E
(
f ′z(1 − GX)

)
= 0, where f ′z is the solution of the

Stein’s equation (see [4]).

Proof. We will show that 1. ⇒ 2. ⇒ 3. ⇒ 4. ⇒ 1. First suppose that
X ∼ N(0, 1). Then

E
(
eitX(1−GX)

)
= E(eitX)− 1

it
E〈DeitX , D(−L)−1X〉

= E(eitXn)− 1
it
E
(
XeitX

)
= ϕX(t)− 1

t
ϕ′X(t) = 0.
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Let us now prove the implication 2. ⇒ 3. It has also proven in [5], Corol-
lary 3.4. Set F = 1−GX . The random variable E(F |X) is the Radon-Nykodim
derivative with respect to P of the measure Q(A) = E(F1A), A ∈ σ(X).
Relation 1. means that E

(
eitXE(F/X)

)
= EQ(eitX) = 0 and consequently

Q(A) = E(F1A) = 0 for any A ∈ σ(Xn). In other words, E(F |X) = 0. The
implication 3. ⇒ 4. is trivial and the implication 4. ⇒ 1. is a consequence of a
result in [4]. �

As we said, this property can be easily understood and checked if X
is in the first Wiener chaos with respect to W . Indeed, if X = W (f) with
‖f‖L2([0,1]) = 1 then DX = D(−L)−1X = f and clearly GX = 1. There is
no need to compute the conditional expectation given X, which is in practice
a very difficult task. Let us consider now the case of the random variable
Y =

∫ 1
0 sign(Ws)dWs. The chaos expansion of this variable is known. But

Y is not even differentiable in the Malliavin sense so it is not possible to
check the conditions from Theorem 14. Another example is related to the
value at time 1 of a Bessel process (8). Here again the chaos expansion of X
can be obtained (see e.g. [1]) but is it impossible to compute the conditional
expectation given X.

But on the other hand, for both variables treated above there is another
explanation of their normality which comes from Lévy’s characterization theo-
rem. Another explanation can be obtained from the results in Section 2. Note
that these two examples are random variables such that the bracket of MX is
bounded a.s..

Corollary 3.5. Let X be an integrable random variable on (Ω,F , P ).
Then X is a standard normal random variable if and only if there exists a
Brownian motion (βt)t≥0 on an extension of Ω such that

(15) 〈DβX, Dβ(−Lβ)−1X〉 = 1.

Proof. Assume that X ∼ N(0, 1). Then by Proposition 1.9, X = β1 where
β is a Brownian motion on an extended probability space. Clearly (15) holds.
Suppose that there exists β a Brownian motion on (Ω,F , P ) such that (15)
holds. Then for any continuous and piecewise differentiable function f with
Ef ′(Z) < ∞ we have

E
(
f ′(Z)− f(X)X

)
= E

(
f ′(X)− f ′(X)〈DβX, Dβ(−Lβ)−1X〉)

= E
(
f ′(Z)(1− 〈DβX, Dβ(−Lβ)−1X〉) = 0

and this implies that X ∼ N(0, 1) (see [4], Lemma 1.2). �
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